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Abstract

This paper is devoted to the study ofΘ-summability of Fourier�Jacobi series. We shall
construct such processes (using summations) that are uniformly convergent in a Banach
space

(
Cwγ,δ , ‖ · ‖wγ,δ

)
of continuous functions. Some special cases are also considered,

such as the Fejér, de la Vallée Poussin, Cesàro, Riesz and Rogosinski summations. Our
aim is to give such conditions with respect to Jacobi weightswγ,δ, wα,β and to summation
matrix Θ for which the uniform convergence holds for allf ∈ Cwγ,δ . Order of convergence
will also be investigated. The results and the methods are analogues to the discrete case
(see [16] and [17]).

1. Introduction

It is known that the sequence of partial sums of the trigonometric Fourier
series is not uniformly convergent for all continuous functions. However, by
using a suitable summation, one can get uniform convergence. We may refer
to [15] and the references there. The algebraic case is more complicated.

The Fourier�Jacobi series has been studied extensively by many authors.
It is known that there exists a continuous function on [−1, 1] such that its
Fourier�Jacobi series is not uniformly convergent on [−1, 1] (see e.g. [12,
Ch. IX], [10, p. 301], [1], [8, p. 160]). The weighted convergence of certain
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sums of Fourier�Jacobi series (obtaining best weighted polynomial approxi-
mation) was investigated by D. S. Lubinsky and V. Totik [6]. M. Felten [3]
(see also [4], [5]) showed that their results can be largely extended. In a recent
paper J. Szabados [11] proved a weighted error estimate for approximation
by Cesàro means of Fourier�Jacobi series.

The present paper is devoted to the study of weighted uniform conver-
gence ofΘ-sums of Fourier�Jacobi series. The discrete version of this problem
(when we use Lagrange interpolation polynomials instead of the partial sums
of Fourier�Jacobi series) was studied by L. Szili and P. Vértesi [16], [17] (see
also [13], [14]). Starting from these results we shall construct a wide class
of linear processes (using Jacobi polynomials and summations) which are
uniformly convergent in suitable weighted spaces of continuous functions.

Let wα,β(x) := (1− x)α(1 + x)β be a Jacobi weight (α, β > −1, x ∈
[−1, 1]) and denote by pn(wα,β) (n ∈ N) the orthonormal polynomials with
respect to the weight wα,β. For an in�nite matrix Θ (see (2.2)) we shall con-
sider suitable summations of Fourier�Jacobi series (see Section 2.2). These
polynomials will be denoted by SΘ

n (f, wα,β, ·) (see (2.3)).
The aim of this paper is to give conditions for α, β, γ, δ and the sum-

mation matrix Θ satisfying

lim
n→+∞‖

(
f − SΘ

n (f, wα,β, ·))wγ,δ‖ = 0

for all f ∈ Cwγ,δ
(see Section 2.1). Order of convergence will also be investi-

gated.

2. Notation and preliminaries

2.1. Selection of the function space

Let C(−1, 1) be the linear space of real valued continuous functions de-
�ned on the interval (−1, 1). We de�ne the weighted function space

Cwγ,δ
:=

{
f ∈ C(−1, 1) : lim

|x|→1

(
fwγ,δ

)
(x) = 0

}
,

where

wγ,δ(x) := (1− x)γ(1 + x)δ (
x ∈ [−1, 1], γ, δ = 0

)

is a Jacobi weight.
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Then
(
Cwγ,δ

, ‖ · ‖wγ,δ

)
is a Banach space where the norm ‖ · ‖wγ,δ

is de-
�ned by

‖f‖wγ,δ
:= ‖fwγ,δ‖ := max

x∈[−1,1]

∣∣(fwγ,δ)(x)
∣∣ (f ∈ Cwγ,δ

).

2.2. Fourier�Jacobi series

For α,β > −1 we can uniquely de�ne the sequence of orthonormal Jacobi
polynomials

pn(x) := pn(wα,β, x) := γnxn + · · ·+ γ0

(
γn > 0, n ∈ N0 := {0, 1, 2, . . . })

for the weight wα,β satisfying

(2.1)
1∫

−1

pn(wα,β, x)pm(wα,β, x)wα,β(x) dx = δm,n (n,m ∈ N0).

If f ∈ Cwγ,δ
is a given function then we can construct the Fourier�Jacobi

series of f by

S(f, wα,β, x) :=
∑

k∈N0

ck(f)pk(wα,β, x)
(
x ∈ [−1, 1]

)

where

ck(f) := c
(α,β)
k (f) :=

1∫

−1

f(x)pk(wα,β, x)wα,β(x) dx (k ∈ N0)

are the Fourier�Jacobi coe�cients. Denote the nth partial sum of the
Fourier�Jacobi series by

Sn(f, wα,β, x) :=
n∑

k=0

ck(f)pk(wα,β, x)
(
x ∈ [−1, 1], n ∈ N0

)
.
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2.3. Θ-summation of the Fourier�Jacobi series

Let us �x a summation matrix

(2.2) Θ :=




θ0,1

θ0,2 θ1,2

θ0,3 θ1,3 θ2,3
... ... ...


 ,

where θk,n's are real numbers.
The Θ-sum of the Fourier�Jacobi series is de�ned by

SΘ
n (f, wα,β, x) :=

n−1∑

k=0

θk,nck(f)pk(wα,β, x)(2.3)

(
x ∈ [−1, 1], n ∈ N, f ∈ Cwγ,δ

)
.

Before starting the analysis of the problem of convergence, we discuss
some possible choices of the summation matrixΘ.

Example 1. Partial sums of Fourier�Jacobi series. Let

θk,n := 1 (k = 0, 1, . . . , n− 1, n ∈ N).

Then SΘ
n (f,wα,β, x) is the usual nth partial sum of the Fourier�Jacobi series

of f .
Example 2. Summation functions. Let ϕ : [0, 1] → R be a given func-

tion with ϕ(0) = 1 and ϕ(1) = 0. Now we can give the summation matrix
Θ by θk,n := ϕ( k

n) (k = 0, 1, . . . , n− 1, n ∈ N). These cases will be called
ϕ-summation of the Fourier�Jacobi series.

Example 3. Fejér summation of the Fourier�Jacobi series. Let

θk,n := 1− k

n
(k = 0, 1, . . . , n− 1, n ∈ N)

(
ϕF (t) := 1− t, t ∈ [0, 1]

)
.

Then ΘF := (θk,n) is the Fejér summation matrix and

σn(f, wα,β, x) := SΘF
n (f, wα,β, x) :=

n−1∑

k=0

(
1− k

n

)
ck(f)pk(wα,β, x)

(
x ∈ [−1, 1], n ∈ N)
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are the Fejér means of the Fourier�Jacobi series.

Example 4. The (C, µ) Cesàro means of the Fourier�Jacobi series are
de�ned by

θk,n :=
A

(µ)
n−k−1

A
(µ)
n−1

(µ = 0, k = 0, 1, . . . , n− 1, n ∈ N)

where

A
(µ)
0 := 1, A(µ)

m :=
(

m + µ

m

)
=

(µ + 1) · · · (µ + m)
m!

(m ∈ N).

If µ = 1 or µ = 0 then we obtain the Fejér summation or the partial sums of
the Fourier�Jacobi series, respectively.

Example 5. The (R, ν, µ) Riesz summation of the Fourier�Jacobi series
is de�ned by the summation function

ϕν,µ(t) := (1− tν)µ (
t ∈ [0, 1]

)
,

where ν, µ = 0 are �xed real numbers.
Example 6. The de la Vallée Poussin summation is de�ned by the sum-

mation function

ϕs(t) :=

{
1, if 0 5 t 5 s

(t− 1)/(s− 1), if s < t 5 1

where s ∈ (0, 1).
Example 7. The Rogosinski summation is de�ned by the summation

function
ϕR(t) := cos

πt

2
(
t ∈ [0, 1]

)
.
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3. Results

First we give a necessary and su�cient condition for the uniform conver-
gence (cf. [17, Statement 3.1]).

Theorem 3.1. If α, β > −1 and γ, δ = 0 then for the summation matrix
Θ = (θk,n) we have

(3.1) lim
n→+∞‖

(
f − SΘ

n (f, wα,β, ·))wγ,δ‖ = 0

for all f ∈ Cwγ,δ
if and only if

(T1) lim
n→+∞(1− θk,n) = 0 for all �xed k = 0, 1, 2, . . .

and

(B)





there exists C > 0 independent of n such that for all n ∈ N

sup
x∈[−1,1]

1∫

−1

∣∣∣∣
n−1∑

k=0

θk,npk(x)pk(y)
∣∣∣∣
wγ,δ(x)wα,β(y)

wγ,δ(y)
dy 5 C.

However, to verify (B) generally is not easy, so we are going to give
su�cient conditions for the uniform convergence.

First we de�ne some further conditions ((T1)�(T5)) corresponding to the
summation matrix Θ:

θn−1,n = O

(
1
n

)
(n ∈ N),(T2)

42θk−1,n = O

(
1
n2

)
(k = 1, 2, . . . , n− 1, n ∈ N),(T3)

42θk−1,n (k = 1, 2, . . . , n− 1, n ∈ N) is of constant sign,(T4)

sgn42θk−1,n = sgn θn−1,n (k = 1, 2, . . . , n− 1, n ∈ N),(T5)

where

42θk,n := 4θk+1,n −4θk,n, 4θk,n := θk+1,n − θk,n (θn,n := 0).

Theorem 3.2 (cf. [17, Theorem 3.3]). Suppose that α, β = −1/2 and
γ, δ = 0 satisfy the inequalities

(3.2) α

2
− 1

4
< γ <

α

2
+

3
4

and β

2
− 1

4
< δ <

β

2
+

3
4
.
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Then
(a)(T1), (T2) and (T3)

or
(b)(T1), (T2) and (T4)

or
(c)(T1) and (T5)

imply

(3.3) lim
n→+∞‖

(
f − SΘ

n (f, wα,β, ·))wγ,δ‖ = 0

for all f ∈ Cwγ,δ
.

If the summation matrix is given by a summation function (see Section
2.3, Example 2), then we can give an even simpler su�cient condition for the
uniform convergence.

Theorem 3.3 (cf. [16, Theorem 4.3]). Suppose that α, β = −1/2 and
γ, δ = 0 ful�l requirements (3.2). Let ϕ : [0, 1] → R be a continuous summa-
tion function, moreover assume that

(a)ϕ is nonnegative and convex from below on [0, 1]
or

(b)ϕ is convex (concave) from below on [0, 1] and there exist ε > 0 and
c > 0 such that

(3.4)
∣∣ϕ(x)

∣∣ 5 c(1− x)
(
x ∈ [1− ε, 1]

)
.

Then (3.3) holds for all f ∈ Cwγ,δ
.

Corollary 3.4 (cf. [17, Corollary 3.4]). Suppose that α, β = −1/2 and
γ, δ = 0 ful�l requirements (3.2). Then

(a)for µ = 1 the (C, µ) Cesàro,
(b)for ν, µ = 1 the (R, ν, µ) Riesz,
(c)for every s ∈ (0, 1) the de la Vallée Poussin,
(d)the Rogosinski

summations of Fourier�Jacobi series are uniformly convergent in the space(
Cwγ,δ

, ‖ · ‖wγ,δ

)
.

By choosing di�erent summation matrices, di�erentorders of convergence
can be attained. Recall that the number

En(f, wγ,δ) := inf
p∈Pn

∥∥(f − p)wγ,δ

∥∥

is called the bestnth degree weighted polynomial approximation off ∈ Cwγ,δ
.

(By [16, p. 329, Example 1], En(f, wγ,δ) → 0.)
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The following result states that the best possible order of approximation
by summations of Fourier�Jacobi series can be attained using the de la Vallée
Poussin summation.

Theorem 3.5 (cf. [17, Theorem 3.5]). Suppose that α, β = −1/2 and
γ, δ = 0 satisfy the requirements (3.2). Then for every s ∈ (0, 1) we have

(3.5) ‖(
f − Sϕs

n (f, wα,β, ·))wγ,δ‖ 5 CEqn(f, wγ,δ) (n ∈ N)

for all f ∈ Cwγ,δ
with some constant C > 0 independent of f and n, where

ϕs is a de la Vallée Poussin summation function and qn := [sn].
The next result asserts that for many summation matrices the order of

convergence is at least of Stechkin-type.
Theorem 3.6 (cf. [17, Theorem 3.6]). Suppose that α, β = −1/2 and

γ, δ = 0 satisfy the requirements (3.2), moreover θ0,n = 1 + O( 1
n) (n ∈ N).

Then
(a) (T1), (T2) and (T3)

or
(b) (T1), (T2), (T4) and 1− θ1,n = O( 1

n) (n ∈ N) imply

(3.6) ‖(
f − SΘ

n (f, wα,β, ·))wγ,δ‖ 5 C

n

n−1∑

k=0

Ek(f, wγ,δ)

for all f ∈ Cwγ,δ
and n ∈ N with some constant C > 0 independent of f

and n.

4. Proofs

The proofs follow the methods of [16] and [17].

4.1. Proof of Theorem 3.1. The statement is a consequence of the
Banach�Steinhaus theorem. It is clear that for all �xedn ∈ N

SΘ
n :

(
Cwγ,δ

, ‖ · ‖wγ,δ

) → Pn−1 ⊂
(
Cwγ,δ

, ‖ · ‖wγ,δ

)
,

SΘ
n f := SΘ

n (f, wα,β, ·)

is a bounded linear operator, where the norm ofSΘ
n is

∥∥SΘ
n

∥∥ := sup
06≡f∈Cwγ,δ

∥∥SΘ
n f

∥∥
wγ,δ

‖f‖wγ,δ

= sup
0 6≡f∈Cwγ,δ

∥∥SΘ
n (f, wα,β, ·)wγ,δ

∥∥
‖fwγ,δ‖ .
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Since

SΘ
n (f, wα,β, x) =

n−1∑

k=0

θk,nck(f)pk(x)

=

1∫

−1

(fwγ,δ)(y)
( n−1∑

k=0

θk,npk(x)pk(y)
)

wα,β(y)
wγ,δ(y)

dy

thus we have

∥∥SΘ
n

∥∥ = sup
x∈[−1,1]

1∫

−1

∣∣∣∣
n−1∑

k=0

θk,npk(x)pk(y)
∣∣∣∣
wγ,δ(x)wα,β(y)

wγ,δ(y)
dy

i.e. by (B) we get the boundedness of
(‖SΘ

n ‖, n ∈ N)
.

From (2.1) we have

ck(pj) =

1∫

−1

pj(x)pk(x)wα,β(x) dx = δj,k

which means that

pj − SΘ
n (pj , wα,β, ·) = pj − θj,npj = (1− θj,n)pj .

This by (T1) ensures that for all �xed j = 0, 1, . . . .

lim
n→+∞‖

(
pj − SΘ

n (pj , wα,β, ·))wγ,δ‖ = 0.

Since the polynomials are dense in
(
Cwγ,δ

, ‖ · ‖wγ,δ

)
, thus the conditions of

the Banach�Steinhaus theorem hold. ¤

4.2. Proof of Theorem 3.2.We showed in the proof of Theorem 3.1.
that if (T1) holds then we have

lim
n→+∞‖

(
pj − SΘ

n (pj , wα,β, ·))wγ,δ‖ = 0

for all �xed j = 0, 1, . . . .
Thus by the Banach�Steinhaus theorem it is enough to prove
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Lemma 4.1. Suppose that for α, β = −1/2 and γ, δ = 0 the conditions
(3.2) hold. Then (a) or (b) or (c) imply that there exists C > 0 independent
of n such that

(4.1)
∥∥SΘ

n (f, wα,β, ·)wγ,δ

∥∥ 5 C
∥∥fwγ,δ

∥∥ (n ∈ N, f ∈ Cwγ,δ
).

Proof of Lemma 4.1. In [3] M. Felten showed that if α, β, γ and δ
satisfy the conditions (3.2), then there exists aK > 0 independent of n such
that

(4.2)
∥∥σn(f, wα,β, ·)wγ,δ

∥∥ 5 K
∥∥fwγ,δ

∥∥ (n ∈ N, f ∈ Cwγ,δ
)

where σn(f, wα,β, ·) (n ∈ N) are the Fejér summations.
Let qk(x) := ck(f)pk(x)

(
x ∈ [−1, 1], k = 0, 1, . . . , n− 1, n ∈ N)

. Then

qk =
k∑

l=0

ql −
k−1∑

l=0

ql =
( k∑

j=0

j∑

l=0

ql −
k−1∑

j=0

j∑

l=0

ql

)

−
( k−1∑

j=0

j∑

l=0

ql −
k−2∑

j=0

j∑

l=0

ql

)
= (k + 1)σk+1f − 2kσkf + (k − 1)σk−1f

(
σkf := σk(f, wα,β, ·), σ0f := σ−1f := 0

)
,

therefore we have

SΘ
n (f, wα,β, ·) =

n−1∑

k=0

θk,nqk =
n∑

k=1

θk−1,nkσkf − 2
n−1∑

k=1

θk,nkσkf

+
n−2∑

k=1

θk+1,nkσkf =
n−1∑

k=1

(
(θk+1,n − 2θk,n + θk−1,n)kσkf

)
+ nθn−1,nσnf

=
n−1∑

k=1

42θk−1,nkσkf + nθn−1,nσnf.

Using (4.2) we get

∥∥SΘ
n (f, wα,β, ·)wγ,δ

∥∥ 5 K
∥∥fwγ,δ

∥∥
( n−1∑

k=1

∣∣42θk−1,n

∣∣k + n|θn−1,n|
)

.
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From (T2) and (T3) it follows that

n−1∑

k=1

∣∣42θk−1,n

∣∣k + n|θn−1,n| 5 c1 + c2 (c1, c2 = 0)

which proves the statement in the case (a).
Since

(4.3)
n−1∑

k=1

42θk−1,nk = −
n−2∑

k=0

4θk,n + (n− 1)4θn−1,n = θ0,n − nθn−1,n,

thus when (b) holds we have

n−1∑

k=1

∣∣42θk−1,n

∣∣k + n|θn−1,n| 5 |nθn−1,n − θ0,n|+ n|θn−1,n|

5 2c1 + |θ0,n| 5 c2 (c1, c2 = 0).

If (c) holds then

n−1∑

k=1

∣∣42θk−1,n

∣∣k + n|θn−1,n| 5 |θ0,n| 5 c (c = 0),

thus our statement is proved. ¤

4.3. Proof of Theorem 3.3. By the continuity of ϕ we have (T1).
If ϕ is convex on [0,1] then for every 0 < x1 < x2 < 1 and y1, y2 ∈ (x1, x2)

we have
ϕ(y1)− ϕ(x1)

y1 − x1
5 ϕ(y2)− ϕ(x2)

y2 − x2
.

Therefore for every k = 1, 2, . . . , n− 1 (n ∈ N) we get

42θk−1,n =
1
n

(
θk+1,n − θk,n

1/n
− θk,n − θk−1,n

1/n

)

=
1
n

(
ϕ(k+1

n )− ϕ( k
n)

(k + 1)/n− k/n
− ϕ( k

n)− ϕ(k−1
n )

k/n− (k − 1)/n

)
= 0.
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Similarly, if ϕ is concave on [0, 1] then

42θk−1,n 5 0 (k = 1, 2, . . . , n− 1, n ∈ N),

which means that (T4) holds in both case.
Now if ϕ is nonnegative and convex we get

sgn42θk−1,n = 1 = sgnϕ

(
n− 1

n

)
= sgn θn−1,n

(k = 1, 2, . . . , n− 1, n ∈ N),

thus we have (T5) which proves the statement in the case (a).
From (3.4) it follows that

θn−1,n = ϕ

(
n− 1

n

)
= O

(
1
n

)
,

thus we have (T2) which proves our statement in the case (b). ¤

4.4. Proof of Corollary 3.4. See Theorem 3.3 and Section 2.3, Ex-
amples. ¤

4.5. Proof of Theorem 3.5. Let Sϕs
n f := Sϕs

n (f, wα,β, ·). First we
show that

(4.4) p(x) = (Sϕs
n p)(x)

(
p ∈ Pqn , x ∈ (−1, 1), n ∈ N)

.

Consider an arbitrary polynomial p :=
∑qn

j=0 ajpj . Then

ck(p) =

1∫

−1

( qn∑

j=0

ajpj(x)
)

pk(x)wα,β(x) dx

=
qn∑

j=0

aj

1∫

−1

pj(x)pk(x)wα,β(x) dx =

{
ak, if 0 5 k 5 qn

0, if qn < k 5 n− 1.

From the condition ϕs(t) = 1
(
t ∈ [0, s]

)
it follows that ϕs( k

n) = 1 (k =
0, 1, . . . , qn) therefore

(Sϕs
n p)(x) =

qn∑

j=0

ajpj(x) = p(x)
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which proves (4.4).
Let Q be the best weighted approximating polynomial of f of order at

most qn, that is Eqn(f, wγ,δ) =
∥∥(f −Q)wγ,δ

∥∥ . Then by (4.4) we have

∣∣f(x)− (Sϕs
n f)(x)

∣∣wγ,δ(x) 5
∣∣f(x)−Q(x)

∣∣wγ,δ(x)

+
∣∣Q(x)− (Sϕs

n Q)(x)
∣∣wγ,δ(x) +

∣∣(Sϕs
n Q)(x)− (Sϕs

n f)(x)
∣∣wγ,δ(x)

5 Eqn(f, wγ,δ) + 0 +

∣∣∣∣∣

1∫

−1

(
(Q− f)wγ,δ

)
(y)

×
( n−1∑

k=0

ϕs

(
k

n

)
pk(y)pk(x)

)
wα,β(y)
wγ,δ(y)

dy

∣∣∣∣∣wγ,δ(x)

5 (1 +
∥∥Sϕs

n

∥∥)Eqn(f, wγ,δ).

By Theorem 3.3 (b) we have (3.3), thus by Theorem 3.1(B) we have

sup
n∈N

∥∥Sϕs
n

∥∥ < +∞. ¤

4.6. Proof of Theorem 3.6. Using a standard argument similar to
the one used by Stechkin [9] it may be proved that the order of convergence
of the Fejér sums of the Fourier�Jacobi series is at least of Stechkin-type.
Namely, if α, β = −1/2 and γ, δ = 0 satisfy the requirements (3.2), then we
have

(4.5) ‖(
f − σn(f, wα,β, ·))wγ,δ‖ 5 C

n

n−1∑

k=0

Ek(f, wγ,δ)

for all f ∈ Cwγ,δ
and n ∈ N with some constantC > 0 independent of f and n.

For the proof of this statement we refer to [11, (3.1)].
We showed in the proof of Lemma 4.1 that

SΘ
n f := SΘ

n (f, wα,β, ·) =
n−1∑

k=1

42θk−1,nkσkf + nθn−1,nσnf

where σnf are the Fejér sums (n ∈ N).
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Using the identity (see (4.3) and θ0,n = 1 + O( 1
n))

n−1∑

k=1

42θk−1,nk + nθn−1,n = 1 + O

(
1
n

)

we get

f − SΘ
n f =

n−1∑

k=1

42θk−1,nk(f − σkf) + nθn−1,n(f − σnf) + fO

(
1
n

)
.

From (T2) and (4.5) it follows that

‖(
nθn−1,n(f − σnf)

)
wγ,δ‖ 5 c

n

n−1∑

k=0

Ek(f, wγ,δ)

for all f ∈ Cwγ,δ
and n ∈ N with some constant c > 0 independent of f and n.

If (T3) holds then using (4.5) we have

A :=

∥∥∥∥∥
( n−1∑

k=1

42θk−1,nk(f − σkf)
)

wγ,δ

∥∥∥∥∥

5 c

n−1∑

k=1

∣∣42θk−1,n

∣∣
( k−1∑

j=0

Ej(f, wγ,δ)
)

5 c1

n2

n−1∑

k=1

k−1∑

j=0

Ej(f, wγ,δ)

=
c1

n

n−1∑

k=1

(
1− k

n

)
Ek−1(f, wγ,δ) 5 c1

n

n−1∑

k=0

Ek(f, wγ,δ).

Since there exist c1, c2 > 0 such that

∥∥∥∥
(

fO

(
1
n

))
wγ,δ

∥∥∥∥ 5 c1

n
5 c2

n

n−1∑

k=0

Ek(f, wγ,δ),

thus combining the above relations we obtain the statement in the case (a).
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Now if (b) holds and42θk−1,n = 0 (say) for k = 1, 2, . . . , n− 1 and n ∈ N
then

A 5 c

{ n−1∑

j=0

Ej(f, wγ,δ)
} n−1∑

k=1

42θk−1,n

= c(θ0,n − θ1,n − θn−1,n)
n−1∑

k=0

Ek(f, wγ,δ) 5 c1

n

n−1∑

k=0

Ek(f, wγ,δ),

thus our statement is proved in this case, too. ¤
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