Show simple item record

Author
dc.contributor.author
Révész, Ágnes 
Author
dc.contributor.author
Milley, Márton Gyula 
Author
dc.contributor.author
Nagy, Kinga 
Author
dc.contributor.author
Szabó, Dániel 
Author
dc.contributor.author
Kalló, Gergő 
Author
dc.contributor.author
Csősz, Éva 
Author
dc.contributor.author
Vékey, Károly 
Author
dc.contributor.author
Drahos, László 
Availability Date
dc.date.accessioned
2024-08-01T08:39:16Z
Availability Date
dc.date.available
2024-08-01T08:39:16Z
Release
dc.date.issued
2021
uri
dc.identifier.uri
http://hdl.handle.net/10831/110674
Abstract
dc.description.abstract
Bottom-up proteomics relies on identification of peptides from tandem mass spectra, usually via matching against sequence databases. Confidence in a peptide-spectrum match can be characterized by a score value given by the database search engines, and it depends on the information content and the quality of the spectrum. The latter are influenced by experimental parameters, of which the collision energy is the most important one in the case of collision-induced dissociation. We examined how the identification score of the Byonic and Andromeda (MaxQuant) engines varies with collision energy for more than a thousand individual peptides from a HeLa tryptic digest on a QTof instrument. We thereby extended our earlier study on Mascot scores and corroborated its findings on the potential bimodal nature of this energy dependence. Optimal energies as a function of m/z show comparable linear trends for the three engines. On the basis of peptide-level results, we designed methods with one or two liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs and various collision energy settings and assessed their practical performance in peptide and protein identification from the HeLa standard sample. A 10-40% gain in various measures, such as the number of identified proteins or sequence coverage, was obtained over the factory default settings. Best performing methods differ for the three engines, suggesting that the experimental parameters should be fine-tuned to the choice of the engine. We also recommend a simple approach and provide reference data to ease the transfer of the optimized methods to other mass spectrometers relevant for proteomics. We demonstrate the utility of this approach on an Orbitrap instrument. Data sets can be accessed via the MassIVE repository (MSV000086379).
Language
dc.language
Angol

dc.rights
Nevezd meg! CC BY

dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
Title
dc.title
Tailoring to Search Engines: Bottom-Up Proteomics with Collision Energies Optimized for Identification Confidence.
Type
dc.type
folyóiratcikk
Date Change
dc.date.updated
2024-08-01T08:38:38Z
Scope
dc.format.page
474-484
Doi ID
dc.identifier.doi
https://doi.org/10.1021/acs.jproteome.0c00518
Wos ID
dc.identifier.wos
000605145400042
ID Scopus
dc.identifier.scopus
85097044379
MTMT ID
dc.identifier.mtmt
31809710
Issue Number
dc.identifier.issue
1
abbreviated journal
dc.identifier.jabbrev
J PROTEOME RES
Journal
dc.identifier.jtitle
JOURNAL OF PROTEOME RESEARCH
Volume Number
dc.identifier.volume
20
Release Date
dc.description.issuedate
2021
Pubmed ID
dc.identifier.pubmed
33284634
department of Author
dc.contributor.institution
Molekuláris Medicina Kutató Központ
department of Author
dc.contributor.institution
Proteomika Szolgáltató Laboratórium
department of Author
dc.contributor.institution
Biokémiai és Molekuláris Biológiai Intézet
department of Author
dc.contributor.institution
MTA-TTK NAP B MS Neuroproteomika Kutatócsoport
department of Author
dc.contributor.institution
Hevesy György Kémia Doktori Iskola
department of Author
dc.contributor.institution
Szerves Kémiai Intézet
department of Author
dc.contributor.institution
MS Proteomika Kutatócsoport
Author institution
dc.contributor.department
MS Proteomika Kutatócsoport
Author institution
dc.contributor.department
MS Proteomika Kutatócsoport
Author institution
dc.contributor.department
Hevesy György Kémia Doktori Iskola
Author institution
dc.contributor.department
Biokémiai és Molekuláris Biológiai Intézet
Author institution
dc.contributor.department
Biokémiai és Molekuláris Biológiai Intézet
Author institution
dc.contributor.department
Szerves Kémiai Intézet
Author institution
dc.contributor.department
Szerves Kémiai Intézet


Files in this item

Tailoring to Search Engines: Bottom-Up Proteomics with Collision Energies Optimized for Identification Confidence.
 

This item appears in the following Collection(s)

Show simple item record

Nevezd meg! CC BY
Except where otherwise noted, this item's license is described as Nevezd meg! CC BY