WEISS’S QUESTION

PÉTER KOMJÁTH

Abstract. There is a function \(f : \mathbb{R}^+ \to \{0, 1\} \) such that if \(F(x, y) = f(d(x, y)) \) \((d(x, y)\) is the distance between \(x \) and \(y \)), then there is no uncountable homogeneous set for \(F \). If CH holds, we show that there is a similar coloring of \(\mathbb{R}^n \) with \(\aleph_1 \) colors so that uncountable sets contain all colors.

An important result in partition theory, due to Sierpiński, states the existence of a coloring \(F : [\mathbb{R}]^2 \to \{0, 1\} \) with no uncountable homogenous set [3]. Under CH, Erdős proved the stronger statement that there is a coloring of \([\mathbb{R}]^2\) with \(\aleph_1 \) colors such that each color occurs in each uncountable set [2]. In [4], Todorcevic proved this without any extra assumption.

William Weiss (Toronto) asked if there is a Sierpiński-type function \(F : [\mathbb{R}]^2 \to \{0, 1\} \) so that the color \(F(x, y) \) only depends on the value of \(d(x, y) \), the distance between \(x \) and \(y \). In Theorem 1, we give an affirmative answer. In Theorem 2, utilizing an idea of Erdős’s above theorem, we prove that, under CH, there is a like coloring of \(\mathbb{R}^n \) with \(\aleph_1 \) colors, so that in each uncountable set every color occurs.

Notation. Definitions. We use the notions and definitions of axiomatic set theory. In particular, each ordinal is a von Neumann ordinal, each cardinal is identified with the least ordinal of that cardinality. \(c \) is cardinal continuum, that is, \(|\mathbb{R}| \).

If \(S \) is a set, \(\kappa \) a cardinal, then \([S]^\kappa = \{ x \subseteq S : |x| = \kappa \} \).

\(\mathbb{R} \) is the set of reals, \(\mathbb{R}^+ = \{ x \in \mathbb{R} : x > 0 \} \). \(\mathbb{R}^n \) is the \(n \)-dimensional Euclidean space, \(d(x, y) \) is the distance between \(x \) and \(y \). If \(x, y \in \mathbb{R}^n \), then \((x, y)\) denotes the scalar product of \(x \) and \(y \), \(\|x\| = \sqrt{(x, x)} \). CH is the Continuum Hypothesis: \(c = \aleph_1 \).

Theorem 1. There is a function \(f : \mathbb{R}^+ \to \{0, 1\} \) such that if \(F(x, y) = f(d(x, y)) \), then there is no uncountable homogeneous set for \(F \).

Proof. Instead of defining a function \(f \) with \(\text{Dom}(f) = \mathbb{R}^+ \), we shall define a function \(f \) with \(\text{Dom}(f) = \mathbb{R} - \{0\} \) that satisfies \(f(z) = f(-z) \).

Let \(B = \{ b_\alpha : \alpha < \gamma \} \) be a Hamel basis.

If \(z \in \mathbb{R} - \{0\} \), then it can uniquely be written as

\[
 z = \sum_{i=1}^{n} \mu_i(z) b_{\alpha_i},
\]

where \(\mu_i(z) \in \mathbb{Q} - \{0\} \), \(\alpha_1 < \cdots < \alpha_n \). We call \(\langle \mu_1(z), \ldots, \mu_n(z) \rangle \) the type of \(z \), \(\text{tp}(z) \), and \(\{\alpha_1, \ldots, \alpha_n\} \) the support of \(z \), \(\text{supp}(z) \).

Claim 1. There are countably many types. If \(\text{tp}(x) = \langle \mu_1, \ldots, \mu_n \rangle \), then \(\text{tp}(-x) = \langle -\mu_1, \ldots, -\mu_n \rangle \).
Proof. Immediate.

Set \(\mu(z) = \mu_1(z) \) and define
\[
f(z) = \begin{cases}
1, & \mu(z)z > 0 \\
0, & \mu(z)z < 0.
\end{cases}
\]

Claim 2. \(f(z) = f(-z) \).

Proof. As by Claim 1 \(\mu(-z)(-z) = \mu(z)z \).

We define the coloring \(F : [\mathbb{R}]^2 \rightarrow \{0, 1\} \) by
\[
F(x, y) = f(|x - y|) = f(x - y).
\]

Assume that \(\{x_\xi : \xi < \omega_1\} \) is an uncountable homogeneous set for \(F \). We repeatedly shrink the system to more and more regular uncountable subsystems as follows. Choose \(Z_0 \in [\omega_1]^{\aleph_1} \) such that all elements \(\{x_\xi : \xi \in Z_0\} \) have the same type: \(\text{tp}(x_\xi) = (\lambda_1, \ldots, \lambda_n) \) (possible as there are countably many types). Then, applying the \(\Delta \)-system lemma, choose \(Z_1 \in [Z_0]^{\aleph_1} \) such that \(\{\text{supp}(x_\xi) : \xi \in Z_1\} \) forms a \(\Delta \)-system, \(\text{supp}(x_\xi) = s \cup s_\xi \) \((\xi \in Z_1) \) with \(s \cap s_\xi = s_\xi \cap s_\eta = \emptyset \) for \(\xi \neq \eta \in Z_1 \). Next pick \(Z_2 \in [Z_1]^{\aleph_1} \) such that \(s \) occupies the same positions in the supports, possible as there are finitely many possibilities for the relative positions of \(s \) inside the supports. Let \(j \) be the least position of some element of \(s_\xi \) (by the above, it is the same for all \(\xi \in Z_2 \)).

The elements \(\{\alpha_\xi^j : \xi \in Z_2\} \) are different, by the Dushnik–Miller theorem \([1] \) there is \(Z_3 \in [Z_2]^{\aleph_1} \) such that \(\{\alpha_\xi^j : \xi < \omega_1\} \) is increasing.

If \(\xi < \eta \) are in \(Z_3 \), then \(\mu(x_\xi - x_\eta) = \lambda_j \), so they have the same sign. As there is no uncountable increasing or decreasing sequence of reals, there are \(\xi_0 < \eta_0 \) and \(\xi_1 < \eta_1 \) in \(Z_3 \) such that \(x_{\xi_0} < x_{\eta_0} \) and \(x_{\xi_1} > x_{\eta_1} \), consequently \(F(x_{\xi_0}, x_{\eta_0}) \neq F(x_{\xi_1}, x_{\eta_1}) \) and so \(\{x_\xi : \xi < \omega_1\} \) is not homogeneous.

For the rest of the paper, fix a positive integer \(n \).

In order to prepare for Theorem 2, we introduce some notions.

Definition. If \(a_1, \ldots, a_k \in \mathbb{R}^n \), set
\[
W(a_1, \ldots, a_k) = \{\lambda_1 a_1 + \cdots + \lambda_k a_k : \lambda_1 + \cdots + \lambda_k = 1\}.
\]

The elements of \(A \subseteq \mathbb{R}^n \) are in \(k \)-general position if \(a_{k+1} \notin W(a_1, \ldots, a_k) \) for \(a_1, \ldots, a_{k+1} \in A \) distinct. Note that if the elements of \(A \) are in \(k \)-general position and \(2 \leq k' \leq k \), then they are in \(k' \)-general position. If \(a_1, \ldots, a_{k+1} \) are in \(k \)-general position, then \(W(a_1, \ldots, a_{k+1}) \) is a translate of a \(k \)-dimensional subspace.

Lemma 1. If \(a_1, \ldots, a_{k+1} \) are in \(k \)-general position \((1 \leq k \leq n) \), then \(\{a_i - a_1 : 2 \leq i \leq k + 1\} \) is linearly independent in the subspace \(W(a_1, \ldots, a_{k+1}) - a_1 \).

Proof. Assume indirectly that \(\sum_{i=2}^{k+1} \lambda_i(a_i - a_1) = 0, \lambda_j \neq 0. \) Then
\[
a_j = \sum_{2 \leq i \leq k+1} \frac{-\lambda_i}{\lambda_j} a_i + \left(\sum_{2 \leq i \leq k+1} \frac{\lambda_i}{\lambda_j} \right) a_1
\]
and here the sum of the coefficients is \(\lambda_j/\lambda_j = 1. \)
Lemma 2. If $H = W(a_1, \ldots, a_{k+1}), y, y' \in H$, $z = y - y'$, $(z, a_i - a_1) = 0$ $(2 \leq i \leq k + 1)$, then $z = 0$.

Proof. By the definition of H, $z = \sum_{i=1}^{k+1} \lambda_i a_i$ for some coefficients with $\sum_{i=1}^{k+1} \lambda_i = 0$. Then

$$(z, z) = \sum_{i=1}^{k+1} \lambda_i (z, a_i) = \sum_{i=1}^{k+1} \lambda_i (z, a_i - a_1) + (\sum_{i=1}^{k+1} \lambda_i) (z, a_1) = 0$$

and so $z = 0$.

Lemma 3. Assume that $H = W(a_1, \ldots, a_{k+1})$, r_1, \ldots, r_{k+1} are reals. Then there is at most one $y \in H$ such that $d(a_i, y) = r_i$ $(1 \leq i \leq k + 1)$.

Proof. The case $k = 1$ is immediate.

Assume that $2 \leq k \leq n$ and $\|a_i - y\|^2 = \|a_i - y'\|^2 = r_i^2$ $(1 \leq i \leq k + 1)$. Multiplying out, one obtains

$$\|(a_i - y) + (y' - y)\|^2 = \|a_i - y\|^2 - 2(a_i - y, y' - y) + \|y' - y\|^2 = \|a_i - y\|^2,$$

that is,

$$2(a_i - y, y' - y) - \|y' - y\|^2 = 0.$$

If we subtract the $i = 1$ case, we get

$$2(a_i - a_1, y' - y) = 0 \ (2 \leq i \leq k + 1),$$

which implies $y = y'$ by Lemma 2.

Lemma 4. Let $H = W(a_1, \ldots, a_{k+1})$. Then there is at most one point $y \in H$ such that $d(a_i, y) = d(a_j, y)$ $(i \neq j)$.

Proof. The case $k = 1$ is obvious.

Assume $k \geq 2$. Assume that $y, y' \in H$ both satisfy the condition. Then

$$\|a_i - y\|^2 = \|a_j - y\|^2 = \|(a_i - y) + (a_j - a_i)\|^2 = \|a_i - y\|^2 + 2(a_i - y, a_j - a_i) + \|a_j - a_i\|^2,$$

consequently

$$2(a_i - y, a_j - a_i) + \|a_j - a_i\|^2 = 0.$$

Calculating this for y' and subtracting the result, we have

$$(y' - y, a_j - a_i) = 0 \ (i \neq j)$$

and we conclude with Lemma 2.

Lemma 5. If $A \subseteq \mathbb{R}^n$, $|A| = \aleph_1$, then there are $1 \leq k \leq n$, $H \subseteq \mathbb{R}^n$, a translate of a k-dimensional subspace, $B \subseteq A \cap H$ such that $|B| = \aleph_1$ and if $k \geq 2$, then B is in k-general position.

Proof. Let k be minimal such that there exists a translate H of a k-dimensional subspace with $|H \cap A| = \aleph_1$.

If \(k = 1 \), set \(B = A \cap H \).

Assume \(k \geq 2 \). We select the points \(\{x_\alpha : \alpha < \omega_1\} \subseteq A \cap H \) which are in \(k \)-general position, by transfinite recursion on \(\alpha \). Assume that we have reached step \(\alpha \). Select

\[
x_\alpha \in A \cap H - \bigcup \{W(x_{\beta_1}, \ldots, x_{\beta_k}) : \beta_1 < \cdots < \beta_k < \alpha\}.
\]

The choice is possible, as countably many translates of \((k-1)\)-dimensional subspaces do not cover a translate of a \(k\)-dimensional subspace.

Finally, set \(B = \{x_\alpha : \alpha < \omega_1\} \).

Theorem 2 (CH). If \(1 \leq n < \omega \), then there is a coloring \(f : \mathbb{R}^+ \to \omega_1 \), such that if \(F(x, y) = f(d(x, y)) \) \((\{x, y\} \in [\mathbb{R}^n]^2) \), then \(\{F(x, y) : \{x, y\} \in [B]^2\} = \omega_1 \) for every \(B \in [\mathbb{R}^n]^{\aleph_1} \).

Proof. Enumerate as \(\{\langle A_\alpha, k_\alpha, H_\alpha \rangle : \alpha < \omega_1\} \) all triples \(\langle A, k, H \rangle \) where \(A \subseteq \mathbb{R}^n \), \(|A| = \aleph_0 \), \(1 \leq k \leq n \), \(H \) is a translate of a \(k \)-dimensional subspace, \(A \subseteq H \), if \(2 \leq k \leq n \), then \(A \) is in \(k \)-general position, \(H = W(a_1, \ldots, a_{k+1}) \) \(\{a_1, \ldots, a_{k+1}\} \in [A]^{k+1} \).

Enumerate \(\mathbb{R}^n \) as \(\mathbb{R}^n = \{q_\alpha : \alpha < \omega_1\} \).

For \(\alpha < \omega_1 \), let \(M_\alpha \subseteq \mathbb{R}^n \), \(N_\alpha \subseteq \mathbb{R} \) be the smallest sets such that

(a) \(\{q_\beta : \beta < \alpha\} \subseteq M_\alpha \);
(b) if \(a, b \in M_\alpha \), then \(d(a, b) \in N_\alpha \);
(c) if \(a_1, \ldots, a_{k+1} \in M_\alpha \) are in \(k \)-general position, \(r_1, \ldots, r_{k+1} \in N_\alpha \), \(y \in W(a_1, \ldots, a_{k+1}) \) is such that \(d(a_i, y) = r_i \) \((1 \leq i \leq k+1) \), then \(y \in M_\alpha \);
(d) if \(a_1, \ldots, a_{k+1} \in M_\alpha \) are in \(k \)-general position, \(y \in W(a_1, \ldots, a_{k+1}) \) is such that \(d(a_1, y) = d(a_2, y) = \cdots = d(a_{k+1}, y) \), then \(y \in M_\alpha \);
(e) if \(\beta < \alpha \), then \(H_\beta \cap (M_\alpha + M_\alpha) = \aleph_0 \).

The existence of \(M_\alpha \) and \(N_\alpha \) can easily be shown by a Skolem-type construction: by closing off \(\{q_\beta : \beta < \alpha\} \) under the finitary operations described by (b), (c), (d), and (e).

Note that

(A) \(M_0 = N_0 = \emptyset \);
(B) \(|M_\alpha|, |N_\alpha| \leq \aleph_0 \) \((\alpha < \omega_1)\);
(C) \(M_\beta \subseteq M_\alpha, N_\beta \subseteq N_\alpha \) \((\beta < \alpha)\);
(D) \(\bigcup \{M_\alpha : \alpha < \gamma\}, \bigcup \{N_\alpha : \alpha < \gamma\} \) \((\gamma < \omega_1)\).

We are going to define \(f|N_\alpha \) by transfinite recursion on \(\alpha \). Assume we already constructed \(f|N_\alpha \) and we would like to extend it to \(N_{\alpha+1} \).

Enumerate the countable set

\[
\{\langle \beta, H_\beta \cap (M_{\alpha+1} - M_\alpha) \rangle : \beta < \alpha, A_\beta \subseteq M_\alpha \}\times \alpha
\]

as \(\{\langle \beta_i, p_i, \xi_i \rangle : i < \omega \} \).

By recursion on \(i < \omega \), we choose an element \(x_i \in A_{\beta_i} \) such that

(1) \(d(x_i, p_i) \in N_{\alpha+1} - N_\alpha \);
(2) \(d(x_i, p_i) \neq d(x_j, p_j) \) \((j < i)\).

We have to show that at step \(i \) we can choose \(x_i \).

Claim 1. There are at most \(n \) elements \(x \in A_{\beta_i} \) which do not satisfy (1).

Proof. Indeed, assume that for the distinct \(x(1), \ldots, x(n+1) \in A_{\beta_i} \), we have that \(d(x(m), p_i) \in N_\alpha \) \((1 \leq m \leq n+1)\). That is, there are reals \(r(1), \ldots, r(n+1) \in N_\alpha \)
such that \(d(x(m), p_i) = r(m) \) (\(1 \leq m \leq n + 1 \)). For each sequence \(\langle r(1), \ldots, r(n + 1) \rangle \), \(r(1), \ldots, r(n + 1) \in \mathbb{N} \) there is at most one \(p \) such that \(d(x(m), p) = r(m) \) (here we use that \(x(1), \ldots, x(n + 1) \) are in \(k_\alpha \)-general position and Lemma 3) so, by (c) of the definition of \(M_\alpha \) and \(\mathbb{N}_\alpha \), it contains this \(p \), that is, \(p_i \in \mathbb{N}_\alpha \), a contradiction. \(\square \)

Claim 2. There are at most \(n_i \) elements \(x \in A_{\beta_i} \) which do not satisfy (2).

Proof. Assume indirectly that there are more than \(n_i \) elements that do not satisfy (2). Then, for some \(j < i \), there are \(x(1), \ldots, x(n + 1) \in A_{\beta_i} \) such that \(d(x(m), p_i) = d(x(j), p_j) \), that is, there is \(p \) such that

\[
d(x(1), p) = d(x(2), p) = \cdots = d(x(n + 1), p).
\]

But by (d) of the above definition, then each such \(p \) must be in \(M_\alpha \), which contradicts the assumption on \(p_i \). \(\square \)

By Claims 1 and 2, we can choose \(x_i \) and proceed. With all \(x_i \) selected, we extend \(f \) to \(\mathbb{R}^+ \cap \mathbb{N}_{\alpha + 1} \) so that \(f(d(x_i, p_i)) = \xi_i \) (\(i < \omega \)). This is possible by (1) and (2).

We claim that the function \(f \) is as required.

Let \(B \in [\mathbb{R}^\alpha]^{\omega_1} \) and \(\xi < \omega_1 \) be so that \(F(x, y) \neq \xi \) for \(x, y \in B \). By Lemma 5, there is a \(\beta < \omega_1 \) such that \(A_\beta \subseteq B \) and \(|H_\beta \cap B| = \aleph_1 \). If \(\alpha < \omega_1 \) is so large that \(\beta, \xi < \alpha \) and \(A_\beta \subseteq M_\alpha \) hold, then for every \(p \in (H_\beta \cap B) - M_\alpha \) there is \(x \in A_\alpha \) with \(F(x, p) = \xi \), consequently \(H_\beta \cap B \subseteq M_\alpha \), that is, \(H_\beta \cap B \) is countable, a contradiction.

Acknowledgement. The author is thankful to the referee whose suggestions greatly improved the exposition.

References

Péter Komjáth,
Institute of Mathematics,
Eötvös University,
Budapest, Pázmány P. s. 1/C, 1117,
Hungary
Email: kope@cs.elte.hu

Mathematika is owned by University College London and published by the London Mathematical Society. All surplus income from the publication of *Mathematika* is returned to mathematicians and mathematics research via the Society’s research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.