Show simple item record

Author
dc.contributor.author
Földi, Mátyás Csaba 
Author
dc.contributor.author
Pesti, Krisztina 
Author
dc.contributor.author
Zboray, Katalin 
Author
dc.contributor.author
Toth, Adam V 
Author
dc.contributor.author
Hegedűs, Tamás 
Author
dc.contributor.author
Málnási-Csizmadia, András 
Author
dc.contributor.author
Lukacs, Peter 
Author
dc.contributor.author
Mike, Árpád 
Availability Date
dc.date.accessioned
2022-12-12T08:57:57Z
Availability Date
dc.date.available
2022-12-12T08:57:57Z
Release
dc.date.issued
2021
uri
dc.identifier.uri
http://hdl.handle.net/10831/82881
Abstract
dc.description.abstract
Sodium channel inhibitors can be used to treat hyperexcitability-related diseases, including epilepsies, pain syndromes, neuromuscular disorders, and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described.Patch-clamp experiments with ultra-fast solution exchange and photolabeling-coupled electrophysiology were applied to describe the unique mechanism of riluzole on Nav1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding.We present evidence that riluzole acts predominantly by non-blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized.Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
Language
dc.language
Angol

dc.rights
Nevezd meg! - Ne add el! CC BY-NC

dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
Title
dc.title
The mechanism of non-blocking inhibition of sodium channels revealed by conformation-selective photolabeling
Type
dc.type
folyóiratcikk
Date Change
dc.date.updated
2022-11-22T08:20:54Z
Note
dc.description.note
MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary School of PhD Studies, Semmelweis University, Budapest, Hungary Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary Export Date: 20 March 2021 CODEN: BJPCB Correspondence Address: Mike, A.; MTA-ELTE NAP B Opto-Neuropharmacology GroupHungary; email: arpadmike1@gmail.com Correspondence Address: Mike, A.; Plant Protection Institute, Hungary; email: arpadmike1@gmail.com Correspondence Address: Mike, A.; Department of Biochemistry, Hungary; email: arpadmike1@gmail.com Funding details: KTIA‐NAP‐13‐2‐2014‐002 Funding details: GINOP‐2.3.2‐15‐2016‐00051 Funding details: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal, NKFIH, K127961 Funding text 1: This work was supported by the Hungarian Brain Research Program (KTIA‐NAP‐13‐2‐2014‐002), Hungary's Economic Development and Innovation Operative Programme (GINOP‐2.3.2‐15‐2016‐00051), NKFIH K127961, and the Semmelweis Science and Innovation Fund. MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary School of PhD Studies, Semmelweis University, Budapest, Hungary Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary Export Date: 26 April 2021 CODEN: BJPCB Correspondence Address: Mike, A.; MTA-ELTE NAP B Opto-Neuropharmacology GroupHungary; email: arpadmike1@gmail.com Correspondence Address: Mike, A.; Plant Protection Institute, Hungary; email: arpadmike1@gmail.com Correspondence Address: Mike, A.; Department of Biochemistry, Hungary; email: arpadmike1@gmail.com Funding details: KTIA‐NAP‐13‐2‐2014‐002 Funding details: GINOP‐2.3.2‐15‐2016‐00051 Funding details: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal, NKFIH, K127961 Funding text 1: This work was supported by the Hungarian Brain Research Program (KTIA‐NAP‐13‐2‐2014‐002), Hungary's Economic Development and Innovation Operative Programme (GINOP‐2.3.2‐15‐2016‐00051), NKFIH K127961, and the Semmelweis Science and Innovation Fund.
Scope
dc.format.page
1200-1217
Doi ID
dc.identifier.doi
https://doi.org/10.1111/bph.15365
Wos ID
dc.identifier.wos
000613492600001
ID Scopus
dc.identifier.scopus
85100249008
MTMT ID
dc.identifier.mtmt
31821613
Issue Number
dc.identifier.issue
5
abbreviated journal
dc.identifier.jabbrev
BR J PHARMACOL
Journal
dc.identifier.jtitle
BRITISH JOURNAL OF PHARMACOLOGY
Volume Number
dc.identifier.volume
178
Release Date
dc.description.issuedate
2021
Pubmed ID
dc.identifier.pubmed
33450052
department of Author
dc.contributor.institution
Biokémiai Tanszék
department of Author
dc.contributor.institution
MTA-ELTE Molekuláris Biofizikai Kutatócsoport
department of Author
dc.contributor.institution
MTA-ELTE-NAP B Opto-Neurofarmakológiai Kutatócsoport
department of Author
dc.contributor.institution
Molekuláris Farmakológia Kutatócsoport
department of Author
dc.contributor.institution
Doktori Iskola
department of Author
dc.contributor.institution
Biofizikai és Sugárbiológiai Intézet
department of Author
dc.contributor.institution
MTA-ELTE Motor Farmakológiai Kutatócsoport
department of Author
dc.contributor.institution
TTK hallgatók
department of Author
dc.contributor.institution
Növényvédelmi Intézet
Author institution
dc.contributor.department
Növényvédelmi Intézet
Author institution
dc.contributor.department
Biokémiai Tanszék
Author institution
dc.contributor.department
Biokémiai Tanszék
Author institution
dc.contributor.department
MTA-ELTE-NAP B Opto-Neurofarmakológiai Kutatócsoport
Author institution
dc.contributor.department
Doktori Iskola
Author institution
dc.contributor.department
Növényvédelmi Intézet
Author institution
dc.contributor.department
Biofizikai és Sugárbiológiai Intézet
Author institution
dc.contributor.department
Biokémiai Tanszék
Author institution
dc.contributor.department
MTA-ELTE Motor Farmakológiai Kutatócsoport
Author institution
dc.contributor.department
Növényvédelmi Intézet


Files in this item

The mechanism of non-blocking inhibition of sodium channels revealed by conformation-selective photolabeling
 

This item appears in the following Collection(s)

Show simple item record

Nevezd meg! - Ne add el! CC BY-NC
Except where otherwise noted, this item's license is described as Nevezd meg! - Ne add el! CC BY-NC