Author dc.contributor.author | Csikvari, P | |
Availability Date dc.date.accessioned | 2020-08-10T10:22:50Z | |
Availability Date dc.date.available | 2020-08-10T10:22:50Z | |
Release dc.date.issued | 2017 | |
uri dc.identifier.uri | http://hdl.handle.net/10831/48700 | |
Abstract dc.description.abstract | Friedland's Lower Matching Conjecture asserts that if G is a d-regular bipartite graph on upsilon(G) = 2n vertices, and m(k)(G) denotes the number of matchings of size k, then m(k)(G) >= (n/k)(2) (d - p/d)(n(d-p)) (dp)(np), where p = k/n. When p = 1, this conjecture reduces to a theorem of Schrijver which says that a d-regular bipartite graph on upsilon(G) = 2n vertices has at least ((d-1)(d-1)/d(d-2))(n) perfect matchings. L. Gurvits proved an asymptotic version of the Lower Matching Conjecture, namely lnm(k)(G)/upsilon(G) >= 1/2 (p ln (d/p) + (d - p) ln (1 - p/d) - 2(1-p) ln(1-p)) + o(upsilon)(G)(1). In this paper, we prove the Lower Matching Conjecture. In fact, we establish a slightly stronger statement which gives an extra c(p root)n factor compared to the conjecture if p is separated away from 0 and 1, and is tight up to a constant factor if p is separated away from 1. We will also give a new proof of Gurvits's and Schrijver's theorems, and we extend these theorems to (a,b)-biregular bipartite graphs. | |
Language dc.language | Angol | |
Title dc.title | Lower matching conjecture, and a new proof of Schrijver's and Gurvits's theorems | |
Type dc.type | folyóiratcikk | |
Date Change dc.date.updated | 2020-05-29T10:17:03Z | |
Note dc.description.note | Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Computer Science, Eötvös Loránd University, Pazmany Peter setany 1/C, Budapest, H-1117, Hungary Cited By :2 Export Date: 3 January 2019 Correspondence Address: Csikvári, P.; Department of Mathematics, Massachusetts Institute of TechnologyUnited States; email: peter.csikvari@gmail.com Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Computer Science, Eötvös Loránd University, Pazmany Peter setany 1/C, Budapest, H-1117, Hungary Cited By :2 Export Date: 9 January 2019 Correspondence Address: Csikvári, P.; Department of Mathematics, Massachusetts Institute of TechnologyUnited States; email: peter.csikvari@gmail.com Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Computer Science, Eötvös Loránd University, Pazmany Peter setany 1/C, Budapest, H-1117, Hungary Cited By :3 Export Date: 8 February 2020 Correspondence Address: Csikvári, P.; Department of Mathematics, Massachusetts Institute of TechnologyUnited States; email: peter.csikvari@gmail.com | |
Scope dc.format.page | 1811-1844 | |
Doi ID dc.identifier.doi | 10.4171/JEMS/706 | |
Wos ID dc.identifier.wos | 000402475900005 | |
ID Scopus dc.identifier.scopus | 85018778462 | |
MTMT ID dc.identifier.mtmt | 3266192 | |
Issue Number dc.identifier.issue | 6 | |
abbreviated journal dc.identifier.jabbrev | J EUR MATH SOC | |
Journal dc.identifier.jtitle | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY | |
Volume Number dc.identifier.volume | 19 | |
Release Date dc.description.issuedate | 2017 | |
department of Author dc.contributor.institution | Diszkrét Matematika | |
department of Author dc.contributor.institution | Számítógéptudományi Tanszék | |
department of Author dc.contributor.institution | Matematika Doktori Iskola | |
department of Author dc.contributor.institution | Algebra és Számelmélet Tanszék | |
department of Author dc.contributor.institution | MTA-ELTE Geometriai és algebrai kombinatorika kutatócsoport | |
Author institution dc.contributor.department | Számítógéptudományi Tanszék |
Files in this item
This item appears in the following Collection(s)
-
Tudományos publikációk (TTK) [2943]