RESEARCH ARTICLE

Characterization of the interactions of rabbit neonatal Fc receptor (FcRn) with rabbit and human IgG isotypes

Bence Szikora¹, László Hiripi², Balázs Bender³, Imre Kacskovics¹,³, Attila Iliás¹*

¹ Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary, ² Department of Animal Biotechnology, National Agricultural Research and Innovation Centre, Gödöllő, Hungary, ³ ImmunoGenes-ABS Ltd, Budakeszi, Hungary

* attila.ilias@ttk.elte.hu

Abstract

Despite the increasing importance of rabbit as an animal model in pharmacological studies like investigating placental transfer of therapeutic IgGs, little is known about the molecular interaction of the rabbit neonatal Fc receptor (FcRn) with rabbit and human IgG molecules. We analyzed the interactions of the rabbit and human FcRn with rabbit and human IgG isotypes using surface plasmon resonance assay. Similar to FcRn of other species, rabbit FcRn functions in pH-dependent manner, as it binds IgGs at pH 6.0, but no binding occurs at pH 7.4. We also showed that rabbit FcRn binds rabbit IgG and human IgG1 with nearly identical affinity, whereas it has stronger interactions with the other human IgG isotypes. The similar affinity of rabbit IgG and human IgG1 for rabbit FcRn was confirmed by in vitro FcRn-mediated recycling assay. These data verify that rabbit is an appropriate animal model for analyzing the pharmacokinetics of human therapeutic monoclonal antibodies.

Introduction

The neonatal Fc receptor, FcRn is a heterodimer consisting of an MHC-I like α-chain and β₂-microglobulin (β2m) [1]. FcRn plays an important role in the transcytosis of maternal IgG to the fetus and in maintaining IgG and albumin homeostasis in adult [2], as well as in antigen presentation by professional Ag presenting cells in case of Ag-IgG immune complexes [3–5].

FcRn functions in pH-dependent manner, as it binds IgG at slightly acidic pH (pH 5.5–6.0) whereas this interaction is negligible at around neutral pH (pH 7.2–7.4) [6–8]. The 2:1 FcRn: IgG binding stoichiometry, i.e. two FcRn molecules bind one IgG at independent sites was first proposed by FcRn:Fc co-crystal structures [9–11] and was further confirmed by gel filtration studies in solution [12–14], and recently, by surface plasmon resonance measurements [15]. However, FcRn can also form 1:1 complexes with the Fc region of IgG when assayed under non-equilibrium conditions [16].

In rabbit, it was found decades ago that the transfer of maternal IgG and at a lower extent, albumin occurs across the rabbit fetal yolk sac membrane (YSM) from the maternal uterine lumen to the fetus [17]. Furthermore, human IgG (hIgG) injected into the maternal circulation
was also transported well to the rabbit fetus [17] indicating that rabbit FcRn (rbFcRn) binds efficiently hlgG. Low level antibody transfer could be observed during early gestation, prior to gestation day (GD) 8 due to the incomplete tight junctions of the bilaminar yolk sac membrane [18], however, no or only limited antibody transport could be detected during the period of yolk sac inversion (GD 9–13). Once inversion is completed (around GD 15), then IgG transport starts up through FcRn-mediated transcytosis, and the rate continuously increases with the progression of gestation [19–21]. Accordingly, the available data regarding the placental transfer of human therapeutic monoclonal antibodies (mAb IgGs) and Fc-containing biopharmaceuticals, similar to endogenous maternal IgG, indicate low fetal exposures until inverted yolk sac placenta is evolved, and near maternal level is reached at the end of gestation (GD 29–31) [19,21–23].

The blood clearance of rabbit IgG (rbIgG) and hlgG was also investigated in rabbits and it was found that the half-life of rbIgG and a hlgG preparation was quite similar, around 6 and 5 days, respectively, which indicates that the FcRn-mediated salvage mechanism in rabbits works for hlgG, as well [24–26]. The similar half-lives of rbIgG and hlgG also suggest that rbFcRn binds similarly these IgGs, as IgG half-life depends on its binding affinity to FcRn [27].

Since then, it was clearly demonstrated that FcRn is highly expressed in the apical plasma membrane of the brush border’s endodermal cells of rabbit fetal yolk sac membrane (YSM) and in the placental capillary endothelial cells indicating that maternal IgG transport through the placenta is fulfilled by FcRn [28]. In addition, based on the highly conserved FcRn-IgG contact residues the pH-dependent IgG binding of FcRn was demonstrated in IgG-binding assay by Western blot using rbIgG and yolk sac lysates of rabbit fetuses [28].

Despite being an important animal model in pharmacological studies, like investigating placental transfer of therapeutic mAbs and Fc-containing biopharmaceuticals [19], the interactions of rbFcRn with rbIgG and hlgG isotypes at molecular level have not been analyzed. Therefore, we generated and purified rbFcRn and analyzed first its pH-dependent binding of rbIgG and hlgG isotypes by surface plasmon resonance assay, which provided detailed kinetic data of the interaction. Moreover, these data were further validated in vitro by FcRn-mediated recycling assay using rabbit macrophages.

Materials and methods

Amplification of soluble rbFcRn α-chain and rabbit β2-microglobulin (rbβ2m) cDNAs

Total RNA purification from 50 μg rabbit spleen was carried out using RNeasy Plus Kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions. 200 ng of DNase-treated total RNA was used for the first strand cDNA synthesis (High Capacity cDNA Reverse Transcription Kit; Life Technologies, Carlsbad, CA, USA). Negative control reverse transcription reactions were conducted to confirm no genomic DNA contamination in the RNA preparation.

The spleen cDNA sample was used as PCR templates to amplify the full-length coding region of rbβ2m and the truncated, soluble FcRn α-chain (lacking the transmembrane and the cytoplasmic domains) cDNAs, respectively, using gene specific primers. Specific oligonucleotides were used to amplify rbFcRn α-chain cDNA (forward: 5’–ATCAGAAATCCCTATATCATGGGCGCCCGGCCTT–3’; reverse: 5’–ATCAGAAATCCCTATATCATGGGCGCCCGGCCTT–3’). EcoRI linker and insect Kozak sequence (5’–CCCTAAAAATG–3’) was also added to the 5’ end of the forward oligo, while EcoRI linker, 6xHis tag and Factor Xa recognition sequence (5’–ACGACCTTGGAT–3’) was added to the 5’ part of the reverse oligonucleotide. rbβ2m was amplified with specific
oligonucleotides (forward: 5’ - ATCAGGATCCCTATATATATGTGCGGCTGGGTTG - 3’; reverse: 5’ - ATCAGGATCCCTGTTGAATTGATATCTCGAT - 3’). Both oligonucleotide primers contained BamHI linker sequence, furthermore the forward oligo harbored insect Kozak linker sequence, as well.

PCR reactions were performed in a 20-μl reaction mix (RedTaq ReadyMix; Sigma-Aldrich, St. Louis, MO, USA) with the condition of a 5 min denaturation at 94˚C followed by 32 cycles of 94˚C for 30 sec, 59˚C for 45 sec, and 72˚C for 30 sec, and a final extension at 72˚C for 3 min. DNA fragments obtained by RT-PCR were purified from agarose gels using a QIAquick Gel extraction kit (Qiagen, Hilden, Germany) and sequenced directly.

Construction of the baculovirus expression vector

To co-express soluble rbFcRn and rbβ2m in SF9 cells the cDNA of rbFcRn α-chain was inserted into the EcoRI site in the baculovirus transfer vector, pAcUW51 under the control of the p10 promoter. The rbβ2m cDNA was then inserted into the BamHI site under the control of the polyhedrin promoter of pAcUW51 containing rbFcRn α-chain cDNA. Orientation of both inserts was verified by restriction analysis and by sequencing.

Expression and purification of soluble rbFcRn

Recombinant baculoviruses carrying the cDNAs of the soluble rbFcRn α-chain and rbβ2m were generated by using the BaculoGold Transfection Kit (BD Biosciences Pharmingen, Franklin Lakes, NJ, USA) according to the manufacturer’s instructions. Then, SF9 cells were cultured and infected by recombinant viruses. Recombinant rbFcRn was purified from supernatants of virus infected cells by using Ni-NTA chromatography (His-Select Nickel Affinity Gel, Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s protocol. Expression level and purity of the recombinant protein was confirmed by 15% SDS-PAGE followed by either Coomassie staining or Western blotting. Mouse anti-His tag antibody (AbD Serotec, Kidlington, UK) as the primary (500x) and HRP-conjugated goat anti-mouse IgG (Southern Biotech, Birmingham, AL, USA) as the secondary antibody (10.000x) were used for immunodetection. The yield of the rbFcRn expression was approximately 5 mg/l (5 mg purified protein per 1 liter cell culture supernatant).

Size-exclusion chromatography

The aggregations of the purified FcRn samples were analyzed by size-exclusion chromatography (SEC). Agilent-1100 chromatographic system (Agilent Technologies, Santa Clara, CA, USA) equipped with a UV detector was employed with a Yarra SEC-3000 column (l: 300mm, id.: 4,6mm; Phenomenex, Torrance, CA, USA). Mobile phase composition was 50 mM phosphate buffer, pH 6.8 supplemented with 0.3 M potassium chloride and the volumetric rate of mobile phase was 0.35 ml/minutes. Column temperature was 30˚C.

Samples were diluted to 1 mg/ml protein concentrations in PBS-T buffer, pH 7.4 (10 mM Na-phosphate, 150 mM NaCl, 0.005% Tween 20). 5 μl sample solutions were injected for analysis and monitored at 215 nm. Molecular weight of the detected sample components was calculated using calibration curves. A molecular weight standard solution (ALO-3042, Phenomenex, Torrance, CA, USA) that contains reference proteins from 17 kDa to 670 kDa and 1 mg/l BSA solution as an additional reference was used for establishing calibration curves and for testing the resolution of chromatographic system. The calibration curves were linear in the range studied. The detected components were identified according to the molecular weight calculated and the results were expressed as the purity (percentage area) of the principal (FcRn) component.
Surface plasmon resonance (SPR) measurements

The preparation of the GLC sensor chip and the immobilization procedure by amine coupling were performed according to the manufacturer’s instructions. Briefly, GLC chip was inserted to the ProteOn XPR36 biosensor instrument (Bio-Rad, Hercules, CA, USA), and was initialized by 50% glycerol. The immobilization procedure was carried out in the vertical orientation at a flow rate of 30 μl/min in PBS-T buffer, pH 7.4 (10 mM Na-phosphate, 150 mM NaCl, 0.005% Tween 20) at 25°C. Thereafter, 0.2 M EDAC and 0.05 M sulfo-NHS were mixed in 1:1 ratio and the solution was injected immediately with 2 min of contact time in order to activate the chip surface. This was followed by an immediate injection of 150 μl of ligand solutions containing 10 μg/ml of rbFcRn and human FcRn (the latter, similar to our rbFcRn, is a soluble form of hFcRn, which was a kind gift from Sally E. Ward, UT Southwestern Medical Center, Dallas, TX, USA), or 2 μg/ml of rbIgG (ATG-Fresenius, Fresenius Biotech, Bad Homburg, Germany) and hlG1 (Omalizumab, Genentech, San Francisco, CA, USA), respectively, in 10 mM Na-acetate buffer, pH 5.0, for 5 min. For detecting background responses, a control channel without any protein was prepared following the same procedure. Finally, the remaining activated carboxyl groups on the chip surface were neutralized by the injection of 150 μl of 1 M ethanolamine-HCl, pH 8.5 for 4 min. This resulted in the immobilization of approximately 1200 and 1600 RU in case of rbFcRn and hFcRn, respectively, and concerning rbIgG and hlG1 the immobilization levels were approximately 1900 and 2100 RU, respectively.

Binding experiments were performed with a continuous flow (100 μl/min) of PBS-T buffer, at pH 6.0 or pH 7.4 allowing for a contact time of 2 min at 25°C. Five different concentrations (8.34, 16.7, 33.3, 66.7 and 133 nM) of rbIgG (ATG-Fresenius, Fresenius Biotech, Bad Homburg, Germany) and hlG1 (Omalizumab, Genentech, San Francisco, CA, USA; hlG2, hlG3, hlG4: Abcam, Cambridge, UK) were injected in the horizontal orientation of channels over immobilized FcRn molecules, respectively, and running buffer, PBS-T was injected simultaneously to the first channel. Similarly, when IgG molecules were immobilized on the chip surface, five different concentrations (37.5, 75, 150, 300 and 600 nM) of rbFcRn and hFcRn were injected. After the measurement, the chip surface was regenerated by a 30 sec injection of 0.1 M Tris, pH 8.0 to remove any remaining analyte

All binding sensorgrams were collected and processed using the integrated ProteOn Manager software, version 3.1.0.6 (Bio-Rad, Hercules, CA, USA). The curves were corrected by subtracting the non-specific binding responses obtained from control channel. Then, the kinetic analyses were performed by the BIAevaluation software, version 4.1 (Biacore, GE Healthcare, Little Chalfont, United Kingdom). Binding curves were fit to either Langmuir 1:1 interaction or heterogeneous ligand model supposing that there are two classes of non-interacting binding sites. The equilibrium dissociation constants or affinity constants were calculated from the directly estimated association and dissociation rate constants (Langmuir model: \(K_D = k_d/k_a \) or heterogeneous ligand model: \(K_{D1} = k_{d1}/k_{a1} \) and \(K_{D2} = k_{d2}/k_{a2} \)) and in case of the latter model the percentage of the total response according to each class of binding sites (f1 and f2) were also estimated.

Fluorescent IgG preparation and FcRn-mediated recycling assay in rabbit macrophages

rbIgG and hlG1 were conjugated to Alexa Fluor 488 (A488) using the Alexa Fluor 488 carboxylic acid succinimidyl ester labeling kit (Molecular Probes, Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Labeled proteins were separated from free dye using Vivaspin 2 centrifugal concentrator (10,000 MWCO PES; Sartorius, Dublin, Ireland). Protein concentration, and degree of labeling were determined by
spectrophotometry using Nanodrop 2000 instrument (hIgG1: 5.5 mg/ml, conjugation rate: 0.8, rblgG: 5.9 mg/ml, conjugation rate: 1.9).

Two females of New Zealand White rabbit (S&K-LAP Ltd, Kartal, Hungary) were used in this study. Animals were kept under standard light-dark cycle (06.00–18.00 h) at 19°C with food and water available ad libitum and caged separately. All the treatments of animals (rabbits) in this research followed by the guideline of the Institutional Animal Care and Ethics Committee at ImmunoGenes-ABS Ltd that operated in accordance with permission XIV-I-001/2086-4/2012 issued by the Food Chain Safety and Animal Health Directorate of the Government Office of Pest County, Hungary. All surgery was performed under ketamine/xylazine anesthesia. The method used for euthanasia: concussion under anesthesia and all efforts were made to minimize suffering.

Rabbit macrophages were isolated from the peritoneum of a New Zealand White rabbit 3 days after i.p. injection of 40 ml 3% Brewer thioglycol medium based on a standard protocol [29]. Red blood cells were lysed in hypotonic buffer (45 mM NH₄Cl, 2.5 mM KHCO₃, 0.05 mM Na₂EDTA, pH 7.2). 1 μ-slide 8-well plates (Ibidi, Martinsried, Germany) were coated with 100 ng/ml fibronectin, and 3 × 10⁵ cells were added in 300 μl RPMI-1640 medium supplemented with 10% fetal bovine serum and allowed to adhere for O/N at 37°C in a CO₂ incubator. Then, the non-adherent cells were washed out and the cells were pulsed by adding 300 μl 20 μg/ml fluorescently labeled (A488) rblgG or hlgG1 to the cells for 20 minutes in Hank’s buffer, pH 6.0 (143 mM NaCl, 1 mM Na₂SO₄, 5 mM KCl, 1 mM Na₂PO₄, 0.5 mM MgCl₂, 1 mM CaCl₂, 5 mM glucose, 10 mM HEPES). After washing twice, the chase was started by replacing buffer to Hank’s buffer, pH 7.4 lacking fluorescent probes, and the amount of labeled antibodies accumulated in the cells was visualized at 0 and after 30 minutes by Olympus Fluoview500 inverted Laser Scanning Confocal Microscope (Olympus-Europe, Hamburg, Germany; at 20x magnification). For image processing and evaluation Fiji software [30] was used. Based on the bright field image a region of interest was drawn around individual well-adherent cells and due to the different labeling efficiency of rblgG and hlgG1 the median pixel intensity was recorded. Minimum of 30 cells were analyzed from each sample, but cells with large amount of saturated pixels were eliminated from analysis. The fluorescence signal in each image plane was corrected for background (by subtracting the median fluorescence intensity of five different cell-free area). Paired two-sample t-test was used for the statistical analyses.

Results and discussion
Amino acid residues in FcRn-IgG interaction

The truncated form of the rWFcRn α-chain and the rβ2m were PCR cloned. The cDNA sequences showed 100% identity with the published rWFcRn α-chain sequence [28] and the annotated rWFβ2m sequence (XM_008269078). At protein level, Asn was found at position 95, as well as at position 97 in the only published sequence of rβ2m [31], whereas NCBI reference sequence analysis (XP_008267300.1) and our cDNA clone (the sequence was deposited into GenBank: KT151665) predicted Asp at both positions.

The sequence comparisons show high identity between human (GenBank: AR048560) and rabbit (Genbank: AEN74950) [28] variants of FcRn α-chain (72%), human (GenBank: CAG33347) and rabbit (GenBank: KT151665) β2m (74%), as well as human (hlgG1 GenBank: P01857, hlgG2 GenBank: P01859, hlgG3 GenBank: P01860, hlgG4 GenBank: P01861) and rabbit IgG (GenBank: P01870) isoforms (69–71%) querying the NCBI Reference Sequences database with Blastp. There is one potential N-linked glycosylation sites (N-X-S or N-X-T; where X is any amino acid except proline) at position 102 in both FcRn α-chain sequences (numbering is based on the human sequence) and another one at position 297 in CH2 domain.
of all human and rabbit IgG isotype sequences (numbering is based on the hIgG1 sequence) (Fig 1).

Focusing on the important residues of the FcRn-IgG interaction in the hFcRn and rbFcRn α-chain sequences based on a crystallography analysis of a rat FcRn-heterodimeric Fc complex [10], we found that these amino acids are highly conserved between the two species. Only two conservative substitutions can be observed, Asp instead of Glu at position 116 and Glu instead of Asp at position 130 (amino acid numbering follows the human sequence) in rbFcRn α-chain comparing with human sequence (Table 1).

Between the two residues in rbβ2m sequence playing role in the interaction with IgG one is conserved (Gln2 in both species), while Ile at position 1 in the hβ2m is replaced by Val in the rabbit sequence which is considered to be also a conservative substitution (Table 1).
Analyzing the sequences of human and rabbit IgG isotypes no amino acid changes can be observed in the sequences of rbIgG, hlIgG1, hlIgG2 and hlIgG4 concerning the residues involved in the interaction with FcRn α-chain, moreover, only two residues vary in hlIgG3, Arg can be found at position 435 instead of His, and Phe at position 436 instead of Tyr (Table 1).

However, both residues are replaced in rbIgG at positions being important in the interaction with β2m, all human IgG isotypes contains Thr and Lys at positions 307 and 288, while Pro and Arg occur in these positions of the rbIgG sequence, respectively.

Altogether, we can conclude that except T307P replacement in the rbIgG sequence all the contact residues being involved in FcRn-IgG interaction are conserved between human and rabbit variants suggesting similarities in their pH-dependent mechanism of action.

Expression of the soluble form of rbFcRn

The cDNAs of truncated rbFcRn α-chain and rbβ2m were co-expressed in Sf9 insect cells and the self-assembled soluble recombinant rbFcRn was purified from the cell supernatants using Ni-NTA chromatography. The expression level was confirmed by SDS-PAGE visualized by Coomassie staining where two bands appeared, an approximately 28 kDa band referring to FcRn α-chain and another about 12 kDa band to the β2m, similarly to the soluble hFcRn (Fig 2A). By using anti-His-tag-specific monoclonal antibody in Western blot experiments the rbFcRn and hFcRn α-chains containing 6xHis-tag could be detected around 28 kDa (Fig 2B).

The purity of the FcRn molecules, as well as the rbIgG and hlIgG samples was analyzed by SEC which revealed that the purity of hlIgG1 and rbIgG, as well as hFcRn was >95%, while the rbFcRn preparation was around 90%, but it did not contain any higher-order aggregates (Fig 2C–2F). Some residual molecule (at 8.845 and 9.381 mins of retention time, altogether approximately 9%), potentially bovine serum albumin (BSA) remained in the preparation after purification (Fig 2C), as these fractions ran equivalently with BSA in the molecular weight standard and the ratio of these components could be increased by adding extra BSA. However, as BSA does not react with IgGs, it did not influence our further analyses.

pH-dependence and isotype-specific differences of IgG binding

Detailed kinetic data of the interaction of human, cynomolgus monkey, bovine, rat and mouse FcRn with IgG isotypes from different species are available [11, 15, 34–37], however, to date no data has been reported concerning the kinetics of the rbFcRn interaction with rbIgG and hlIgG isotypes.

Table 1. FcRn and IgG residues known to be involved in FcRn–IgG interaction.

<table>
<thead>
<tr>
<th>α-chain residue</th>
<th>Human</th>
<th>Rabbit</th>
<th>Fc residue</th>
<th>Human IgG</th>
<th>Rabbit IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>115</td>
<td>E</td>
<td>E</td>
<td>310</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>116</td>
<td>E</td>
<td>D</td>
<td>311</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>130</td>
<td>D</td>
<td>E</td>
<td>435</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>131</td>
<td>W</td>
<td>W</td>
<td>253</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>135</td>
<td>L</td>
<td>L</td>
<td>436</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

β2m residue

| 1 | I | V | 307 | T | T | T | P |
| 2 | Q | Q | 288 | K | K | K | R |

Numbering is based on the hFcRn, hβ2m and the hlIGG1 sequences, respectively.

https://doi.org/10.1371/journal.pone.0185662.1001
FcRn experts apply two different SPR experimental set-ups, either FcRn or IgG molecules are immobilized on the sensor chip surface. Accordingly, depending on which molecule is immobilized on the surface the evaluation methods, the determined kinetic parameters can be different. When FcRn is immobilized and IgG molecules are injected as analytes, the FcRn-IgG interaction can be characterized only by complex kinetics supposing two classes of non-interacting binding sites described by heterogeneous ligand model [11, 13, 35, 38–40]. In opposing assay orientation, when IgG is coupled to the surface and FcRn molecules are injected over it, the interaction can be described by simple Langmuir 1:1 binding model [13, 15, 37]. Examples for both set-ups can be found in the literature, however, to date there is no consensus concerning the accepted orientation, immobilization and evaluation methods [15, 37]. Therefore, the IgG binding of rbFcRn was analyzed using both experimental set-ups in our SPR experiments, either rbFcRn and hFcRn or rblgG and hlgG1 molecules were immobilized.

Immmobilization of FcRn. Soluble forms of rbFcRn and hFcRn were covalently immobilized onto the chip surface, and dilutions of rblgG and hlgG isotypes were injected over them. Our results demonstrated that rbFcRn, similarly to other FcRn orthologues binds IgG in strictly pH-dependent manner, as it interacts with rblgG, as well as hlgG isotypes at pH 6.0 (binding of rblgG and hlgG1 at 133 nM concentration are shown on Fig 3A and 3B), while no binding could be detected at pH 7.4 using rblgG (Fig 3A), hlgG1 (Fig 3B), hlgG2, hlgG3 and hlgG4. FcRn was used as a control, and we measured very similar binding kinetics in the presence of either rblgG or hlgG isotypes at pH 6.0 and also at pH 7.4.

In an earlier study, it was suggested that in rabbit, binding and selective transcytosis of IgG through rabbit visceral yolk sac (VYS) did not require acidic compartment and thus, rbFcRn binds IgG in pH-independent manner [41]. In contrast to this observation our previous study demonstrated that the binding of IgG to rbFcRn was pH-dependent using an in vitro IgG-
binding assay with yolk sac lysates of rabbit fetuses [28]. In accordance with the latter finding, our SPR measurements clearly demonstrated that rbFcRn interacts with rbIgG and hlGIs at pH 6.0 and no binding occurs at pH 7.4.

Injecting a series of concentrations of rbIgG and hlGIs over rbFcRn and hFcRn immobilized on the chip surface, the kinetic parameters of IgG binding of both rbFcRn and hFcRn could be determined. Fits of sensograms were performed using the heterogeneous ligand model postulating two or more populations of non-interacting binding sites [11, 13, 38] (Fig 4A and 4B).

By means of this model, a high affinity constant, K_{D1}, when two FcRn molecules bind one IgG and a low affinity constant, K_{D2}, referring to 1:1 FcRn:IgG stoichiometry can be distinguished (Table 2).

Comparing the high affinity constants (K_{D1}) of the interactions we found that rbFcRn binds hlG3 and hlG4 with the highest affinity (2.57 and 3.86 nM, respectively), hlG2 with a slightly lower affinity, 7.46 nM, which interactions were apparently stronger than that of hlG1 (12.9 nM) and rbIgG (20.3 nM). The low affinity constants (K_{D2}) of rbIgG, hlG4 and hlG3 were almost identical, 49.3, 53.5 and 59.2 nM, respectively, while hlG1 and hlG2 showed weaker (71.9 and 106 nM, respectively) interactions.

As our SPR data revealed, rbFcRn showed almost identical K_{D} values for hlG1 and slightly higher affinity for other hlGIs than for rbIgG. The stronger interaction with IgG from another species is not a unique feature of rbFcRn, because similar cross-species binding differences were observed concerning mouse, as well as bovine FcRn, which showed also higher affinity for hlG1 than for their own, mouse [36, 40, 42, 43] and bovine IgG isoforms [35], respectively.

Being aware of kinetic data of the interaction of rbFcRn with hlGIs it would be interesting to interpret the placental transport of human therapeutic mAbs and Fc-containing biopharmaceuticals performed previously in rabbits. Comparing the fetal/maternal serum

Fig 3. pH-dependent binding of rbIgG and hlG1 by rbFcRn. Soluble rbFcRn (Panel A and B), as well as rbIgG (Panel C) and hlG1 (Panel D) were immobilized on a GLC chip at densities of 1200, 1900 and 2100 RU, respectively. rbIgG (Panel A) and hlG1 (Panel B) at 133 nM, while soluble rbFcRn (Panel C and D) at 600 nM concentration in PBS-T buffer were injected at pH 6.0, as well as at pH 7.4 and interactions were monitored at 25˚C. The curves were corrected by subtracting the non-specific binding responses obtained from control channel (n = 2–3, one representative figure is shown in each cases).

https://doi.org/10.1371/journal.pone.0185662.g003
concentration ratio of IgG1 and IgG4 mAbs and Fc-fusion proteins provided with similar doses and similar blood sampling time (GD 19–20) in rabbits, it was found that the placental transfer of an IgG4 mAb and an Fc-fusion protein across the YSM was more effective, 63- and 3.5-fold higher, respectively, than that of IgG1 isotypes [19]. This observation is correlated well with our affinity data determined by SPR, where rbFcRn showed approximately 3-fold comparing the high, K_{D1} (3.86 nM vs. 12.9 nM), and almost the same affinity for IgG4 than for IgG1 comparing the low affinity constant, K_{D2} (53.5 nM vs. 71.9 nM).

In another study, it was found that a fully hlgG2 mAb was also effectively transported through the rabbit placenta during early organogenesis (GD 10 and 13), however, this transport, similarly to rat and cynomolgus monkey at this similar stage, was low [44]. In support of this, it was found that FcRn mRNA appears in rabbit embryos at GD 6 and the expression continuously increased until GD 13.5 [28]. Our SPR results showed that rbFcRn binds hlgG2

Table 2. Kinetic parameters of the interaction of immobilized rbFcRn and hFcRn with rbIgG and hlgG1 isotypes at pH 6.0.

<table>
<thead>
<tr>
<th></th>
<th>rbFcRn</th>
<th>hFcRn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{D1} (M) \times 10^{-2}</td>
<td>f1 (%)</td>
</tr>
<tr>
<td>rbIgG</td>
<td>20.3 ± 2.21</td>
<td>68.4</td>
</tr>
<tr>
<td>hlgG1</td>
<td>12.9 ± 1.83</td>
<td>28.8</td>
</tr>
<tr>
<td>hlgG2</td>
<td>7.46 ± 1.41</td>
<td>84.3</td>
</tr>
<tr>
<td>hlgG3</td>
<td>2.57 ± 0.52</td>
<td>49.9</td>
</tr>
<tr>
<td>hlgG4</td>
<td>3.86 ± 0.79</td>
<td>89.8</td>
</tr>
</tbody>
</table>

The K_{D} values (mean ± S.E.) were calculated from the estimated association and dissociation rate constants (K_{D1} = k_{a}/k_{d1}) and (K_{D2} = k_{a}/k_{d2}) using heterogeneous ligand model during the fitting procedure (n = 2–3).
efficiently, since 3-fold difference could be observed in high affinity constants (7.46 nM for hlgG2 and 20.3 nM for rblG), however, almost the opposite interaction was measured concerning the low affinity constants (106 nM for hlgG2 and 49.3 nM for rblG).

Analyzing the high affinity interactions of hFcRn with rblG and hlgG isotypes only little difference could be seen in affinities: hlgG4 has the highest affinity (2.36 nM), rblG, hlgG2 and hlgG3 bind similarly to hFcRn (6.58, 5.43 and 6.06 nM, respectively), whereas the interaction is slightly weaker concerning hlgG1 (9.99 nM). The low affinity constants of rblG and hlgG3 showed the lowest (15.9 and 17.4 nM), hlgG1 showed the highest value (57.2 nM), and the other K_D values were in between (20.2 nM for hlgG4 and 34.7 nM for hlgG2). These data agree well with K_D values obtained by others also with hlgG isotypes and immobilized hFcRn in SPR measurements [11, 38, 39].

Polyclonal rblGgs so-called anti-thymocyte globulin (ATG) preparations (like ATG-Fresenius by Fresenius Biotech, Bad Homburg, Germany and Thymoglobulin by Sanoﬁ Genzyme, Cambridge, MA, USA) are extensively used as immunosuppressant agents in clinical applications, mainly in the ﬁeld of human transplantation [45]. Our SPR results revealed that rblG binds to hFcRn as effective as hlgG isotypes, therefore it can successfully compete with endogenous IgG and can be protected from the degradation by FcRn in human which can explain the success of rabbit anti-thymocyte globulin therapy.

Immobilization of IgG. As hlgG1 is used mostly in therapeutic mAbs or Fc-fusion proteins, we have focused this human isotope along rblG in the next experiment. When rblG and hlgG1 were immobilized on the chip surface, and rbfCn and hFcRn were injected over, similar results were obtained what was observed at reverse orientation, namely, rbfCn binds rblG and hlgG1 in a strictly pH-dependent manner (Fig 3C and 3D).

Next, rbfCn and hFcRn were injected at varying concentrations (37.5 to 600 nM) over the surface in order to determine the kinetic parameters of the interaction. This experimental set-up gives the possibility to apply the Langmuir 1:1 binding model in kinetic analyses instead of complex kinetics e.g heterogeneous ligand model [13, 15, 37] (Fig 4C and 4D).

Kinetic parameters were determined and data showed that rbfCn-rblG and rbfCn-hlgG1 interactions have nearly identical affinity (1.48 and 1.19 nM, respectively), while hFcRn binds rblG with a slightly lower (2.46 nM) and hlgG1 with even lowest affinity (4.30 nM) (Table 3).

These results are in accordance with the parameters obtained at reverse orientation, namely rbfCn binds hlgG1 similarly to rblG. This explains why FcRn-mediated salvage mechanism and maternal IgG transport in rabbits function efficiently for intravenously injected hlgG1, as previously described [17]. In addition, this transplacental transport is supposed to be proportional to the amount of hlgG1 found in the serum. This is important assumption in regard to rabbits that are widely used as animal model in transplacental studies of human therapeutic monoclonal antibodies (IgG).

In order to validate our SPR results, the interaction of rbfCn with rblG and hlgG1 was investigated in vitro by FcRn-mediated recycling assay using rabbit macrophages.

Table 3. Kinetic parameters of the interaction of immobilized rblG and hlgG1 with rbfCn and hFcRn at pH 6.0.

<table>
<thead>
<tr>
<th></th>
<th>rbfCn</th>
<th>hFcRn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k_a (M^{-1}s^{-1}) x 10^{5}</td>
<td>k_a (s^{-1}) x 10^{-4}</td>
</tr>
<tr>
<td>rblG</td>
<td>2.67 ± 0.17</td>
<td>3.94 ± 0.13</td>
</tr>
<tr>
<td>hlgG1</td>
<td>3.27 ± 0.16</td>
<td>3.90 ± 0.14</td>
</tr>
</tbody>
</table>

The K_D values (mean ± S.E.) were calculated from the estimated association and dissociation rate constants (K_D = k_a/k_d) using Langmuir 1:1 binding model during the fitting procedure (n = 2-3).

https://doi.org/10.1371/journal.pone.0185662.t003
FcRn-mediated recycling assay using rabbit macrophages

FcRn-mediated IgG protection primarily takes place in capillary endothelial cells and also in hemopoietically-derived phagocytic cells, like macrophages [46]. Accordingly, significant FcRn expression could be detected in bone-marrow-derived macrophages in mice [4, 46], as well as in peritoneal macrophages in rabbits [28].

Rabbit macrophages isolated from the peritoneum of a New Zealand White rabbit were then used for FcRn-mediated recycling experiments. Isolated cells were plated and allowed to adhere. After removal of non-adherent cells the pulse step was started at pH 6.0 by adding fluorescently labeled rblgG or hlgG1 to the cells which lasted for 20 minutes. Pulsing at slightly acidic pH, due to FcRn-IgG interaction cells can only take up IgG via fluid-phase pinocytosis, Fcγ-receptor- or perhaps even FcRn-mediated process, but IgG cannot be released from the cell to the extracellular space due to the pH dependent binding. Then, the cells were chased for 30 minutes by changing pH to 7.4 by replacing medium. The amount of labeled antibodies accumulated in the cells after 0 and 30 minutes of chase was calculated by determining the median value of fluorescent intensity of each cell.

Fig 5 shows that more fluorescent signal could be detected in rblgG than that of hlgG1-labeled cells due to the different labeling efficiencies of IgGs. After 30 minutes of chase, significantly less rblgG, as well as hlgG can be detected in macrophages and the relative fluorescence intensity decreased similarly to about 60% in both cases (Fig 5).

Our data shows no difference in the recycling rate of rblgG and hlgG1 in rabbit macrophages supporting our SPR data, that rbFcRn can bind hlgG1 as effectively as rblgG.

These data confirm the results of historic FcRn-related papers that reported 6.0 and 5.0 day long half-lives of rabbit and human 7S gamma globulin (which refers to IgG), respectively, in rabbits [24–26].
Conclusions

Transplacental IgG transport in rabbits indicate that it occurs in a similar exposure time-window for offsprings as in humans, and rabbits as model, provide better statistical power. As we demonstrated by SPR experiments, as well as in FcRn-mediated recycling assay that rabbit FcRn similarly binds hIgG1, and preferentially binds hIgG2, hIgG3 and hIgG4 over rIgG, rabbits can offer an alternative animal model to mouse and rats regarding IgG transport through the placenta. Our dataset also suggest that the hIgG producer rabbits would be fully functional regarding FcRn-mediated functions including maternal IgG transport, IgG protection and antigen presentation in case of antigen-IgG immune complexes.

Supporting information

S1 Fig. The raw, unadjusted source image corresponding to Fig 2A. (TIF)

S2 Fig. The raw, unadjusted source image corresponding to Fig 2B. (TIF)

Acknowledgments

We are grateful to József Kozma, Róbert János Berky and Tamás Schäfer (Gedeon Richter Plc, Budapest, Hungary) for their help in performing the SEC analyses. We thank Sally E. Ward (UT Southwestern Medical Center, Dallas, TX, USA) for providing the soluble hFcRn preparation used as a control in our experiments. We also thank Károly Liliom for his help in SPR data analyses and for valuable discussions.

Author Contributions

Conceptualization: László Hiripi, Balázs Bender, Imre Kacskovics, Attila Iliás.

Data curation: Bence Szikora, László Hiripi.

Formal analysis: Bence Szikora.

Funding acquisition: Imre Kacskovics.

Investigation: Bence Szikora, László Hiripi, Balázs Bender, Attila Iliás.

Methodology: Bence Szikora, László Hiripi, Balázs Bender, Attila Iliás.

Project administration: Attila Iliás.

Supervision: Imre Kacskovics, Attila Iliás.

Validation: László Hiripi, Imre Kacskovics, Attila Iliás.

Visualization: Bence Szikora.

Writing – original draft: Bence Szikora, László Hiripi, Attila Iliás.

Writing – review & editing: Imre Kacskovics, Attila Iliás.

References

