Show simple item record

Author
dc.contributor.author
Von Hobe, M 
Author
dc.contributor.author
Bekki, S 
Author
dc.contributor.author
Borrmann, S 
Author
dc.contributor.author
Cairo, F 
Author
dc.contributor.author
D'Amato, F 
Author
dc.contributor.author
Di Donfrancesco, G 
Author
dc.contributor.author
Dörnbrack, A 
Author
dc.contributor.author
Ebersoldt, A 
Author
dc.contributor.author
Ebert, M 
Author
dc.contributor.author
Emde, C 
Availability Date
dc.date.accessioned
2020-04-07T17:20:44Z
Availability Date
dc.date.available
2020-04-07T17:20:44Z
Release
dc.date.issued
2013
uri
dc.identifier.uri
http://hdl.handle.net/10831/43275
Abstract
dc.description.abstract
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability. © Author(s) 2013. CC Attribution 3.0 License.
Language
dc.language
Angol
Title
dc.title
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): Activities and results
Type
dc.type
folyóiratcikk
Date Change
dc.date.updated
2019-07-17T09:17:52Z
Scope
dc.format.page
9233-9268
Doi ID
dc.identifier.doi
10.5194/acp-13-9233-2013
Wos ID
dc.identifier.wos
000325283800009
ID Scopus
dc.identifier.scopus
84884220077
MTMT ID
dc.identifier.mtmt
2447268
Issue Number
dc.identifier.issue
18
abbreviated journal
dc.identifier.jabbrev
ATMOS CHEM PHYS
Journal
dc.identifier.jtitle
ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume Number
dc.identifier.volume
13
Release Date
dc.description.issuedate
2013
department of Author
dc.contributor.institution
Országos Meteorológiai Szolgálat
department of Author
dc.contributor.institution
Atomfizikai Tanszék
department of Author
dc.contributor.institution
Környezettudományi Doktori Iskola
department of Author
dc.contributor.institution
Kármán Laboratórium
department of Author
dc.contributor.institution
Komplex Rendszerek Fizikája Tanszék
Author institution
dc.contributor.department
Komplex Rendszerek Fizikája Tanszék
Author institution
dc.contributor.department
Komplex Rendszerek Fizikája Tanszék


Files in this item

Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): Activities and results
 

This item appears in the following Collection(s)

Show simple item record