DOKTORI ÉRTEKEZÉS
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Készítette
Deák Márton

Témavezető
dr. Mari László, egyetemi docens

Doktori iskola
Eötvös Loránd Tudományegyetem, Természettudományi Kar
Földtudományi Doktori Iskola
vezetője: dr. Bartholy Judit D.Sc., egyetemi tanár

Doktori program
Földrajz-Meteorológia Doktori Program
vezetője: dr. Karátson Dávid D.Sc., egyetemi tanár
Tartalomjegyzék

I. BEVEZETÉS ... 4
 I.1. TÉMAVÁLASZTÁS ... 4
 II. 2. CÉLKITŰZÉSEK ... 5

II. A HIPERSPEKTRÁLIS TECHNOLÓGIA ALAPJAI .. 9
 II.1. A MULTISPEKTRÁLIS TÁVÉRZÉKELÉS KORLÁTAI .. 10
 II.2. A HIPERSPEKTRÁLIS ÚRTÁVÉRZÉKELÉS TECHNOLÓGIAI HÁTTERE ... 12
 II.3. A FŐBB HIPERSPEKTRÁLIS ÚRTÁVÉRZÉKELÉSI SZEZORKÓK 14
 II.3.1. EO-1 – Hyperion ... 14
 II.3.2. Inaktív szenzorok .. 16
 II.3.2.1. OrbView-4 – OHIS ... 16
 II.3.2.2. ORS-4/Hawaiisat-1 – SUCHI .. 16
 II.3.3. Napjainkban is működő szenzorok .. 17
 II.3.3.1. Proba 1 – CHRIS .. 17
 II.3.3.2. Aqua/Terra – MODIS .. 18
 II.3.3.3. TacSat-3 – ARTEMIS ... 20
 II.3.3.4. MRO – CRISM és Chandrayaan-1 – M3 ... 21
 II.3.4. Tervezett szenzorok .. 22
 II.3.4.1. EnMap ... 22
 II.3.4.2. ARIES-1 .. 22
 II.3.4.2. ALOS-3 ... 23
 II.4. A HIPERSPEKTRÁLIS ÚRTÁVÉRZÉKELÉS PROBLÉMAI 23
 II.4.1. Atmoszférikus hatás .. 24
 II.4.2. Spektrális keveredés és a szuprakezídes információk 28
 II.4.2.1. Spektrális keverési modellek .. 32
 II.4.2.2. Irányvisszaverődés ... 35

III. A HIPERSPEKTRÁLIS ADATOK ELŐFELDOLGOZÁSA A HYPERION PÉLDÁJÁN... 38
 III.1. ADATHIBÁT ÉRINTŐ ELŐFELDOLGOZÁSI MÓDSZEREK 39
 III.1.1. Drop line ... 39
 III.1.2. Spectral smile ... 40
 III.1.3. Hibás sávok .. 41
 III.1.4. Atmoszférikusz korrekció .. 42
 III.1.5. Mászérzaj ... 45
 III.2. A MAGAS DIMENZIÓSZÁM PROBLÉMAI ÉS MEGOLDÁSAI 47
 III.2.1. A redundancia problémája .. 48
 III.2.1.1. Fizikai okok, a jelenség leírása .. 48
 III.2.1.2. Az FWHM szerepe ... 51
 III.2.2. A dimenziószám csökkenésének lehetőségei ... 53

IV. A HIPERSPEKTRÁLIS ADATOK KIÉRTÉKELÉSI LEHETŐSÉGEI 56
 IV.1. Spektrális szétkeverési módszerek .. 56
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

IV.1.1. Lineáris szétkeverés és a V-I-S modell... 56
IV.1.2. Nemlineáris szétkeverés .. 63
IV.2. KLASZTEREZÉSI ELJÁRÁSOK .. 64
IV.3. EGYÉB KIERTÉKELÉSI MÓDSZEREK .. 65
IV.3.1. Nem klaszteranalízis alapú osztályozási eljárások .. 65
IV.3.2. Spektroszkópiai vizsgálatok .. 68
IV.4. HIGH-TECH MEGOLDÁSOK .. 72
IV.4.1. Marsi adatforrások ... 72
IV.4.2. Drónos felmérések ... 76
V. ÚJSZERŰ HIPERSPEKTRÁLIS ADATFELDOLGOZÁSI MÓDSZEREK VEGETÁCIÓS
VIZSGÁLATOK PÉLDÁJÁN .. 81
V.1. VEGETÁCIÓS VIZSGÁLATOK HIPERSPEKTRÁLIS ADATOKkal 82
V.2. A MINTATERÜLET ... 86
V.3. ADATELŐKÉSZÍTÉS .. 88
V.3.1. Előfeldolgozás ... 88
V.3.2. Terepi mintavételezés .. 89
V.3.3. A mintaterület lehatárolásának jelentősége ... 90
V.4. MÓDSZERTAN .. 92
V.4.1. Dimenziócsökkentés Influential Band Analysis segítségével 93
V.4.2. Osztályozás ... 98
V.4.3. Kevert osztályokba sorolás .. 100
V.4.3.1. Az SVM alkalmazása spektrális szétkeverés során .. 100
V.4.3.2. A V-I-S modell és a kettős osztályozás .. 103
V.5. VIZSGÁLATI ERDEMÉNYEK .. 105
V.5.1. Osztályozási eredmények ... 105
V.5.2. A szubpixeles információ jelentősége és a V-I-S modell hatékonysága 109
V.5.3. A kiválasztott sávok biológiai jelentősége ... 109
V.5.4. A dimenziócsökkentett adatokon mérhető osztály-szeparabilitás 111
V.6. TOVÁBBI VIZSGÁLATI LEHETŐSÉGEK .. 113
VI. ERDEMÉNYEK .. 115
VII. ABSZTRAKT .. 117
VIII. ABSTRACT (IN ENGLISH) .. 118
IX. KÖSZÖNETNYILVÁNÍTÁS .. 119
X. ÁBRAJEGYZÉK ... 120
XI. IRODALOMJEGYZÉK ... 123
XII. MELLÉKLETEK ... 136
I. Bevezetés

I.1. Témaválasztás

Napjainkban egyre nagyobb jelentőséggel bírnak a távérzékelés alapú vizsgálatok, amelyek különböző felszínborítási állományai (Mari 2003; Móga et al. 2013) akár komplex rendszerbe integrálva (Mattányi és Mari 2005) készülnek. Az elmúlt évtizedek múlt- és jelen- és jövőbeli érdeklődése iránti ígényt is fellendítették, így ma már számos példát találunk arra, ahol ezek a talajtani (Gomez et al. 2008), vegetációs (Hirano et al. 2006) vagy települési vizsgálat alapjául szolgálnak (Deák et al. 2012), de településeken egyre gyakoribbak ma már a szubpilexel alapú vizsgálatok is (Mucsi és Henits 2011; Henits 2013).

Ezen vizsgálatok azonban legtöbbször vagy az érzékelő által lefedett teljes spektrumot használják, vagy pedig annak egy-egy korábbi kutatások során, empirikus tapasztalatok alapján „bevált” – de mindenütt tudományosan alátámasztott – szeletét. Elméletem szerint azonban a felszínborítás egyes területeken annyira heterogén lehet, hogy az „ideális” sávkiosztás nehezen meghatározható, a vizsgált felszínborítás összetétele és az érzékelő felbontása dönti el, hogy mely hullámhosszok bírnak az adott elemzés során nagy, vagy épp csekély jelentőséggel.

Jelen disszertációban elsősorban a környezeti- és természetföldrajzi tényezőket vizsgáltam, kiemelten a vegetáció elemzése által, de kitérve a talajtani vizsgálatok lehetőségeire is. Választásom azért esett erre a viszonylag szűk témára, mert a vegetációs foltok jelenlegi kisebb térbeli változatosságától bírnak, mint a beépített területek és változékonyságuk – legalábbis távérzékelési és spektrális különbségek kimutatása, valamint az egyes vegetációs típusok elkülönítése nagyobb kihívást, kifinomultabbb módszereket igénylő feladat, mint egy nagyobb területet érintő, jól elkülöníthető felszínborítási típusok osztályozása.

A témaválasztás során igyekeztem kiemelt jelentőséget fordítani arra, hogy a témát több szemszögből is körüljárjam, így a hiperspektrális adatok általános bemutatása és ismertetése mellett kitérek a tudományterület legújabbr eredményeihez, majd pedig rátekerem a hiperspektrális adatok dimenziócsökkentésének témájára, valamint a pixelen belüli információk elemzésére. Mintaterületként a Budai-hegység Normafa-Csillebérc közti területe került kiválasztásra.

Az elemzés során mind a felhasználható adatok körét, mind pedig a mintaterületeket az érzékelők elérhetősége limitálta, ugyanis napjainkban az ingyenesen hozzáférhető hiperspektrális érzékelők száma véges. 2017 márciusában a disszertáció gerincéül szolgáló, a NASA és az USGS által üzemeltetett Earth Observing-1 műholdat is kivonták a forgalomból, így a kifejezetten hiperspektrálisnak nevezhető érzékelők közül kevés maradt. A jövőbeli
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

kutatók számára – jelen állás szerint – csak a marsi Mars Reconnaissance Orbiter fedélzetén található CRISM (Compact Reconnaissance Imaging Spectrometer on Mars), az ESA által üzemeltetett PROBA-1, illetve annak a CHRIS (Compact High Resolution Imaging Spectrometer) nevű érzékelője, valamint az elsősorban nem hisperpektrális műholdként emlegetett Aqua és Terra műholdpáros MODIS (Moderate Resolution Imaging Spectroradiometer) érzékelője maradt.

A fentiek közül az adatok elérhetősége, valamint a főbb célkitűzéseim miatt elsősorban az EO-1 adatait vettem elő, figyelembe véve, hogy egy nagy spektrális és közepes terepi felbontású hiperspektrális érzékelő (Hyperion) található a fedélzetén, de az sem elhanyagolható tény, hogy az összes hiperspektrális érzékelő közül leginkább ennek az adatai érhetők el. Választásomat ugyancsak befolyásolta, hogy az USGS-hez tartozó „Science Systems and Applicatons Inc.” – megfelelő előszűrés után – elfogadta kérelmemet magyarországi mintaterületem periodikus felvételezésére is.

A témaválasztást így részben saját érdeklődésem, illetve korábbi munkáim és kutatásaim folytatása indokolta, részben pedig a rendelkezésre álló adatok szükségesek, hogy igen szerencsés módon, ugyanis a Hyperion érzékelőt kifejezetten kutatási célra, a hiperspektrális technológia lehetőségeinek és korlátainak feltárására alkották meg.

II. 2. Célkitűzések

A disszertáció megírásának célja kettős. A hiperspektrális adatok kezelése és felhasználása során állandó jellegű probléma a nagy, sok tekintetben redundáns adattömeg, aminek a csökkentésére már a hardveres erőforrások szempontjából is komoly igény van, hiszen az akár több száz sáv gigabájtot fogalhat el – nem is beszélve számos feldolgozási eljárásról, amiknek a számítási ideje a fölösleges sávok bevonásával akár ezterszeresére is nőhet –, de egy jól kivitelezett dimenziócsökkentés magát az adattisztaságot is növelheti.

A disszertáció későbbi lépései során már-már axiómaként fogadom el (bár vélhetőleg az olvasó számára is bizonyítást is nyer), hogy kevés vizsgálat igényli a hiperspektrális adatokkal teljes adattartalmát, a felhasználónak többnyire csak annak egy jól megválasztott szeletére van szüksége. A sávszélesség (ami később sokszor matematikai megfogalmazásban, „dimenziócsökkentés” néven kerül elő) ötlete nem új. Számos kutató tűzte ki céljául a dimenziócsökkentés egy-egy módon kidolgozását. Ezeknek hivatalos klasszikus megoldását nem létezik, de a későbbiekben – az egyértelműség kedvéért – az irányított és irányítatlan
dimenziócsökkentés kategóriájába sorolom őket attól függően, hogy a folyamat lépései során figyelembe vesztek-e a teljes adattömb (azaz az összes sávval nevezett adatválasz együtttest) információtartalmán kívül mást is. Egyes eljárások – mint például a főkomponens analízis (a későbbiekben sokszor PCA – Principal Component Analysis néven jelenik meg) bár hatékonyan szűrik ki a teljes adathalmazt tekintve lényegesen gondolt információt – ilyen módon az eredeti adattömb jó reprezentációját kaphatjuk vissza jelentősen kisebb adatmennyiség mellett, sokszor mégis lényegesen gondolt információk vesznek el, ami jelentős hatással lehet az eredmény egészének tekintve. Más eljárások – például a lineáris diszkriminancia analízis (a későbbiekben esetenként LDA – Linear Stepwise Discriminant Analysis vagy csak SDA) már felkészültek arra, hogy ne a teljes adathalmazt, hanem annak csak egy részletét vizsgáljak, de ezek az eljárások sem feltételezni távérzékelési szemlélettel jöttek létre és így véleményem szerint – jelen esetben – felhasználásuk korlátaik még kutatások tárgyát kell, hogy képezzék.

Célom volt ezért egy olyan módszer kidolgozása, ami nagy dimenziójú és nagy spektrális felbontású, ugyanakkor az egyes sávok között nagy redundanciával bíró távérzékelés adatok (jellemzően hiperspektrális, de a jövőben az ultraspéktális adatokra is igaz lehet) dimenziószámának csökkentése úgy oldható meg, hogy a felhasználó számára értékes információk nem csak, hogy megmaradnak, hanem reprezentáltságuk az adaton belül megnő.

A figyelmes olvasó számára joggal merülhet fel a kérdés, hogy ez az eljárás vajon nem rontja-e a teljes adat soros egységet, illetve az megfelelően robosztus marad-e a további vizsgálatok elvégzéséhez? Erre válaszként érdemes megvizsgálni a főkomponens analízis lépéseiit, amelynek során ugyancsak csökken a teljes adattömb dimenziószáma, elveszítve számos értékes adatot – ezek kiválasztása azonban irányítatlanul történik, determinálva a hiperspektrális adatockában legjobban reprezentált felszínborítási típus spektrális jellemzőinek későbbi dominanciáját. Logikusan belegondolva, egy olyan területen, ahol egy felvételen belül számos kopár talajfolt található és csak kevés vegetáció, a főkomponens analízis után a megmaradt főkomponensek a talajjal borított térszíneket jól reprezentálják majd, a vegetációval borítottat kevésbé.

A problémának azonban van egy másik vetülete is. Amennyiben a teljes felvétel által lefedett terület még a kívánt felszínborítási típus ábrázolja is (például vegetációs vizsgálat során egyfajta, homogén erdőt látunk – még ha ez pusztán csak elméleti lehetőség is), egyes spektrális jellemzők mindenképpen túlsúlyban lesznek. Az atmoszférikus ablakokon átszűrődő visszavert sugárzásban egy egyenlő spektrális tartományú sávokra bontott felvétel
adattömegében – fizikai-kémiai okok miatt – számos olyan sávot találunk, ami a fotoszintetitikusan reflektív, azaz klorofill reflectancia-tartományba tartozik, ugyanakkor sokkal kevesebbet, ami például a kötött H₂O abszorbanciáját mutatja. Erre a problémára jelenleg az sem megoldás, ha figyelmebe vesszük, hogy az egyazon reflectancia-tartományba eső sávok egymással jól korrelálnak, hiszen a PCA (és sok más eljárás) nem veszi figyelmebe az adat redundanciáját, csak a teljes adattömeghez viszonyított reprezentáltságát (Prasad és Bruce 2008). Célom volt ezért az általam kifejlesztett eljárást úgy megalkotni, hogy az egy-egy spektrális tulajdonság súlyától függetlenül működik, figyelmeleme véve csak azokat a sávokat, amelyek az adatok szétválaszthatóságát valóban befolyásolják.

A disszertáció megírásának azonban volt egy a fentiektől eltérő célja is. A hiperspektrális műholdas adatok jelenleg még nem terjedtek el a természettőrajz és környezetőrajz kutatásokban (szemben a nagyobb felbontású légi adatokkal), így igyekeztem megvizsgálni, hogy ez az adattípus hogyan használható vegetációs vagy épp talajtani kutatások során. A témaválasztás során itt abból indultam ki, hogy a vegetációval vagy kopár talajjal borított területek közti, spektrálisan kevésbé jól mérhető különbségek feltárása nagyobb kihívás, mintha ugyanezt jól elkülönülő végállású pontok esetében – például egy városi területen – tenném. Ebből még talán korai lenne levonni azt a következtetést, ami ide kívánkozik – miszerint: „Amelyik dimenziócsökkentési eljárás jól működik tisztán vegetációval korlátozott területen, az minden bizonytal jól fog működni beépített térszínen is.” és ennek az állításnak a vizsgálata jelen disszertáció megírásán túlmutató feladat marad, de a későbbi fejezetekben részletezett eredményeimere épülő kutatások során véleményem szerint élhetünk ezzel a prekoncepcióval.

Vizsgálataim során lassan célomma vált a szük szakterületre jellemző, kevésbé jól feldolgozott magyar nyelvű irodalom kiegészítése is, így kitekintést teszek az adatok felhasználásának lehetőségére, áttekintem a múltbeli, jelenleg is működő, valamint jövőben használni tervezett érzékelőket, feltárom az azok közti különbségeket, szigorúan nem leragadva az egyszerű összehasonlításnál, hanem reményeim szerint az olvasó számára is logikus következtetésekké elemzve azokat. A téma azért is kiemelkedően fontos, mert számos kisebb felbontású műholdas érzékelő kerül a közeljövőben felbocsátásra vagy épp működik máris – gondoljunk csak az ESA Sentinel sorozatára – amelyek bár nem hiperspektrálisak, de sávjaik kiválasztásánál mégis egy jól megtervezett, spektrális elemzési célú szemlélet érvényesült, ami teljes hiperspektrális adatkockák elemzése nélkül nem jöhetett volna létre. A disszertációban
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

döntően kitérek a marsi adatforrásokra is, ahol a hiperspektrális adatok – a terepi vizsgálati módszerek komoly korlátozottsága miatt – különösen nagy jelentőséggel bírhatnak.

Mindenek megfelelően ezért bemutatom a hiperspektrális űrfelvételek feldolgozását célzó módszertani eljárások jelen állását, kiemelve azok korlátait és lehetőségeit, mindenhol kellő kritikával illetve azokat. Az áttekintés után előveszem a témát érintő legnagyobb problémákat, majd azok feltárása után bemutatom két potenciális megoldást is a dimenziócsökkentés és a szubpixeles osztályozás dilemmáinak feloldására lehetővé téve ezzel a spektrálisan hasonló osztályok által alkotott kevert pixelek egyértelmű klasszifikációját.

Mindenek megfelelően az V.4.-es módszertani fejezet talán jelen disszertáció legfontosabb része. A későbbi problémafelvetések és az arra szakirodalom alapján adott válaszok és részválaszok csak sejtetik azt a tényt, hogy a hiperspektrális adatokban jóval több információ van elrejte, mint amennyit a szokványos adatelemzési eljárásokkal kinyerhetünk. A big data világában (ami meggyőződésem szerint egy nem jól körülírt kifejezés, leginkább az „átláthatatlanul sok adat” tudományos neve) azonban egyre fontosabbnak azok a módszerek, amelyek a látszólag irreleváns, azonban egy-egy szempontból lényeges információ kinyerését célozzák – hiszen mint tudjuk, az ördög a részletekben rejlik.
II. A hiperspektrális technológia alapjai

Ebben a fejezetben bemutatom a hiperspektrális technológia lehetőségeit, jelenlegi alkalmazási területeit és összefoglalni az érintett tudományterületeken elért főbb, releváns eredményeit. Az összefoglalás logikai menetének célállomása a jelen disszertáció gerincét képező Hyperion érzékelő leírása és adatainak bemutatása, de célzottan bemutatásra kerül az is, hogy mely hiperspektrális műholdadatok segítségével lehetséges egyáltalán érdemi vegetációs vizsgálatokat végezni.

A fejezet gerincét képezi a hiperspektrális technológia leírása is, ami bár a figyelmes olvasónak sok szempontból ismerős lehet, mégis szükségesnek látom egyes fizikai vagy kémiai jelenségek felelevenítését és ismételt aláhúzását, hiszen a későbbiekben majd különös jelentőséggel bírnak. Előkerülnek a hiperspektrális műholdas adatok alapvető problémáinak bemutatása is, ami a későbbiekben kiemelten szerepe van a disszertációban.

Itt kell megemlítenem azt is, hogy hivatalosnak mondható definíció, ami lefedné a hiperspektrális távérzékelést nincs, mégis a tudományos világ kimondatlan közmegegyezése alapján valahogy így fogalmazhatnánk meg: „A hiperspektrális távérzékelés az az eljárás, amelynek során a felszíni visszaverődés nagy spektrális felbontással kerül rögzítésre.”. Feltűnhet, hogy ez a definíció jelen esetben mellőz minden, a felhasznált sávok számára vonatkozó kitételt – hiszen a nagy felbontás nem feltétlenül jelent nagy elemsszámot is. Azonban jelen esetben mégis – egy két kivételtől eltekintve, ahol viszont kifejezetten felhívom a figyelmet a számos sáv hiányára – mégis fontos kitételként szerepel. Ezért a végső meghatározás úgy hangozhat, hogy: „A hiperspektrális távérzékelés az az eljárás, amelynek során a felszíni visszaverődés nagy spektrális felbontással, több tíz vagy száz sávban kerül rögzítésre.” – nem véletlen, hogy az eljárást sokszor inkább „képalkotó spektrometriának” nevezik, ami talán jobban rámutat arra, hogy inkább egyfajta adatelemzésről, nem pedig klasszikus képalkotásról beszélünk. Ezen a ponton fontos kijelenteni azt is, hogy bár ez a fajta adat rengeteg módon vizualizálható, végső soron a mögöttes számok azok, amelyek igazán számítanak (Deák 2013).

Bár ez a disszertáció elsősorban a hiperspektrális távérzékelésről szól, fontos lefektetni, hogy milyen különbségeket fedezhetünk fel a jóval elterjedtebb multispektrális adatfeldolgozáshoz képest. Fontos különbséget tenni a multi- és a hiperspektrális adatok kezelése és feldolgozása között, de ugyancsak lényeges kiteríni arra a kérdésre, hogy miben
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

különbözik egy pontszerű, laboratóriumi mérés és egy kisebb-nagyobb területre nézve reprezentatív, légi- vagy űrtávérzékelési eljárás eredményeképp létrejött adat.

Csaknem tyúk vagy a tojás esete, hogy a multi-, vagy a hiperspektrális távérzékeléshoz közelebb álló technológia létezett előbb. Biztosan előbb volt olyan érzékelő, ami valamilyen infravörös sában érzékelő, de a mai multispektrális műszereknek technológialag inkább képezik ösét az első digitális laboratóriumi spektrofotométerek – így ez a kérdés most eldöntetlen marad. Azonban egy biztos: ha valaki hiperspektrális távérzékeléssel kíván foglalkozni, kénytelen megismerni a multispektrális távérzékelés alapjait is. Ennek az oka, hogy a kezelhetőbb adatmennyiség, a kevesebb zavaró tényező és a kisebb adattömegből fakadó könnyebb kezelhetőség miatt a távérzékelésben először a multispektrális érzékelők terjedtek el és alkalmazási területük is jóval szélesebb. Így, amint a technika fejlődése azt megengedte, a hiperspektrális érzékelők teret nyertek – előretettve a napjainkban még el nem terjedt ultraspektrális eszközöket (bár itt kisebb technológiai fejlődést válhatunk, mint ami a multi- és hiperspektrális eszközöket összehasonlítva érzékelhető).

A technika jelenlegi fejlődése inkább a multispektrális szenzorok fejlődésének irányába mutat, azzal a különbséggel, hogy ezek az újabb érzékelők szűkebb, jól meghatározott hullámhossz-tartományokra (egyfaja kulcs hullámhosszra) fókuszálnak azzal a céllal, hogy a vegetációt, a víztesteket vagy egyéb környezeti elemeket a kutatók célzott vizsgálatoknak vethessék alá akár önmagukban, akár más adatforrásokkal kombinálva (pl. Koch 2010; Bioucas-Dias et al. 2013).

II.1. A multispektrális távérzékelés korlátai

A multi- és hiperspektrális távérzékelés közti látszólag leglényegesebb különbség, hogy egy multispektrális érzékelő jóval kevesebb hullámhossz-tartományban rögzít adatokat. A multispektrális érzékelők esetén ez a szám 4-10 körül mozog a hiperspektrális szenzorok többnyire 30-300 sávjához képest. Azonban ahogy fent már említettem, a sávok nagy száma azonban még önmagában nem elegendő ahhoz, hogy egy érzékelőt hiperspektrálisnak nevezzünk, legalább annyira fontos számadat spektrális felbontás – aminek a mértékegysége „R=Δλ/λ”, azaz az egységnyi hullámhosszra jutó detektálható hullámhossz-változás (de megadhatjuk sáv/nm-ben vagy sáv/µm-ben is), ami a hiperspektrális érzékelők esetében jóval kisebb szám, azaz jóval nagyobb felbontás lesz – bár ahogy a III.2.1.2.-es, az FWHM-mel foglalkozó fejezetben írom, vannak olyan eszközök, amelyek érzékenységi tartománya meglehetősen nagy a sávok számához képest.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

1. ábra: Egy vegetációval borított pont radianciája 445 nm és 900 nm között az ALI (piros) és Hyperion (fekete) érzékelőivel vizsgálva (félbontás: 30 m/px)

ALI: EO1A1880272014084110
Hyperion: EO1H1880272014084110

Ez különösen olyan hullámhossz-tartományokban érdekes, ahol az igazán lényeges információ cspán egy szük tartományhoz köthető. Jellemzően ilyen a klorofill reflektancia-csúcscs (tehát pozitív csúcsként megjelenő érték) tartomány nagyjából a 680 nm és 800 nm között a közeli infravörös (NIR – Near InfraRed) tartományban, de említhetném a 2000 nm körüli H₂O abszorbancia-csúcsot (tehát negatív csúcscsot) is. A kisebb spektrális felbontású érzékelők egy nagyobb tartomány átlagát rögzítik, a hiperspektrális érzékelők azonban pontosabban, jobban
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

kirajzolhatóan rögzítenek ezeket az értékeket, így precízebb adatfeldolgozást tesznek lehetővé, adott esetben pontosabb eredményt produkálva.

Összehasonlítsásképp az 1. ábrán két érzékelő, a NASA által üzemeltetett Earth Observing-1-en található Advanced Land Imager (ALI) mint multispektrális, illetve Hyperion, mint hipspektrális érzékelő egyidőben, azonos területről, azonos terepi felbontással készített adatai láthatók. Jól látható a két érzékelő közti spektrális felbontásban mutatkozó különbség, illetve példaképp megfigyelhető a 700 nm-es, már említett NIR reflektancia-csúcs részletezettsége. Az ALI a legtöbb multispektrális érzékelőhöz hasonlóan 800 nm-ig mindössze 5 sávval rendelkezik, azaz átlagosan 74,4 nm-re jut egy sáv. A Hyperion esetében ez a szám jóval nagyobb – szám szerint 44 – azaz egy sáv nagyjából 8,5 nm-es tartományt fed le (a Hyperion érzékelőről a részletesen II.3.1. fejezet értékezik). Fontos megjegyezni, hogy az egyes sávok határai általában nem ekvidesztánsan követik egymást, azaz az általuk lefedett hullámhossz-tartomány nem feltétlenül mindig ugyanakkora (ennek és az érzékenységi csúcsnak a szélességét a FWHM érték mutatja meg – erről bővebben később még írok). Ez lényegében technológiai korlátokra vezethető vissza, azonban fizikai okai is vannak (ezek részben összefüggésben vannak a III. fejezetben kifejtendő előfeldolgozási problémákkal).

Ennek az adatfeldolgozás során lesz fontos szerepe, hiszen számos statisztikai eljárás csak szabályosan mintavételezett adatokkal lehetséges.

Fontos kitérni az EO-1 másik érzékelőjének, az ALI-nak a képességeire is. Vizsgálataim során arra a következtetésre jutottam, hogy az EO-1 ALI adatai vizes élőhelyek osztályozására bár kevésbé használhatók, mint a Landsat 5 és Landsat 8 felvételei (Szabó et al. 2016), azonban véleményem szerint azt az EO-1 hipspektrális adataival kombinálva a pontosság tovább növelhető, akár a Landsat-ek szintje fölé is.

II.2. A hipspektrális űrtávérzékelés technológiai háttere

Jelen fejezet inkább egyfajta felvezető későbbi fejezetekben elszórt információk összegzésére. Bár nem céloem a távérzékelés technológiai háttérenek részletes feltárása, mégis fontos egy-egy ponton kitekintést tenni ebbe az irányba is – azonban ez jellemzően nem egy fejezetben összefoglalva, hanem a későbbiekben elsőről történik. Az alapvető fizikai háttér elemzése a reflektancia/abszorbancia, valamint radianca témáját boncolgatva bár kimerítő téma lehetne, beleértve az optikai távérzékelés (így a hipspektrális távérzékelés) egészére történő részletes elemzést is, de a mély vizsgálat a későbbi fejezetek szempontjából inkább bizonyulna az olvasó számára lényegesen, semmint hasznosnak – hiszen a későbbiekben inkább
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

adatfeldolgozásá és adatkiértékelési problémákat veszek elő, nem pedig technikai oldalról közelítem meg a kérdést. Ezért a fókusztávolságról, szenzorméretről vagy rekesznyílásról szeretne mélységeiben olvasni, az más írást kell, hogy a kezébe fogjon.

Rövid összefoglalást azonban most is adnom kell. A korábbi fejezetekben többször is említésre került, hogy a hiperspektrális távérzékelés a laboratóriumi spektrofotometria közélikokna, mégis számba kell venni azokat a lényeges különbségeket, amelyek merőben más megközelítést tesznek szükségessé. A legfontosabb eltérés, hogy míg a laboratóriumi spektrofotóméterek gyakorlatilag pontosak, de mindenfény homogén anyagokra vonatkoztatott méréseket végeznek, addig a távérzékelő adatok mindig egy nagyobb területről szolgáltatnak információt – ennek a területnek a méretét a térbeli felbontás mutatja meg, amelynek mértékegysége ebben az esetben í méter/pixel (m/px).

Az optikai távérzékelő eszközök minden esetben az egy érzékelő lapkára eső, adott földfelszínre vetített pixel látszólagos radianciájának összegét továbbítják – később ez az érték kerül további feldolgozásra. Ennek az oka, hogy felvételzéskor a blendén áthaladó, illetve a chipen leképződő sugárzás bár fizikailag pontosak – hiszen fotonokból áll – a vonatkozó sugárnyalábok inkább kúpszerűek, a regiszterek tehát földfelszín egy adott területét fedik le és az onnan beérkező fotonok összesített energiáját érzékelik.

A hiperspektrális érzékelők esetében a technológia alapvetően megegyezik azzal, mint ami a multispektrális műszerekkel már jól bevált – ezért a részletes technológiai leírásokat szintén mellőzik –, azonban fontos kiemelt egy lényeges különbséget: jellemzően nem csak egy CCD (Charge Coupled Device) vagy ritkább esetben CMOS (Complementary Metal-Oxide-Semiconductor) chip, hanem azt kiegészítve (pl. a Hyperion esetében) egy higany-kadmium-tellurium detektor (Ungar et al. 2003a) látja el a fotonok befogásának feladatát.

Az adat a detektorba kerülve digitálisan leképeződik, majd további (jelen disszertáció szempontjából lényegtelen, bár igen érdekes) technikai feldolgozási lépések után jellemzően 8 vagy 16 biten kerülnek letárolásra – azonban elképzelhető más színmélység is, hiszen a Hyperion adatok például 16 bites fileokban tárolt 12 bites információk. Az adatok feldolgozása a Level 0, tehát már digitálisan elérhető, adatok után hasonló eszközökkel történik, mint a multispektrális adatok esetében, de szükség lesz egy-két speciális eljárásra is, amelyek a II.4.-es, illetve III.-as fejezetben kerülnek leírásra.

- 13 -
II.3. A főbb hiperspektrális űrtávérzékelési szenzorok

Az elméleti és gyakorlati háttér felvázolása után feltétlenül rá kell térni az elérhető, vagy már el nem érhető hiperspektrális műholdas szenzorok leírására is. A teljes spektrumot lefedő technológia kevésbé terjedt el, a fejlesztési iránya napjainkra – a korábban írtaknak megfelelően – inkább az lett, hogy az érzékelők öt-tíz jól meghatározható és valamilyen szempontból kulcsfontosságú hullámhosszra lettek optimalizálva, elkerülve ezzel az atmoszférikus zaj és az adatokban fellelhető komoly redundanciát.

Ennek ellenére több érzékelő is van, ami több tíz vagy akár több száz szűk, spektrális sávban rögzíti az adatokat. A későbbiekben a hiperspektrális érzékelő fogalmát – konkrét és hivatalos definíció híján – elsősorban a sávok számával azonosítom, így kevés kivétellel azok az érzékelők kerülnek felsorolásra, amelyek számos sávban rögzítenek. A lenti lista tehát valamennyi szubjektív, nem a teljesség igényével készült, a teljes teljesség igényével készült (bár bízom benne, hogy az olvasó számára legfontosabbak említésre kerülnek), ezért csak a jelen disszertáció szempontjából legfontosabb érzékelők kerülnek kiemelésre.

II.3.1. EO-1 – Hyperion

Az első nem csak kísérleti célú hiperspektrális szenzorral felszerelt műhold a NASA által 2000. november 21-én indított, Earth Observing-1 (EO-1) annak ellenére is kiemelt figyelmet érdemel, hogy 2017. március 30-a óta inaktiv, hiszen jelen disszertáció nagyrészt az EO-1 fedélzetén található hiperspektrális Hyperion (2. ábra) adataira támaszkodik. A műhold 750 km magasan keringett napszinkron pályán, az Egyenlítőt északról délre haladva helyi idő szerint átlagosan 10:01-kor keresztve, pontosan 1 perccel követve a Landsat 7 műholdat. Az eszközt a NASA New Millenium Program keretében fejlesztették ki, a cél a kor kívánalmait figyelembe véve modern szenzorok tesztelése és az adatok validálása volt nem titkoltan azzal a céljal, hogy „megágyazzanak” a mára már aktív Landsat 8-nak és a rajta található Operational Land Imager (OLI) műszernek.

Az első küldetés, az ún. „Baseline mission” célja a technológiai teszt volt, amit később felváltott az „Extended mission”. Ennek keretében az USGS (United States Geological Survey – Egyesült Államok Geológiai Szolgálata) átvette a műhold kezelését (bár továbbra is a volt NASA a tulajdonos) és széleskörű kutatási projektekhez indított a hiperspektrális műholdas technológia alkalmazási lehetőségeinek vizsgálatára – ennek része volt az adatletöltési és adatigénylési felület nyilvánossá tétele. Ezek eredményeképp jöhettek létre azok a publikációk,
amelyekből mára már tudjuk, hogy a Hyperion adatai felhasználhatók számos geológiai, talajtani, vegetációs és tengertani vizsgálatra is.

A Hyperion távérzékelési technikai paraméterei ma is jónak számítanának. A terepi felbontás zenit helyzetben 30 m/px, a lefedett tartomány 355-2577 nm, amit összesen 242 sávra oszthatunk fel. Az adatokat két érzékelő szolgáltatja: 355-1058 nm között egy VNIR spektrométer (CCD chip), a nagyobb hullámhosszokban pedig egy higany-kadmium-tellurium (HgCdTe) alapú SWIR detektor (Ungar et al. 2003b).

Mint minden hiperspektrális műholdas érzékelő, a Hyperion adatainak esetében is komoly problémát jelent az atmoszférius zavarás. Ezt az adatgazdák egyes sávok 0-ra állításával oldották meg, azaz lényegében a teljes sávban a pixelek „NoData” értéket kaptak (ezzel az erővel egyébként törlöhettek is volna a sávokat – bár akkor nem lett volna egy összefüggő adatsorunk). Mivel a SWIR érzékelő 850 nm-től, a VNIR azonban 1058 nm-ig rögzít, a két szenzor között spektrális átfedés van. A HgCdTe technológia azonban 900 nm-ig csak nagyon rossz jel-zaj arány mellett rögzíti az adatokat, az összefésült sávok között a 844-902 nm közötti tartományban átfedés lesz (a VNIR érzékelőnél ez a 49-54 sáv). Ennek következtében minden második, azaz a SWIR érzékelőhöz tartozó sávokkal kalibrálatlanok – ezek technikai okokból a 71-76 számú jelölést kapták. Ennek az oka, hogy hasonlóan minden második tartomány a 935-1057 nm-es tartományban (58-70 sáv) a VNIR szenzor esetében is kalibrálatlan, hiszen az számára már az érzékenységi tartomány teteje, így adattárolás szempontjából praktikusan hibás sávként lehet jelölni az 58-76 sávok közötti teljes tartományt függetlenül attól, hogy az adatok melyik érzékelőből származnak.

Az adatok több előfeldolgozottsági szintben is elérhetők. Ezek az L1R (csak radiometriailag korrigált), L1T (radiometriai és földrajzi korrekción), valamint L1Gst (radiometriai, földrajzi és domborzati korrekción).
II.3.2. Inaktív szenzorok

II.3.2.1. OrbView-4 – OHIS

II.3.2.2. ORS-4/Hawaiisat-1 – SUCHI

Kiemelendő még a Hawaii gyártású ORS-4/Hawaiisat-1 is, amit 2015. november 3-án indítottak Kauai légítámaszpontjáról. A fedélzetén található SUCHI (Space Ultra-compact Hyperspectral Imager) kísérleti eszköz volt, tervezésének célja elegendő eszköz kifejlesztése volt, ami elférhet egy kisebb cubesat fedélzetén is (a műszer mindössze 40x10x12,5 cm-es volt). A kompakt méretnek hátrányai is voltak, amit leginkább technikai paraméterei,
nevezetesen terepi felbontása (220 m/px) sínylett meg. A műszer elsősorban vulkáni gázok térképezésére szolgált, ezért a szokványos tartománytól eltérően 7000-14000 nm között rögzített volna adatot a csatornában – így jó példa arra, hogy egy szenzor hogyan lehet hiperspektrális úgy, hogy közben viszonylag kevés csatornán rögzíti.

II.3.3. Napjainkban is működő szenzorok

Napjainkban az aktív hiperspektrális, műholdas szenzorok száma viszonylag alacsony és azok közül is csak kettő férhető hozzá viszonylag egyszerűen – ezek a CHRIS és a MODIS. Ezekben azonban léteznek más szenzorok is, azok azonban vagy nem felelnek meg a mai kor követelményeinek – rossz terepi felbontásuk vagy visszatérési idejük miatt elmaradnak a fentiaktól – vagy az adatok nem hozzáférhetők.

A most felsorolásra kerülő műholdak rendszerint kísérleti jelleggel, inkább technikai és nem tudományos kísérletnek számítanak (ahogy egyébként az az EO-1 esetében is volt), egy részük pedig mikroszatellitként került fel a Világűrbe. Ezek közül a legfontosabbak az IMS-1 (550 m/px, 400-950 nm, 64 sáv) és a Kent Ridge-1 (44-110 m/px, 500-1500 nm, 60 sáv).

II.3.3.1. Proba 1 – CHRIS

Nem sokkal az EO-1 után, 2001. október 22-én indították Indiából az európai, ESA által fejlesztett és épített PROBA-1 műholdat, aminek fedélzetén található a CHRIS (Compact High Resolution Imaging Spectrometer). Az eredetileg egy éves élettartamúra tervezett, szintén kísérleti jelleggel épült műhold célja a Hawaiisat-1-hez hasonlóan egy kisméretű, hiperspektrális eszköz világűrbe juttatása volt. Bár a CHRIS nem lett annyira apró mint elődje, de a maga 79x26x20 cm-ével még mindig meglehetősen kompaktnak mondható.

Az érzékelő képességei ugyancsak megfelelnek a jelenkor kihívásainak (3. ábra). Az eszköz elméletileg 17 m/px-es terepi felbontásra képes, a 410-1003 nm közötti tartomány pedig 62 spektrális sávra oszta, azonban azt adatátviteli korlátok miatt nem képes teljesíteni. Felvételezésekor tehát öt különböző mód közül választhat a felhasználó: 62 sáv (teljes tartomány) 34 m/px-es terepi felbontással, valamint négy különböző, 18 sávos tartomány 17 m/px-es terepi felbontással.
3. ábra: A CHRIS egy felvétele a BEAM VISAT szoftverben megjelenítve (34 m/px).

Pestszentlőrinc, Budapest, Magyarország
ID: CHRIS_BU_030715_35A7_41

A CHRIS adatok felhasználói számos előfeldolgozási lépést kell, hogy elvégezzenek, ha az adatokat fel kívánják használni, a felvételek formátuma ugyanis ESA hdf (Hierarchical Data Format), amit a legtöbb kereskedelmi forgalomban kapható szoftver nem kezel. Szerencsére az adatgazdák gondoltak az ESA-n kívüli felhasználókra is és elkészítettek két célspecifikus szoftvert. Az egyik a HDFClean, amivel a felvételek legegyszerűbb korrekciós (striping, hiányzó pixelek) lépéseit hajthatjuk végre. A másik a BEAM VISAT, ami az elterjedtebb SNAP-hez hasonló, a CHRIS adatai mellett az összes ESA által üzemeltetett műhold natív adatait képes megnyitni, alapvető elemzéseket (pl. NDVI, irányítatlan osztályozás, de még spektrális szétkeverés is) futtatni, valamint geometriai és radiometriai korrekciót végezni. Ami azonban még fontosabb, képes a HDF formátumú fileokat könnyebben kezelhető formátumba (pl. GeoTIFF, NetCDF) konvertálni, így azok megnyithatóvá válnak más szoftverek (pl. ERDAS, SNAP) számára is.

II.3.3.2. Aqua/Terra – MODIS

Napjaink talán legtöbbet használt hiperspektrális érzékelője a MODIS (Moderate Resolution Imaging Spectrometer), ami két, konstellációban keringő NASA műhold, az 1999. december 18-án indított Terra és a 2002. május 4-én indított Aqua műhold fedélzetén is megtalálható. Az érzékelő által lefedett hullámhossz-tartomány bár impozánsnak tekinthető (405-14385 nm), az utolsó sávok inkább meteorológiai szempontból érdekesek. Az érzékelő
tehát a földfelszín vizsgálata szempontjából relevánsan 405-1390 nm között rögzít, amit 12 spektrális sávra bont (4. ábra). Bár ez a sávmennyiség önmagában nem elegendő ahhoz, hogy az eszköz hiperspektrálisnak tekintsük és bizonyos szempontból igazat kell adnunk annak is, aki a multispektrális érzékelőkhöz sorolja, jó spektrális felbontása (átlagosan 10 nm körüli) miatt azonban mégis megfelel a kritériumoknak és bekerülhetett ebbe a felsorolásba.

A MODIS érzékelők mindenképpen említésre méltóak azért, mert bár kis terepi felbontással rendelkeznek (hiperspektrális üzemmódban 1000 m/px), a visszatérési idejük más érzékelőkénél lényegesen magasabb – a két műhold gyakorlatilag naponta képes új felvételt készíteni egy adott területről.

4. ábra: A MODIS érzékelő egy felvétele (1000 m/px).
Alsó-Szászország, Németország
ID: MOD021KM.A2015275.1025.006.2015275212332

Az alkalmazási lehetőségek éppen ezért a terepi felbontás korlátainak vannak alárendelve és elsősorban régiós, országos, kontinentális vagy globális szintű, elsősorban állandó monitoringot igénylő feladatok jöhetnek szóba, amelynek célja például egy-egy terület vegetációs állapotának folyamatos vizsgálata (pl. jó irány a napi szintű NDVI adatokból levezetett aszálykár vagy biomassza-becslés).

Elterjedt alkalmazási mód például a növényzet éves, kontinentális léptékű változásának vizsgálata, de régiós, esetleg globális felszínborítás-vizsgálatok is praktikusan elvégzhetők.

A letöltött adatokat a legtöbb távérzékelési szoftver natív módon képes kezelni – bár itt is fontos kérdés az adatformátum, ami alapértelmezetten NASA HDF formátumban történik, így a felvételek importálásra szorulhatnak – például az ENVI szoftvercsaládban az adatokat EOS → MODIS adatként nyithatja meg a felhasználó.

A MODIS-hoz kapcsolódóan érdemes még megemlíteni az ugyancsak a NASA-hoz tartozó MERIS (Medium Resolution Imaging Spectrometer) érzékelőt is. Bár elméletileg jobb technikai paraméterekkel rendelkezik (390-1040 nm, 15 sáv, 260x300 m/px) és a 3 napos visszatérési idő is hasonló.

II.3.3.3. TacSat-3 – ARTEMIS

A katonai kézben lévő TacSat-3 fedélzetén helyet foglal egy hiperspektrális kamera is, nevezetesen az ARTEMIS (Advanced Responsive Tactically Effective Military Imaging Spectrometer). Bár maga a műhold jelenleg is működik és adatokat is gyűjt, azokhoz – egyelőre – civilek nem férhetnek hozzá. Sajnos nem tudunk sokat sem az ARTEMIS, sem a mellette helyet foglaló HRI (High Resoluion Imager) technikai paraméterekről, azonban az kiderült, hogy a hiperspektrális érzékelő 400-2500 nm között, 400 sávban rögzíti az adatokat, mégpedig igen tetszetős 4 m/px-es felbontásban (5. ábra).

Már-már kémírtörténetekbe illő absztrakció, hogy ha feltételezzük, hogy a HRI ugyanakkora adattömeget küld vissza 4 sávban, akkor ugyanakkora látószög mellett a pixelek méretét és a sávokat átszámolva 12,5 cm/px körüli terepi felbontást kapunk. Amennyiben azonban a HRI látószöge kisebb vagy a visszaküldött adatmennyiség nagyobb (egyik sem egy földtől elrugaskodott feltételezés), a terepi felbontás jóval nagyobb lehet. Az Egyesült Államok hadserege a jelek szerint a fenti paraméterekkel rendelkező TacSat működését sikeresnek ítélte és további megrendeléseket tervez (már amennyiben a hivatalosnak cseppet sem mondható 2013-as, WikiLeaks-en tárolt dokumentumoknak hihetünk) (forrás: WikiLeaks).
II.3.3.4. MRO – CRISM és Chandrayaan-1 – M3

A technológia leírásának teljessége megköveteli még két érzékelő, a marsi CRISM (Compact Reconnaissance Imager for Mars) és a holdi M3 rövid említését is. Ebben a fejezetben azonban csak röviden említem őket, hiszen a téma – azon belül is a CRISM – később külön fejezetet kapott.

Mindkettő technikailag igen fejlett, azonban NASA által gyártott CRISM pedig kifejezetten megelőzte a korát, hiszen már 2005-ben 17 m/px-es terepi felbontásra, valamint 362-3920 nm között 545 sáv rögzítésére volt képes. Az eszköz jelenleg is üzemel és a vörös bolygó vizsgálatának egyik kulcsfontosságú szereplője. Feladata elsősorban ásványok vizsgálata és H₂O keresése.

Az indiai M³ (Moon Mineralogy Mapper) 2008 óta kering a Hold körül a Chandrayaan-1 keringőegység fedélzetén. Égi kísérőnk geomorfológiailag és kémiaiag viszonylag egyszerű felszíne nem igényelt nagy felbontású eszközt, így az M³ a célnak bőven megfelelő (sőt, talán már túl részletes) 70 m/px-es terpi felbontással rögzíti az adatokat 700-3000 nm között, 261 spektrális sávban. (Pieters et al. 2009). Elsődleges célja valamilyen formában kötött H₂O keresése, ami később emberes holdmissziók vagy holdbázisok számára szolgálhat nem csak ivóvízzel, hanem rakéta-üzemanyaggal is – de legalább ennyire fontos a fűziós rektorkok szempontjából kiemelt H3 (trícium), valamint a meteoritek és egyéb becsapódó égitestek által felhalmozott tórium is.
II.3.4. Tervezett szenzorok

II.3.4.1. EnMap

A legígéretesebb jövőbeli projekt minden kétséget kizáróan a tervezetten 2020-ban startoló német EnMAP (Environmental Mapping and Analysis Program), ami csaknem minden szempontból a Hyperion utódjának mondható. A fedélzetén helyet foglaló hiperspektrális érzékelő, a HSI (HyperSpectral Imager) 30 m/px-es terepi felbontással rögzít majd adatokat 420-2450 nm között, 232 spektrális sávban. A fő alkalmazási területek mezőgazdaság, erdészet, öceánográfia, talajtérképezés, valamint települési vizsgálatok lesznek tervezetten 4 napos visszatérési idővel (Guanter et al. 2015).

Bár a jövőbeli szenzorok közül véleményem szerint egyértelműen ez a legizgalmasabb, mégsem kezd bele a részletes elemzésbe – leginkább azért, mert azon kihívások, amikkel ez az eszköz fóg szembe nézni véletlenségével azzal azonosan van, amelyekről később is értekezem, másrészt pedig felhasználási lehetőségei és alkalmazott módszerei csaknem egybeesnek a Hyperionéval.

II.3.4.2. ARIES-1

Az eredetileg 2000-re tervezett Ausztrál Ürűgynökség (CSIRO – Commonwealth Scientific and Industrial Research Organisation) ARIES-1 (Australian Resource Information and Environment Satellite) többször is váltott már indulási időpontot, ami egyelőre még mindig csak tervezett. Az eszköz célja elsősorban geológiai fókuszú lesz, az ausztrál sivatagok ásványkincsei és vízlelő-helyei felkutatásának céljával. Tervezetten 400-2500 nm között rögzít
majd adatokat 105 sávban, 30 m/px-es terepi felbontással, 7 napos visszatérrési (Yang et al. 1999; Zhou et al. 2002).

II.3.4.2. ALOS-3

Az ALOS-3-at (Advanced Land Observing Satellite) azzal a célal tervezték, hogy a 2006-ban és a 2013-ban indított ALOS-szal és ALOS-2-vel (amelyek hiperspektrális eszközt nem hordoznak) konstellációban térképezhessék a Föld felszínét. A projectet később részben átvette a Japán Űrügyökség (JAXA) és a már létező két műholdat Daichi és Daichi-2 névre keresztelték át.

Az ALOS-3 fedélzetén helyet foglal majd az ASTER érzékelőn alapuló HISUI (Hyperspectral Imager SUIte), ami 30 m/px-es terepi felbontással, 400-2500 nm között 185 sávban rögzít majd adatokat 60 napos visszatérrési idővel. Technikai érdekesség, hogy az ugyancsak a fedélzeten található MSS (Multispectral Sensor) 4 sávjának köszönhetően valószínűleg lehetőség lesz a VNIR (450-900 nm) adatok 5 m-es pan-sharpenelésére (Suzuki et al. 2012).

II.4. A hiperspektrális ürtávérzékelés problémái

Mivel jelen tanulmány a hiperspektrális ürtávérzékelésről, illetve annak a főbb műholdas szenzorairól szól, érdemes kicsit bővebben áttekinteni adatok kezelésének, feldolgozásának és felhasználhatóságának problémáit – hiszen ezek jórészt majd a későbbi fejezetekben is visszaköszönnek. Ezek egy része a hiperspektrális légi távérzékelés problémáihoz hasonló (pl. az adatok redundanciája mindkét esetben hasonló problémaként jelenik meg), így azt általánosságban most kerüljük – később azonban a releváns pontok ki lesznek fejte. Egy másik része azonban kifejezetten „ürtávérzékelés-specifikus”. Ezeket külön ki is kell emelni, hiszen megfelelő előfeldolgozás nélkül – vagy annak hiányában a módszerek korlátait figyelembe véve – a később bemutatott eredmények nem tekinthetők helytállónak.

Különbséget kell tenni a légi- és ürtávérzékelés felhasználási lehetőségeinek tárházában is. Az eltérések lényegében két dologra vezethetők vissza: egyrészt a légi távérzékeléshez képest jóval erősebb léggöri hatásra, hiszen a szenzorba érkező sugárzás kétszer is áthalad és szűrődik a Föld atmoszféráján – ráadásul ha a felvételezett területen a Nap alacsonyan látszik, vagy a felvétel off-nadir szögben készült, akkor a két léggöri tömeg összetétele között komoly eltérés is lehet –, másrészt pedig a kisebb terepi felbontásra. Ennek a kettőnek elsősorban két következménye lez: a kapott értékek csak abszolút besugárzásként (látszolagos radianca)
kerülnek rögzítésre – bár ez későbbi feldolgozás során valamennyire korrigálható lesz –, valamint rendkívül nehéz lesz pontosan meghatározni, hogy az adott pixel pontosan milyen felszínborítási információval bír. Bár itt is már fel lehet vetni azt a kérdést, hogy a „pontosan” mit is takar – a rövid válasz erre az, hogy az mindig az adott vizsgálat céljától függ.

A légi távérzékeléssel foglalkozó szakemberek számára segítséget jelenthet egy olyan műszer, ami a repülőgépen vagy a terepen közvetlenül is méri a napfény intenzitását. Ezt ismerve jóval könnyebb az adatokat a beeső napfény hányadosaként, tehát reflektanciaként meghatározni. A légi távérzékelés kereteit adatók során további könnyebbéséget jelenthet, hogy a felszínborítás textúrája is jól kivehető, tehát a vizuális interpretáció során (pl. tanulóterületek kijelölésekor) lényegesen könnyebben meghatározni az adott mintaterület pontos típusát, illetve lehetőség adódik arra, hogy más adatforrásokkal (pl. LiDAR-ral) vagy egyéb eljáráskokkal (pl. szegmentációval) megtámaszassák az elemzést. Természetesen bizonyos fokú spektrális keveredés a légi felvételek esetén fellép (pl. egy kopár talajfonton is jó eséllyel vannak fotoszintetizáló sejtek, vagy egy pixel eshet két homogén felszínborítási folt határára), azonban azzal csak kisebb mértékben kell számolni.

A következő néhány fejezetben azok a problémák kerülnek elemzésre, amelyek ronthatják egy hiperspektrális műholdadat minőségét, így a későbbiekben az eredményeket csak az alábbiakat figyelembe véve lehet elemezni.

II.4.1. Atmoszférikus hatás

Az atmoszférikus hatás az egyik leggyakrabban fellépő probléma a légi (nem csak hiperspektrális) távérzékelés esetében is, a műholdas adatokra gyakorolt hatása azonban még jelentősebb (7. ábra). Ennek a fő oka – mint már korábban említettem –, hogy egyrészt nincs lehetőség a beérkező napfény mennyiségével on-the-fly vagy utólag kalibrálni. Talán ennél is fontosabb, hogy a sugárzás kétszer is áthalad a légkörön, hiszen az nem csak a forrástól a földfelszín felé haladva, hanem visszaverődés után is érintkezik a légköri gázokkal és aeroszolokkal, tehát az ekkor jelentkező elnyelő és visszaverő hatás még egyszer érvényesül – ráadásul mint azt korábban említettem, arra sincs semmi garancia, hogy az odafele és a visszafele úton szűrő légtömeg összetétele azonos.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

7. ábra: A beeső napsugárzás értéke. Adatforrás: Internet 1

Ez a fajta hatás jelentkezhet egyszerű zaj formájában, ami kiolvasható a képi megjelenítés során és a reflektancia görbékből is, mégpedig az atmoszférikus elnyelési- vagy visszaverési tartományoknál jelentkező éles negatív vagy pozitív csúcsokból (vagy másképp szólv: abszorbancia- vagy reflektancia-csúcsokból), ami viszonylag jól észlelhető és légköri modellek ismeretében legalább részben ki is szűrhető. Jól szemlélheti egy atmoszférikusan nem korrigált hiperspektrális légi- és műholdadat különbségét a 8. ábra. Mindkét felvétel ugyanazt a kukoricaultetényt ábrázolja, azonban jól észrevehetők a zajként megjelenő, de egyébként légköri elemekhez köthető pozitív és negatív reflektancia-csúcsok.

Ezt a problémát részben át lehet hidalni teljes sávok „maszkolásával”, tehát lényegében máris a dimenziók számának célzott csökkentésével. Amennyiben a teljes adatsor átlagánál zajosabb dimenzió kerül kiszűrésre, úgy logikusan a teljes adattömb jel/zaj aránya javul, és ezért ezt a lépést érdemes megtenni.

A már említett Hyperion hiperspektrális érzékelő adatainak előkészítése során a szakemberek jó példával járnak elő. Egyes sávok minden pixelét az adatok letöltése után 0-s értékre állították, részben kisztürve ezzel a rossz jel/zaj arány következtében kialakuló adataminőség-csökkenést – megint csak más sávokat (érdekes módon nem pontos ugyanezeket) „bad bands”-ként jelölték. Ezek az alábbi hullámhossz-tartományokat érintik:

- 355-416 nm (1-7 sáv)
- 935-983 nm (58-76 sáv)
- 1356-1376 nm (121-123 sáv)
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

- 1880-1961 nm (173-181 sáv)
- 2405-2577 nm (225-242 sáv)

Datt et al. 2003 szerint ezeken kívül még egyéb sávok maszkolására is szükség van, mégpedig közvetlenül a fent felsorolt tartományok szomszédságában. Ezek az 1-7. sávok között az O₂ és O₃-hoz, a többi esetben viszont H₂O elnyelési és visszaverési tartományokhoz kapcsolódnak – azaz kijelenthetjük, hogy az EO-1 mérnökei nem jártak el kellő alapossággal, amikor az egyes sávok minőségét vizsgálták.

![Diagram](image-url)

8. ábra: Egy mintaterület reflektanciája világűrből (szaggatott), illetve repülőgépről (nem szaggatott) szemléltve
Forrás: Datt et al. 2003

A módszer tehát alkalmas lehet a teljes adatsor jel/zaj arányának növelésére – bár ebben az esetben még mindig maradnak olyan sávok, amelyek zajosságuk miatt véleményem szerint csak igen nehezen használhatók. Példaként a Hyperion 8-as sávját (426 nm) lehet említeni, rögtön a fent említett „lenullázott” tartományon kívül. Adódhatnak egyéb adathibák is, amelyek az atmoszférikus zaj mellett még látványosan megjelennek (pl. a sávozottság – *striping*, 9. ábra). A kivágaton jól látszik az is, hogy a hullámhossz növelésével a látható tartomány
határát elérve a zaj ugrás szerűen csökkenni kezd (10. ábra) – az evolúció egyébként nem véletlenül éppen erre a tartományra hegyezte ki az emberi látást.

9. ábra: Példa az atmoszfériakus zaj hatására – az EO-1 Hyerion 8. sávjának áttekintő képe (30 m/px)

10. ábra: Atmoszfériakus zaj ugyanazon területen, eltérő hullámhosszokban. A=426 nm, B=467 nm, C=487 nm

Ezen kívül azonban más formában is jelentkezhet az atmoszfériakus hatás. A légkörben található gázok és aeroszolok ugyan szórják és visszaverik a fényt, a felhők azonban teljesen ki is takarhatják azt, mégpedig felhőtípusonként eltérő módon. A legkönyebb a viszonylag magasan, 5000 m felett képződő pehelyfelhők (cirrus) hatása korrigálható – de az is csak kis
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

részben. A többi felhőtípus azonban teljesen kitakarhatja a felszínt – ezek közül a legnagyobb gondot a gomolyfelhők (cumulus), rétegfelhők (stratus) és esőrétegfelhők (nimbostratus) jelentik, amelyeket gyakorlatilag teljesen ki kell maszkolni.

A felhők esetében szintén komoly probléma, hogy egyfajta „mellékhatásként” spektrális zavarás kétszer is jelentkezhet, azaz a felhők árnyékában is csökkentett visszaverődés tapasztalható. Ebben az esetben az árnyékos területen mért radiancia csak a felhő által átengedett (és megszűrt) sugárzásból és a légkör által szőtt és a környező felszínről (másodlagosan) visszavert (tehát már egyszer abszorbált) sugárzásból tevődik össze. Mivel a besugárzás így jelentősen eltérhet a felvétel többi részén mérttől, az ilyen módon zavart pixelek összehasonlíthatósága – felvételeként eltérő módon és mértékben – romlik.

II.4.2. Spektrális keveredés és a szubpixeles információk

Azt a jelenséget, ami az egy pixelen belül található felszínborítási típusok pixelen belüli (szubpixeles) spektrális információjának látszolagos összeolvadását jelenti, spektrális keveredésnek nevezzük. Ez jelen disszertációban a felszínzavarokkal, és a kis vagy közepes felbontású hiperspektrális adatok feljegyzésén belül jelentős probléma, és ugyancsak megnehezíti a kis vagy közepes felbontású hiperspektrális adatok teljes adattartalmának kinyerését. Ezt a témát részletesen tervezem elemezni, hiszen a később bemutatandó eredmények pont a spektrális keveredésre kívánnak (legalábbis részben) megoldást nyújtani – tehát végső soron a módszertani fejezetben célom a pixelen belüli, szubpixeles információk visszanyerése volt (ahogy szintén célom a probléma – többek közt jelen fejezetben történő – feltárása is). Ezért a továbbiakban az alábbi alapvetések ből indultam ki:

Egy pixel homogén, ha az azt alkotó spektrális jellek között az alkalmazott érzékelő vagy vizsgálati módszertan különbséget tenni nem tud.

Ezzel szorosan összefügg az az eredményekkel összecsengő állítás, miszerint:

A heterogén pixelek szétkeverhetők, a homogén pixelek viszont nem.

A pixelheterogenitás fogalma nem új (bár nem is terjedt el igazán széles körben), de ebben a kontextusban még nem került leírásra. Az első komolyabb publikáció a felszíni hőmérséklet meghatározása során, kis felbontású (~1 km/pixel) adatok esetén a szomszédos pixelek vélt geometriájának visszanyerésekor kerül elő (Kustas és Norman 2000), de említésre
kerül radaros adatok esetén (Burke és Simmonds 2003), valamint optikai távérzékelési témában is, de csak a már említett V-I-S modell vagy más városi vizsgálatok során (Luo et al. 2016).

Látzák az is, hogy a fenti pixelheterogenitást leíró definíciók – és a hozzájuk kötött állítások – több szempontból sem tekinthetők abszolútnak. Egy pixel homogenitása függ attól, hogy épp multi- vagy hiperspektrális adatról beszélünk, milyen osztályozót vagy szétkeverési algoritmust használunk de legfőképpen attól, hogy milyen felszínborítási foltok alkotják a felszint. Két spektrálisan radikálisan eltérő felszínborítási folt egy egyszerű érzékelő és mérsékelt és összetett kiértékelési módszer esetén is alkothat heterogén pixelt.

Egy nagyon egyszerű, de életszerűtlen példával érve: ha létezne egy olyan égitest, amelynek a felszínén csak abszolút fekete (0%-os reflektanciájú) vagy abszolút fehér foltok (100%-os reflektanciájú) léteznének úgy, hogy másféle felszínborítás nem létezik, akkor egy 8 bites szürkeárnyalatos érzékelővel is könnyen lehetne spektrális szétkeverést végezni. Ha egy pixel 0-s értéket kap (tehát fekete), akkor ott fekete foltok vannak, ha 255-öst (tehát fehéret) akkor fehérek, azonban ha létezne néhány olyan pixel, ami pont 128-as, akkor tudhatnánk, hogy az pont fele részben fehér és fele részben fekete területet tartalmaz. Természetesen ez tovább cizellálható: egy 64-es (256/4) pixelértékű folt területileg háromnegyed részben fekete, egy negyed részben fehér lenne, egy 192-es értékű folt viszont háromnegyed részben lenne fehér és egy negyed részben fekete. A későbbi spektrális szétkeverés is hasonlóképp működik ahol a fontos különbséggel, hogy míg a fenti fiktív példánál maradva egy sávban (dimenzióban) történt a keveredés, addig ez egy hiperspektrális felvétel esetén akár egy több száz dimenziós spektrális térre is rúghat.

Ennek megfelelően – gyakorlatiasabban példát említve – egy erdőfolt, ahol egyetlen pixelen belül található fotoszintetizáló növényi részlet és kopár talajfelszín, már heterogén, tehát szétkeverhető lesz – akár még egy multispektrális érzékelő számára is. Másik példa egy városi területet mutató pixel – amennyiben megfelelő végállású pontok kerülnek kiválasztásra – például multispektrális érzékelők esetén is heterogénnek számít (ahogy azt később a V-I-S modell leirásakor említem is), azonban ugyanezen érzékelő számára egy különböző fajfajokból álló pixel homogén lesz.

Nem szétkeverhető azonban egy olyan folt, ahol a vegetáció spektrális szempontból nézve egyforma (pl. csupa lágyszárú fajból áll) vagy a felszín közel egységes (pl. vízfelszín). Bár ezekben a területeken is létezik spektrális változatosság – hiszen például a később bemutatandó Budai-hegység lágyszárú területein egy pixelen belül sokszor megtalálható a deres csenkesz és a délvidéki árvahorgás, amelyek spektrális tulajdonságainak tekintve nem
lehetnek teljesen azonosak, ahogy egy megfelelő műszerrel a sós és édesvíz felszíne másképp látszik – mígis a később bemutatott módszer nem ezek, hanem a fajok között tesz különbséget. Hasonló a helyzet a multi- és hiperspektrális adatok számára homogén és heterogén pixelekkel. Amíg egy teljes mértékben erdővel borított pixel egy multispektrális érzékelő adataival azonos vegetációs fázisban lévő, azonos záródású erdőfoltok fajszintű osztályozása nem lehetséges (azaz érdemben nem különíthető el egymástól pl. a juhar és a tölgy), addig hiperspektrális adatok bevonásával ez megoldhatóvá válik. Ezért a szétkeverés módszertani határárt csak a fenti megkövetést figyelembe véve lehet meghúzni, azaz csak adott műszer és alkalmazott módszer szempontjából heterogén pixelek esetén alkalmazható.

A spektrális keveredés kérdése emellett inkább a közepes és kis felbontású érzékelőknél merül fel – hiszen ott veszik el potenciálisan számos fontos információ egy pixelen belül –, a nagyobb térbeli felbontású adatoknál ez kevésbé lényeges. Ennek az oka, hogy méretéből fakadóan egy-egy pixel jobban reprezentálja az adott felszínborítási tipust (természetesen ez függ az adott felszín geometriai mintázatától is), így nagy felbontás mellett kisebb az esély arra, hogy egy-egy pixelt kevert információként érzékelhetünk – másképp szólva, nagyobb az esély arra, hogy a szomszédos pixelek információtartalma azonos, tartalmuk jól korrelál. A felbontás csökkenésével azonban az egyetlen pixelen belül található felszínborítási foltok száma növekszik, következésképp az egyre heterogénebb lesz, a helyes osztályba sorolás valószínűsége pedig romlik (Smith et al. 2003).

A keveredés leírására számos modell létezik (viszonylag kevés gyakorlati szétkeverési megoldással), elsősorban attól függően, hogy az adott pixelre jutó felszínborítási foltok geometriája és térbeli viszonyrendszere milyen jellegű. Maga a jelenség elméletben nem bonyolult – a fenti fiktív, fekete-fehér égitest esetében jól leírható – azonban a gyakorlatban komoly problémákat okozhat. Fontos, hogy minden keveredés csak akkor írható le jól, ha ismertek a keveredést okozó „tiszta” spektrális foltok, amelyeket az ásványtani megnevezésük után „végállású pontoknak”, angolul „endmember”-öknek nevezünk.

Minden spektrális keveredési modellnek azonban van egy nagy hátránya, mégpedig hogy a bennük található felszínborítási foltok mintázatával kapcsolatban viszonylag kevés – de általában nulla – információt hordoznak. Léteznek persze kivételek, de az elsősorban olyan esetben fordulhat elő, ahol két radikálisan eltérő felszínborítási foltból álló pixelt próbálunk meg szétkeverni (pl. talaj és vegetáció), vagy olyan információt akarunk kinyerni, ami valamilyen módon támogatható más geometriai adatokkal – pl. egy út kevert pixelre eső szegélyét próbáljuk megkeresni a jól meghatározható középvonal alapján.

11. ábra: Kétféle szubpixeles vegetációs eloszlás visszaverődési értékei (Widlowski 2009)

A másodikra jó példa Steger 1996 kutatása, aki a szomszédos pixelek eloszlása, valamint a vizsgált pixel információtartalma alapján, gyakorlatilag továbbfejlesztett konvolúciós szűrőket használt. Kutatásának lényege raszeres felvételeken élek és peremek (pl. útpadka) kinyerése volt, ami egyébként napjainkban sokat hozzátessz a különböző szűrők és élkiemelők alkalmazásához – de nagy haszna van a különböző szegmentációs eljárások során is.

Látható tehát, hogy több olyan kutatás is van, ami a pixelheterogenitás kérdését vizsgálta, azonban ezek közül egy sem céloza tisztán vegetációs osztályokból álló pixelek szétkeverését.
II.4.2.1. Spektrális keveredési modellek

Természetesen nem minden esetben szükséges elvégezni a spektrális szétkeverést, azonban célzott, szubpixeles vizsgálatok esetén fontos erre is nagy hangsúlyt. Bár a jelenség leírására számos képlet létezik, gyakorlati alkalmazás során a fő kérdés nem a jelenség (ebben az esetben keveredés) leírása, hanem annak a feloldása. A szétkeverési eljárások megértéséhez azonban szükséges volt az azok mögött álló okok matematikai jelenségek leírása is. Ezek közül azonban széleskörűen csak a lineáris keveredési modell alkalmazható, így elsősorban azzal foglalkozunk.

Fontos megjegyezni, hogy jelen fejezet csak a keveredéssel és annak leírásával foglalkozik, magát a szétkeverést a IV.1. fejezet tartalmazza.

II.4.2.1.1. Lineáris keveredés

A jelenség számszerűsítésére szolgáló modellek közül a legegyszerűbb az alább látható lineáris keveredést leíró egyenlet. E szerint az egy pixelhez tartozó spektrális információ nem más, mint a területre eső, spektrálisan jól elkülöníthető, elemi felszínborítási típusok (végálláú pontok) spektrumának összege, súlyozva azok területi arányával – kiegészítve az adatban található különféle zaj mennyiségével. A korábbi fekete-fehér bolygó példájánál maradva: minél közelebb ál egy pixel a 0-s értékhez annál feketebbek, illetve minél közelebb a 255-höz annál fehérebb. Mindenek az elképzelése az előbbi 1 dimenzős példa esetén még viszonylag egyszerű (hiszen csak egy képzeletbeli tengelyen kell jobbra-balra ugrálni attól függően, hogy a két szélén lévő végállású pontok közül melyikhez vagyunk közelebb), 2 és 3 dimenzióban sem nehéz még gondolkozni, de 4 – vagy mint később látható 121 dimenzióban – már bonyolódik a dolog.

Az elmélet szerint egy pixel az alábbi módon írható fel (Keshava és Mustard 2002):

\[x = \sum_{i=1}^{M} a_i s_i + \omega_i \]

\(x \) = a vizsgált pixel teljes reflektanciája
\(s_i \) = az \(i \)-ik végállású ponthoz tartozó radiancia/reflektancia-spektrum
\(a_i \) = az \(i \)-ik végállású pont aránya
\(M \) = a végállású pontok száma
\(\omega_i \) = az \(i \)-ik végállású ponthoz tartozó hiba (zaj)
A másik megkötés az ún. „abundance sum constraint (ASC)”, azaz a „mennyiségi összegek megkötése”. Ez kimondja, hogy: $a_1+a_2+...+a_n=1$, ahol n = a pixelt alkotó végállású pontok száma. Ez lényegében azt jelenti, hogy a keveredésben résztvevő végállású pontok aránya együttes összegének 1-nek kell lenni, azaz pontosan és csak annyi részből áll a kevert pixel, amennyiből az öt alkotó részek összege, tehát a valóságban a vizsgált pixelt leíró egyenlethez se több, se kevesebben végállású pontot nem szabad felhasználnunk. Ha ettől eltérő értéket kapunk az két dolgot jelenthet attól függően, hogy az érték több, vagy kevesebb lesz, mint 1. Ha több, akkor vélhetőleg két hasonló végállású pont került rögzítésre és mindkettő értékei kellettek a vizsgált pixel kikeveréséhez. Ha kevesebb, akkor egy végállású pont valahol hiányzik.

Ha a fenti egyenletet értelmezzük, akkor azt megfordítva nem nehéz felvázolni a szétkeverés képletét is. Kicsit konkrétabban: ha x vizsgált spektrum, illetve a hozzá tartozó a_1, a_2... a_n végállású pont ismert, akkor a fenti egyenletbe minden behelyettesíthető, az egyes végállású pontok aránya kiszámíthatóvá válik.

Ehhez azonban még két feltételnek teljesülni kell. Az egyik, hogy a végállású pontok korrelációja 1-től különböző kell, hogy legyen (hiszen ha azok teljes mértékben együtt futnak, a szétkeverésnek több lehetséges eredménye is lehet). A másik, hogy az egyenletben az ω-ként említett zajt minimálisra kell csökkenteni, hiszen az is növelheti a végállású pontok korrelációját, valamint hamisíthatja a pixel információtartalmát. Ezért mindenféleppen
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

szükséges még a bármilyen spektrális szétkeverés előtt a felvételek részletes előfeldolgozása, valamint a végállású pontok megfelelő kiválasztása.

Igazán jól azonban, mint ahogy azt korábban említettem, ez a modell csak a lamberti felszínekknél működhet. A gyakorlatban ezt legjobban a sivatagi, vízfelszíni vagy egyes városi felszínnek közelítik (amik bár nem lambertiek, de a pixelen belüli változatosság van akkora, hogy a nagy számok törvénye miatt pixelenként uniformnak látszódjon), de a jelenséget precizebben leíró modellek hiányában máshol is kénytelenek vagyunk ebből kiindulni.

II.4.2.1.2. Nemlineáris keveredés

A később említett irányvisszaverődést, azaz „Bi-Directional Reflectance Factor”-t figyelembe véve azonban elméletben lehetségesse válhat a nemlináris keveredés modellelése is, ami azonban műholdfelvételek esetében kevésbé alkalmazható. Ennek az oka, hogy az irányvisszaverődés vizsgálatának alapvető célja egyes felszíntípusok irányvisszaverődésének vizsgálata – ilyen felszíntípus lehet egy erdőfolt, egy egyedi növényfaj vagy egy egyenetlen talajfelszín. Ez egy „spektrális goniométer” nevű eszköz alkalmazásával lehetséges, ami az egy pixelre jellemző irányvisszaverődést térképezi – a vizsgálat neve pedig a „goniometria”.

Azonban mivel egy műholdfelvételen az irányvisszaverődés nehezen vizsgálható, ráadásul két egyforma pixel kialakulásának a valószínűsége ha nem is 0, de egy ahhoz nagyon közeli szám, az egyetlen megoldás az lenne, ha minden pixelt megvizsgálnánk. Ez érthető okokból felesleges és időigényes. Műholdfelvételek spektrális szétkeverésére tehát legjobb közelítésként – most azt gondolná az olvasó, hogy – alapvetően csak lineáris szétkeverési algoritmusokat alkalmazhatunk.

Ez azonban egy rossz következtetés lenne, hiszen jelen disszertációknak ugyancsak erős állítása, hogy ha a fenti egyenletből indulunk ki, amelyben a_i végeredményben nem más, mint egy az összes mért távolság arányában relatív euklidéshi távolság a végállású pont és a szétkeverni kívánt pixel között, akkor nem vizsgáltuk meg az összes lehetséges megoldást. Ezen pixel lineáris modell alapján a_i tehát a végállású pont kiszámított arányát mutatja meg – ami nem más, mint a végállású pont és a pixel közé húzott vektor iránya és mérete.

Azonban ha más módon írjuk le egy osztályozáskor létrejött, osztályközéphez tartozó fiktív végállású pont és adott pixel kapcsolatát – például egy eloszlást is figyelembe vevő valószínűségi összetartozási értékekkel – akkor tulajdonképpen megvalósulhat a nemlineáris szétkeverés.
Ez az állítás a későbbiekben alapvetően megadja majd a kialakított szubpixeles osztályozási módszertan értelmét, valamint rávilágít a szétkeveréshez használt módszerek hátterére.

II.4.2.2. Irányvisszaverődés

Kis kitekintésként – mintegy a fentiek továbbfüzetéseként – érdemes még visszatérni az irányvisszaverődés témájára, ami az űrfelvételek szempontjából kevésbé releváns – de a jelenség pontos leírásához minden képpen szükséges adalék. A spektrális keveredés nagyon pontos leírásakor kérdés még (bár sokszor nem vizsgálható), hogy szerepet játszik-e szóródás, valamint a felszínről visszaverődő sugárzás irányfüggetlen (izotróp), azaz bármelyik irányból szemléelve azonos sugárzást mérhetünk, vagy irányfüggő (anizotróp) módon veri vissza (12. ábra). Izotróp visszaverődés esetén a keveredés lineáris lesz (hiszen a végső, kevert spektrum egyenes arányban áll a felszínborítási típusok arányával), anizotróp esetén azonban a keveredés leírása bonyolultabb – ez összefügg a később, az UAV-s adatoknál leírt irányvisszaverődés kérdésével. Ez utóbbi jelenség akkor lép fel, ha a felszínborítás nem „sakktábla”-szerű (tehát a felszín nem lamberti), hanem jóval összetettebb – a természetben természetesen ez fordul elő gyakrabban.

![12. ábra: Reflektancia a valódi és egy lamberti típusú (ideális) felszín esetében. Forrás: Internet 2](image)

A jelenség oka, hogy az egy pixelnyi területre eső felszínborítás visszaverési iránymutatói a térnek nem minden pontjáról szemléelve egyformák, azaz a terület egy része az érzékelő irányába, egy másik része viszont attól eltérően veri vissza a sugárzást. Ezt a jelenséget

Ez a probléma azért kiemelendő, mert adott esetben még ha két felvételen egy pixel határai a terepen ugyanoda is esnének és a két felvétel egy időpontban készülhetne, az adott pixelből kinyerhető információ eltérő lesz, ha a felvételezési szög eltér – természetesen ez már csak olyan szintű változásokat okoz, ami leginkább a hiperspektrális adatokra van kihatással. Logikus példaként említhető a fás szárú növényzet: felülről szemlélve szinte csak a lombkorona látszódik, nagyobb off-nadir szögből felvételezve viszont „bezavar a képe” a fakéreg és a talaj is.

Többirányú visszaverődés esetén az is elképzelhető, hogy a sugárzás nem csak egy ponton találkozik a felszínvel, hanem visszaverődés után még többször is kapcsolatba lép annak egyes elemeivel – így az elnyelés adott besugárzás esetén többször is megtörténhet – és csak ez után jut vissza az érzékelőbe. Tipikus példálok tekintetében ugyancsak a vegetációs és erdőterületeket. Ekkor a beérkező sugárzás a falevelek irányultságától függően a megfigyelő szemszögéből szemlélve sokszor az első visszaverődés után még folytatja útját a fatörzs és a talaj irányába, majd onnan jut vissza az az érzékelőbe – természetesen csak jóval kisebb mértékben, mint a direkt módon visszavert sugárzás. Így a végső jel a felszínt borító objektumok valamilyen arányú – az adott pixelt általában nem tökéletesen reprezentáló – keverékből jön létre, mégpedig egy erdőterületen fajfaj, illetve fáfajra vagy erdőterület jellemző fizioznómia függvényében. Kérdés, hogy az adott fajnak északra vagy délről nézzen-e a levélfelületei, mekkora a záródás, ahogy az sem mindegy, hogy a falevelek sűrűn vagy lazán takarják-e a talajt és a fák nem fotoszintetizáló részeit.

A téma ezért jelen disszertáció szempontjából azért kiemelten fontos, hiszen részben a többirányú visszaverődés következtében kialakuló jelenség lesz az, ami lehetővé teszi azt, hogy az egyes fajok egyedi eltérő fiziológiájuknak köszönhetően egyedi spektrális ujjlenyomatot kaphassanak és így a Hyperion számára heterogén legyen az a pixel, ahol kémiaiálag nagyon hasonló anyagok vannak.

Van azonban lehetőség a sugárzás irányfüggésének vizsgálatára is – ez azonban terepi méréseket jelent. A célja, hogy adott felszín fölé helyezve több irányból is mérhetjük a reflektanciát – egészen pontosan a hullámhosszonkénti sugárzás relatív intenzitását az egyes hullámhosszokban. Így később az érzékelő relatív helyzetével korrigálhatjuk és súlyozhatjuk az adatokat.
Ez azonban – mint feljebb említettem – csak nagyobb felbontású, terepi vagy kisformátumú távérzékelt felvételeknél működhet, több tíz méter esetén ezt mérni gyakorlatilag lehetetlen. Megoldás lehet még a felszín geometriájának (falevelek irányultsága, a talaj kitettsége) pontos ismerete is, ez azonban nehezen beszerezhető információ, amelyek hiányában a keveredést többé-kevésbé jól leíró modellekre kell hagyatkoznunk.
III. A hiperspektrális adatok előfeldolgozása a Hyperion példáján

Felhasználás és alkalmazás előtt minden távérzékelési adatot, így a hiperspektrális űrfelvételeket is az adott célnak megfelelő előfeldolgozás alá kell vetni. Univerzális előfeldolgozási lépések nincsenek, azonban ha valaki körültekintő kíván lenni (miért ne akarna), akkor megszólaló és minél többet elvégezni.

Nincs ez másképp a hiperspektrális adatok esetében sem – kiemelten, ha vegetációs osztályozásról van szó. A nagy dimenziószámú, későbbi elemzéshez kiválasztott EO-1 Hyperion esetében 242 spektrális sáv, valamint 4 211 251 felvételek étkezési pixel (1231 oszlop és 3421 sor, azaz 7,5 km x 20 km-es szkennelési méret) a 12 bites felvételeknél jelentős adatmennyiséget jelent (ez tömörítetlenül több, mint 12 GB nyers adat felvételekét!), ami azonban még számos hibával terhelt. A fő probléma azonban pont a hiperspektrális adatok jellegéből, tehát számos spektrális sáv felhasználásából fakad. A multispektrális érzékelők sávjait célzottan úgy alakították ki, hogy az atmoszférikus tartományokban az ott jelenlévő zaj hatása miatt ne rögzítsenek adatokat. A hiperspektrális érzékelők többsége azonban ezeket a hullámhosszokat is lefedi, jelentősen növelve a teljes adatsor jel/zaj arányát.

Így tehát számos adathiba léphet fel, amik több-kevesebb előfeldolgozást igényelnek. A következőkben a disszertáció szempontjából kiemelten fontos Hyperion érzékelőjének példáján keresztül mutatom be a főbb lépéseket, amelyek a legtöbb adat esetén helytállók lesznek. Ennek az oka, hogy a Hyperion adatokat letölthetők pusztán radiometriai feldolgozás (L1R), de pontos geometriai korrekciónak után (L1Gst) is. Mindkét adat közös tulajdonsága, hogy nem mentesek sem a műszer-, sem pedig az atmoszférikus zajtól, valamint az adatok is radiaciában, nem pedig reflektanciában vannak tárolva. Az előfeldolgozási lépések a következőkben Datt et al. 2003 szerint végeztem el.

A feldolgozott adatok terepi felbontása 30 m/px, amelyeket a szenzor folyamatosan rögzíti 242 sávban 400 és 2500 nm között, az egyes sávok pedig egymáshoz képest átlagosan 9 nm-es közökkkel helyezkednek el. A sávokban nincsenek kiszűrve az atmoszférikus ablakok közötti tartományok, azért az atmoszférikus tartományokban több sáv pixelértéke is 0-ra van állítva (szám szerint az 1-7, 58-76, valamint 225-242). Fontos megjegyezni, hogy az adatokban vetületi módosítás nem történt, geometriai módosítás pedig csak az adat kivágásakor – azonban ebben az esetben is legközelebbi szomszéd („nearest neighbour”) újramintavételezés történt – ami egyébként mivel a tört pixelek nem kerültek felhasználásra kevésbé lényeges, hiszen az eredeti pixelek maradtak a helyükön.
III.1. Adathibát érintő előfeldolgozási módszerek

III.1.1. Drop line

A műszer hibáit kiküszöbölni bár elméletileg könnyen lehetséges (hiszen ismert, szisztematikus zajról van szó), a megvalósítás mégis bonyolult lehet. Tipikus példa az ún. „drop line”, ami pásztázó szkennereknél fordulhat elő. Ekkor az érzékelő egy pixel-öslopból szisztematikusan kisebb, nagyobb vagy egyenesen zéró értéket rögzít annál, mint ami a szomszédos pixelmeknél tapasztalható. Ennek az oka, hogy egy pixelsey felvétele során egy ponton az érték hibás, ami a kész felvételen teljes sorozatként (keresztsávos rendszerekben oszlopként) jelenik meg (13. ábra).

13. ábra: Drop line a Hyperion 115-ös (1295,86 nm) sávjában.

Aennyiben az érték 0, mindössze egyetlen megoldás létezik, mégpedig az adott oszlophibája alapján történő interpolációja. Ez természetesen csak egy absztrakció, azonban mindig kevesebb hibával lesz terhelt az adat, mint ha 0 érték szerepelne.

Egy másik, hasonló megoldást kínál a fent említett tanulmány (Datt et al. 2003) de csak amennyiben az érzékelő túl-, vagy alulméri a képek alapján történő interpolációja. Ez természetesen csak egy absztrakció, azonban mindig kevesebb hibával lesz terhelt az adat, mint ha 0 érték szerepelne.
szórásának átlagát ($\bar{\sigma}_n$), majd a teljes oszlophoz azzal a céljára egy konstans értéket, hogy σ_x közelítse $\bar{\sigma}_n$-t (magyarul addig korrigálja az adatot, ameddig annak varianciája végül nem egyezik a többi oszlopéval).

Az ENVI szoftverben az algoritmusok elérhetők a „SPEAR Vertical Remove Stripe” használatával – de mint később az osztályozási eredményeken (külön figyelemfelhívás nélkül) látszik, ez nem sikerült tökéletesen.

III.1.2. Spectral smile

A spectral smile egy kevésbé látványos hiba, azonban a spektrális információkra érzékeny eljárások (elsősorban a jellemzően néhány hullámhosszon alapuló spektrális indexek) hatékonyságát nagymértékben ronthatja. A jelenség lényege, hogy minden sávon a központi hullámhossz a kép közepéhez képes pozitív vagy negatív irányban eltolódik, azaz a kép szélén nem ugyanarról a hullámhosszról kapunk információt – az eltérés akár 3,5 nm-es is lehet (14. ábra). A kirajzolt grafikon egy görbe vonalat mutat, ezt szokták „spektrális mosoly” („spectral smile”) vagy „lebiggyedés” („frown”) néven említeni attól függően, hogy valamelyik irányba növekszik vagy csökken a hullámhossz-érték.

![Image: Spectral smile](14.png)

14. ábra: „Spectral smile” a Hyperion egyes hullámhosszaiiban.

Forrás: Aktarruzzaman 2008

III.1.3. Hibás sávok

A lelkes felhasználó életét tovább nehezítik azok a sávok, amelyek önmagukban is használhatatlanok (vagy a műszer hibája vagy az atmoszférikus zaj miatt), így azokat mindenképpen ki kell vonni az elemzések alól. A jel/zaj arány növelésének azonban egy másik, egyszerű módja, ha ezen tartományokat hibás sávként, bad bandsként jelöljük – hiszen a 0-s pixelértékek egy-egy sávban fals elemzésekhez vezethetnek, ráadásul tárolásuk is fölösleges.

A Hyperion estében, mint már említettem, bizonyos atmoszférikus hullámhosszok eleve 0-ra vannak állítva, azokon kívül azonban érdemes más sávokat is hibásként jelölni. Az I. táblázat azon sávok listáját tartalmazza, amelyek Datt et al. 2003 szerint az elemzés során érdemes figyelmen kívül hagyni.

<table>
<thead>
<tr>
<th>VNIR</th>
<th>SWIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1R és L1T adatban 0-ra állított adatok</td>
<td>Egyéb zajos sávok</td>
</tr>
<tr>
<td>1, 2, 3, 4, 5, 6, 7, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70</td>
<td>8, 9, 10, 11, 12, 13</td>
</tr>
</tbody>
</table>

I. táblázat: Hibás sávok a Hyperion adataiban Datt et al. 2003 nyomán

Mint már említettem, mivel az atmoszférikus hatás csak nehezen modellezhető, egyfajta „fehér zaj” formájában jelentkezik (lásd: 9.-10. ábra), sokszor hatékonyabb az érintett sávokat egyszerűen figyelmen kívül hagyni. A további elemzésekben (pl. osztályozás, végállású pontok azonosítása, sávcsökkentés) így a fenti zajos, vagy egyéb komolyabb hibával terhelt sávok nem vesznek részt, az adatban található, esetenként a jel szintjével is felérő zaj pedig így nem módosítja a végeredményt.
Ugyanígy minden esetben a további elemzések alól kivonásra került több, a fentiek melletti sáv is. Végül javaslatom szerint az alábbi 121 sávot érdemes felhasználni (lásd később a 2. táblázatban).

III.1.4. Atmoszférikus korrekció

A felvételek előfeldolgozásának egyik fontos lépése az adatok korrekciója a kiinduló látszólagos radianciából a jóval hatékonyabb reflektanciába – ez az előfeltétele annak, hogy a különböző felvételek pixelértékei összehasonlíthatók legyenek. Az atmoszférikus korrekció ennél azonban jóval többet jelent – lényegében a célja minden, a légkör által keltett zavaró hatás kiszűrése. Ez a téma – csakúgy, mint sok más, jelen értekezésben érintett részterület – nagyon messziire mutat, kényeszerből pedig tárgyalni kellene olyan részeket is, amelyek a később részletezett téma szempontjából nem lényegesek. A továbbiakban ezért csak a hiperspektrális távérzékelés szempontjából leglényegesebb pontokat emelem ki.

A légköri hatások kiküszöbölésének feloldásához több ismeretlent is fel kell oldani. Ilyen a légkörre érkező besugárzás mennyisége, ami az év (és az adott nap) során eltér, de később az atmoszféra elnyelésének hatása is már csak az adott időpontban jellemző légköri viszonyokra lesz jellemző, ezért időpontonként vagy területenként eltérő lehet. Ez, mint minden más érték csak különböző modellekkel korrigálható és rendszerint csak részben. A besugárzás és az atmoszférikus elnyelés ismeretében már kiszámolhatjuk az egyes pixelekre eső valódi besugárzás mennyiségét, amivel ha elosztjuk a műszerbe érkező sugárzás értékét (látszólagos radianciát), megkaphatjuk az említett pont reflektanciáját (0 és 1 közötti értéként – a számlálóban az érzékelőn mért érték, a nevezőben pedig a földfelszínre érkező valódi sugárzás mennyisége szerepel). Fontos megkülönböztetni a „TOARef” (Top of Atmosphere Reflectance) és „BOARef” (Top of Atmosphere Reflectance) értékeket is. Ez előbbinek célja az atmoszféra tetején (illetve sokkal inkább a műszernél) lévő besugárzási adatok korrekciója (ez lényegében a beeső napsütéssel történő korrekción), ez utóbbi pedig a felszínen mérhető értékeket igyekszik szimulálni.

Ezeket a korrekciókat számos szoftver vagy képlet segítségével el lehet végezni, amelyek közül a legmegfelelőbbet mindig a felhasználó igényei szerint kell kiválasztani. Ilyen igény lehet a parametrizálhatóság, az egyszerűség vagy a későbbi elemzéshez használt szoftveren belüli alkalmazhatóság. A korrekciós szoftverek és modulok közös célja, hogy a felhasználó által beavatkozás nélkül, vagy részben, esetleg teljesen irányítottan felépítsék az atmoszférikus modelleket, majd azt alkalmazva korrigálják az adatot.
Az egyik legelterjedtebb az ENVI szoftver FLAASH (Fast Line-of-sight Atmospheric Analysis of Hypercubes) modulja. Itt a felhasználó számára számos részletes beállítási lehetőség szerepel, amelyek tovább növelhetik a modell pontosságát (pl. a CO₂ tartalom vagy a H₂O tartalomra utaló látótávolság manuális megadása). Bár ezeket az alapértelmezett értékeken hagyva is működik a modell, a tőkéletes korrekciót csak a légköri adatok pontos betáplálásával lehet elérni. Egy kifejezetten hiperspektrális műholdas adatok korrekcióját bemutató tanulmányt készített Beck 2003, kitérve a legfontosabb paraméterekre és beállítási lehetőségekre.

A felhasználónak a FLAASH-ben kötelező jelleggel csak a felvétel készítésének időpontját, valamint az érzékelő viszonylagos helyzetét kell megadni – bár újabb fileformátumok esetén ezt a modul maga is ki tudja olvasni (15. ábra). A modul előnye, hogy ismeri a Hyperion érzékelőt, így számos konstansnak mondható paramétert (pl. keringési magasság, látószög, FWHM) nem a felhasználónak kell megadni.

Amennyiben a felhasználó nem kívánja a modellt részletesen parametrizálni és a főbb lépéseket csak az alapértelmezett beállításokkal futtatná le, az ENVI egy másik modulja, a QUAC (QUick Atmospheric Correction) szintén jó megoldás lehet. A kimeneti állomány szintén reflektanciában tartalmazza majd az adatot, azonban a pontosság némileg alulmarad a FLAASH eredményeihez képest – a modul használatához szükséges szakértelem és a ráfordítandó idő viszont összemérhetetlenül kevesebb és bizonyos esetben (mint azt később látjuk) ez is elegendő. Gyakorlatilag csak a bemeneti állományt kell megadni a hozzá tartozó metaadatot tartalmazó file-lal együtt (érzékelő típusa, a felvétel készítésének helye, a szenzor relatív elhelyezkedése, valamint az egyes sávokhoz tartozó hullámhossz-érték), a modul pedig egyenletes, az adott koordinátákon található klimatípusra jellemző „állatorvosi ló” légkört feltételezvén lefuttatja a korrekciót – a későbbiekben ez került felhasználásra.

Egyéb szoftverek is képesek atmoszférikus korrekcióra, ezek közül egy, a fentiekhez hasonló elven működő, de némileg több funkcióval rendelkező szoftver a ATCOR (ATmospheric CORrection). Ez jelenleg a 4-es verziószámot viseli (ATCOR-4), azonban a műholdas adatok feldolgozásához az eggyel korábbi, „ATCOR 2/3” szoftver javasolt. A FLAASH-hez képest többletfunkcionalitással is bír például az atmoszférikus pára („haze”) eltávolítása során.
Hiperspektrális űrfelvételek subpixeles kiértékelése vegetációs vizsgálatok során

15. ábra: Egy Hyperion felvétel kalibárciója az ENVI FLAASH modulban (ENVI 5.3).

$$\rho_p = \frac{\pi \cdot L_{\lambda} \cdot d^2}{ESUN_{\lambda} \cdot \cos \theta_S}$$

ahol:

$\rho_p =$ reflektancia

$L_{\lambda} =$ az érzékelőre eső besugárzás radianciában kifejezve (azaz az eredeti pixelérték)

$d =$ Föld-Nap távolság csillagászati egységben (CsE) megadva – ennek a képleté:

$1-0.01672*\cos(0.9856*(julián nap-4))$

$ESUN_{\lambda} =$ adott napon külsőatmoszférát érő besugárzás

$\theta_S =$ a Nap zenitszöge a felvételezés időpontjában

A fent felsorolt módszerek bármelyikének alkalmazása elengedhetetlen előfeltétele annak, hogy az egyes felvételekhez tartozó pixelek értékei összehasonlíthatók legyenek.
III.1.5. Műszerzaj

A kiemelt problémák körébe tartozik az adattisztaság kérdése. Minden adatgyűjtési módszertannak – úgy egy kérdőívezésnek ahogy a hiperspektrális felvételezésnek – megvannak a maga korlátai, ami egyes kiértékelési módszereket lehetetlenné tesz, vagy eredményeket kérdőjelez meg. Fontos alapvetés, hogy ha egy adatsorban a zaj mértéke (legyen az strukturált vagy strukturálatlans) meghaladja az adat varianciáját, akkor a zaj eltüntetéséig adott adatsor változásaiból lehetetlen bármilyen eredményt levezetni.

A fentieken felül azonban minden műszerben található ún. műszerzaj, ami a felhasználó szeméntjából ugyancsak nem strukturált, fehér zajként jelenik meg. Oka a detektor nem megfelelő izolációja, ilyenkor rendszerint vagy a kozmikus háttérsugárzás jelenik meg a felvételen (hasonlóan a TV-ken látható fehér zajhoz), vagy valami más sugárforrás (pl. földfelszíni rádióhullámok) gerjesztik az érzékelőt – de nem kizárt, hogy a felhasznált energiával egyenes arányban saját maga. Az ISO érték növelésével ez a zaj is egyre erősebb lesz, azonban mivel az egyes űrfelvételek esetén – részben pont a műszerzaj minimalizálása érdekében – az ISO értékek változatlanok, ez nem számottevő.

A teljes jel/zaj arány mértékét (tehát nem csak a műszerzajét, de jellemzően az dominál) a Signal to Noise Ratio (SNR) mutatja, aminek célja azt megmutatni, hogy adott adat esetében hányszor nagyobb a jel aránya a zajhoz képest. Minél magasabb ez a szám, az adat annál tisztább – gyors matematikával kiszámolható, hogy ha nem lenne zaj, akkor a nevezőbe 0 kerülne, ami igazából nem létezhet (és akkor is legfeljebb csak laboratóriumban lenne mérhető), 1-nél az adat mértéke a zajéval egyenlő, az alatt pedig gyakorlatilag véletlenszerűen szőrödő értékeket mérhetünk.

Maga a műszerzaj értéke a Hyperion esetében jellemzően minimális, pixelértékek tekintetében nem magas. Az egyes sávok esetén az alábbi értékeket mutatja (16. ábra).

A fentiek azt mutatják, hogy az SNR legmagasabb értéke (161) 550 nm környékén (a kék fény hullámhossz-tartományában) mérhető (tehát ott a legmegbízhatóbb az adat) a legrosszabb arány (40) viszont 2125 nm környékén. Ez azt jelenti, hogy a jel aránya mindössze 40-szer nagyobb, mint a zaj aránya – 16 bites adattárolást feltételezve ez akár 1638 pixelértéknél (65536/40) hibát is jelenthet. Egyébként az érték nem ott, hanem az atmoszférikusz ablakoknál a legrosszabb – jellemzően közvetlen 0-hoz, ami szintén logikus, tekintve hogy ott látszólag véletlenszerű adatot kapunk vissza (ami valójában nem véletlenszerű, hanem teljesen pontosan vélhetőleg közel ismeretlen légköri összetevők pillanatnyi eloszlását mutatja).

A későbbiekben ezért, a fent említett előfeldolgozási módszereknek megfelelően, a műszerzaj miatt kisebb jel/zaj arányú sávokat az atmoszférikus zajjal együtt a további elemzések alól kivontam, így végül csak a 2. táblázatban található sávok kerültek felhasználásra.

<table>
<thead>
<tr>
<th>Sáv ID</th>
<th>H.hossz (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>498,04</td>
<td>46</td>
<td>813,48</td>
<td>137</td>
<td>1517,83</td>
<td>191</td>
<td>2062,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>508,22</td>
<td>47</td>
<td>823,65</td>
<td>138</td>
<td>1527,92</td>
<td>192</td>
<td>2072,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>518,39</td>
<td>48</td>
<td>833,83</td>
<td>139</td>
<td>1537,92</td>
<td>193</td>
<td>2082,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>528,57</td>
<td>49</td>
<td>844</td>
<td>140</td>
<td>1548,02</td>
<td>194</td>
<td>2092,84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>538,74</td>
<td>51</td>
<td>854,18</td>
<td>141</td>
<td>1558,12</td>
<td>195</td>
<td>2102,94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>548,92</td>
<td>53</td>
<td>864,35</td>
<td>142</td>
<td>1568,22</td>
<td>196</td>
<td>2113,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>559,09</td>
<td>55</td>
<td>874,53</td>
<td>143</td>
<td>1578,32</td>
<td>197</td>
<td>2123,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>569,27</td>
<td>57</td>
<td>884,7</td>
<td>144</td>
<td>1588,42</td>
<td>198</td>
<td>2133,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>579,45</td>
<td>78</td>
<td>993,17</td>
<td>145</td>
<td>1598,51</td>
<td>199</td>
<td>2143,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>589,62</td>
<td>82</td>
<td>1013,3</td>
<td>146</td>
<td>1608,61</td>
<td>200</td>
<td>2153,34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 46 -
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>599,8</td>
<td>84</td>
<td>1023,4</td>
<td>147</td>
<td>1618,71</td>
</tr>
<tr>
<td>26</td>
<td>609,97</td>
<td>86</td>
<td>1033,49</td>
<td>148</td>
<td>1628,81</td>
</tr>
<tr>
<td>27</td>
<td>620,15</td>
<td>88</td>
<td>1043,59</td>
<td>149</td>
<td>1638,81</td>
</tr>
<tr>
<td>28</td>
<td>630,32</td>
<td>90</td>
<td>1053,69</td>
<td>150</td>
<td>1648,9</td>
</tr>
<tr>
<td>29</td>
<td>640,5</td>
<td>92</td>
<td>1063,79</td>
<td>151</td>
<td>1659</td>
</tr>
<tr>
<td>30</td>
<td>650,67</td>
<td>93</td>
<td>1073,89</td>
<td>152</td>
<td>1669,1</td>
</tr>
<tr>
<td>31</td>
<td>660,85</td>
<td>94</td>
<td>1083,99</td>
<td>153</td>
<td>1679,2</td>
</tr>
<tr>
<td>32</td>
<td>671,02</td>
<td>95</td>
<td>1094,09</td>
<td>154</td>
<td>1689,3</td>
</tr>
<tr>
<td>33</td>
<td>681,2</td>
<td>96</td>
<td>1104,19</td>
<td>155</td>
<td>1699,4</td>
</tr>
<tr>
<td>34</td>
<td>691,37</td>
<td>97</td>
<td>1114,19</td>
<td>156</td>
<td>1709,5</td>
</tr>
<tr>
<td>35</td>
<td>701,55</td>
<td>101</td>
<td>1154,58</td>
<td>157</td>
<td>1719,6</td>
</tr>
<tr>
<td>36</td>
<td>711,72</td>
<td>102</td>
<td>1164,68</td>
<td>158</td>
<td>1729,7</td>
</tr>
<tr>
<td>37</td>
<td>721,9</td>
<td>103</td>
<td>1174,77</td>
<td>159</td>
<td>1739,7</td>
</tr>
<tr>
<td>38</td>
<td>732,07</td>
<td>104</td>
<td>1184,87</td>
<td>160</td>
<td>1749,79</td>
</tr>
<tr>
<td>39</td>
<td>742,25</td>
<td>105</td>
<td>1194,97</td>
<td>161</td>
<td>1759,89</td>
</tr>
<tr>
<td>40</td>
<td>752,43</td>
<td>106</td>
<td>1205,07</td>
<td>162</td>
<td>1769,99</td>
</tr>
<tr>
<td>41</td>
<td>762,6</td>
<td>107</td>
<td>1215,17</td>
<td>163</td>
<td>1780,09</td>
</tr>
<tr>
<td>42</td>
<td>772,78</td>
<td>108</td>
<td>1225,17</td>
<td>164</td>
<td>1790,19</td>
</tr>
<tr>
<td>43</td>
<td>782,95</td>
<td>109</td>
<td>1235,27</td>
<td>183</td>
<td>1981,86</td>
</tr>
<tr>
<td>44</td>
<td>793,13</td>
<td>135</td>
<td>1497,63</td>
<td>188</td>
<td>2032,35</td>
</tr>
<tr>
<td>45</td>
<td>803,3</td>
<td>136</td>
<td>1507,73</td>
<td>189</td>
<td>2042,45</td>
</tr>
</tbody>
</table>

2. táblázat: A további elemzések során felhasznált sávok

III.2. A magas dimenziószám problémái és megoldásai

A hiperspektrális adatoknál elkerülhetetlen (sőt, vélhetőleg pont ezért választotta ezt a forrást a felhasználó) magas dimenziószám az adatok kiértékelése során több problémát is okozhat. Nem csak azért, mert jelentősen növeli a számítási és tárolási igényt, hanem az az adatban komoly redundanciát is okoz, ami az adatok kiértékelésénél problémás lehet, ráadásul miatta számos eljárás is könnyen zátonyra futhat, vagy fals eredményt adhat. Disszertációmban ezért kiemelt figyelmet szenteltem ennek a problémakörnek a feloldására is, célul tűzve ki egy olyan dimenziócsökkentő eljárás megalkotását, ami egyes célzott elemzések során csökkenti az adatsor redundanciáját is (erről azonban részletesen csak az V.4-es módszertani fejezetben írok).

Fontos azt is felismerni, hogy minden, jelen disszertációban vázolt probléma abból a felvetésből indul ki, hogy a nagy dimenziószámú adatok – így a hiperspektrális felvételek – esetében nagyon nehéz olyan adatelemzési módszereket bevetni, ami az ezen adatokban megbúvó apróbb klasztereket (jelen esetben fajhoz köthető osztályokat), részinformációkat (ezek osztályok egyedi spektrális jellemzőit) keresi. Ezt hívják napjainkban divatosan „big
data” elemzésnek, ami azonban inkább egyfajta gyűjtőfogalom, véleményem szerint a „túl sok adat” népszerűbb megnevezése. A big data elemzési módszereknek ezért ma már szinte alapvetés, hogy a vizsgálat az elemző számára a teljes adat közvetlen láttatása (legyen az táblázatos, képi vagy diagram-szerű) nélkül történik, inkább az alkalmazott módszereken van a hangsúly. Szintén kitétel, hogy a nagy adatmennyiség miatt nem mindig lesz egzakt, kézzelfogható a végeredmény, hanem a kutatók közelítő, sokszor valószínűségi értékekkel dolgoznak.

III.2.1. A redundancia problémája

III.2.1.1. Fizikai okok, a jelenség leírása

Matematikai alapelv, hogy csak azon adattömeg segítségével lehet helyes elemzéseket végezni, amelyekben a paraméterek (jelen esetben dimenziók, sávok) egymástól függetlenek, azaz közük függőségi viszony nincs. Ez a fajta függőség nem csak ok-okozati lehet („A” jelenséghez kötődő adatsor, illetve az azt mutató jelenség egyenes következménye „B” jelenséget leíró adatsor), hanem ugyanakkora súlytal esik latba – és jelent problémát – az is, ha két adatsor ugyanazon tényezőre reagál (azaz „A” és „B” adatsorok elsődleges befolyásoló tényezője ugyanaz a jelenség). Klasszikus példa a közösségi oldalak markering célú big data elemzési során az egyes felhasználók és az általuk említett kulcsszavak e mlitéseire épülő elemzések eredménye. Ezen algoritmusok elsősorban a felhasználói viselkedést, azon belül is pedig kiemelten a leírt szavakhoz köthető termékérzékenységet vizsgálják (Gandomi és Haider 2015) amelyre a hirdetési algoritmusok reagálnak. Azaz egy felhasználó nagyobb valószínűséggel lát futócipőkkel kapcsolatos hirdetéseket, ha gyakran említi futással kapcsolatos kifejezéseket.

A problémával kapcsolatos klasszikus példa az alábbi: adott egy felhasználó, aki ugyanolyan gyakran jár futni, mint tollaslabdázni és azonos mértékben is beszéli ezt meg az ismerőseivel. A csevegéseket figyelő algoritmus azonban mégsem tud jól működni, hiszen több futással kapcsolatos szavunk van – amelyeket adott felhasználó rendszeresen említi is (futás, kocogás, rohanás, szaladás), mint amennyi a tollaslabdára vonatkozik. Az algoritmus bemenő adata ezért több, a futással kapcsolatos kifejezést lát, míg a tollaslabda esetében csak egy szó kerül említésre (badmintonnal együtt jó esetben kettő). Felmerülhet a kérdés, hogy ebben az esetben melyik hirdetés kerüljön a felhasználó elé? Ha azt vesszük alapul, hogy a felhasználó választékosabb módon említi a kocogást, akkor az algoritmus azt választhatja ki, pedig mindössze arról van szó, hogy több szavunk van erre a jelenségre. Azaz ha az említésszámot
nézzük, akkor végső soron több paraméter írja le ugyanazt – egy paraméter a „futás” említése, egy másik pedig a „kocogásé”.

A megoldás viszonylag egyszerű: meg kell vizsgálni, hogy globális szinten a „futás” és szinonimái említése („kocogás”, „rohanás”, stb.) az egyes felhasználók esetében milyen jól korrelál. Amennyiben az említések korrelációja magas – azaz a felhasználók többsége, aki leírja a „futás” szót az nagy valószínűséggel le fogja írni a „kocogást” is – a két változó (paraméter) már nem kezelhető függetlenként, tehát említésüknek csak az együttes összegét lehet értelmezni. Ezzel megoldódik a fenti probléma: míg a tollaslabdánál csak a „tollaslabda” (és esetleg a „badminton”) szó említése számít, addig a „futás” esetében az input csak több más, szinonima szavak említésével együtt értelmezhető, különben a futással kapcsolatos érdeklődés mérése felül, a tollaslabdáé pedig alurreprezentáltságot mutat (Xiang et al. 2015).

A fentiekkel hasonló okokból a nagy dimenziószám a hiperspektrális adatok felhasználóját is komoly dilemma elé állítja – nem csak a magas feldolgozási kapacitási igény miatt. Az adat sokszor redundáns, ami jelen esetben az egymást követő spektrális sávok szoros korrelációjában nyilvánul meg, amiből pedig egyenesen következik, hogy egyes szélesebb, akár 20-30 sávos érzékelési tartományban érzékelhető kémiai-fizikai kémiai tényezők (pl. klorofill-tartalom) a teljes adatsorban felülvizsgáltak lesznek azon tényezőkhöz képest, amelyeket csak 2-3 sáv széles tartományban lehet megfogni (pl. H₂O tartalom). A multispektrális adatok esetében ez kisebb probléma, hiszen a szenzorok érzékelési tartományainak kiválasztása nem csak az atmoszférius hatások elkerülésének figyelembe vételével történt, hanem a fenti jelenség kiküszöbölésnek céljából is.

Ez a jelenség, illetve a problémára adott megoldás különösen jól látszik a Landsat 8 OLI és a Hyperion érzékelőinek a lefedett hullámhossz-tartományán. Az OLI által lefedett spektrális hullámhossz-tartomány a következőképp néz ki (3. táblázat).

<table>
<thead>
<tr>
<th>Sáv</th>
<th>Lefedett hullámhossz-tartomány (nm)</th>
<th>Sávszélesség (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Parti aeroszol)</td>
<td>433–453</td>
<td>20</td>
</tr>
<tr>
<td>2 (Kék)</td>
<td>450–515</td>
<td>65</td>
</tr>
<tr>
<td>3 (Zöld)</td>
<td>525–600</td>
<td>75</td>
</tr>
<tr>
<td>4 (Vörös)</td>
<td>630–680</td>
<td>50</td>
</tr>
<tr>
<td>5 (Közeli infravörös)</td>
<td>845–885</td>
<td>40</td>
</tr>
<tr>
<td>6 (Rövidhullámú infravörös 1)</td>
<td>1560–1660</td>
<td>100</td>
</tr>
<tr>
<td>7 (Rövidhullámú infravörös 2)</td>
<td>2100–2300</td>
<td>200</td>
</tr>
</tbody>
</table>

A példa kedvéért érdemes kiemelni a zöld tartományt (3. sáv), ami az 525-600 nm-es tartományban foglal helyet, azaz összesen 75 nm-t fed le, valamint a vöröset (4. sáv), ami 630-680 nm között 50 nm szélességű (természetesen mindkettő meghatározott érzékenységi csúcscsal rendelkezik). Ugyanezen tartományok a Hyperion érzékelő esetében – összességében hasonló információtartalommal – az OLI zöld tartománya esetén 8, míg a vörös esetén 6 sávot fednek le. Tehát a Hyperion esetén a zöld kb. 4/3-os súlytal szerepel a vöröshöz képest (hiszen 25%-kal több paraméter kapcsolódik hozzá), addig az OLI esetében, azonos lefedett hullámhossz-tartomány mellett a két sáv 1 arányú függetlenül attól, hogy nagyobb tartományt fed le. A következtetés tehát: mindamellett, hogy számunkra a két tartomány egyforma jelentőséggel bír, a Hyperion esetében a vörös hullámhossz-tartomány a zöldhöz képes alulreprezentált, amennyiben pedig a teljes adatsor felhasználásra kerül az eredmények falsak lesznek, jobban közelítik a zöld tartomány által meghatározott felszínborítási határokat. Természetesen ez a probléma nem csak a zöld és vörös sávokat érinti, kiemelten érintettek lehetnek azon aprónak számító, de egy-egy (pl. vegetációs) elemzés szempontjából fontos tartományok, amelyeket csak 1-2 sávban csíphetünk el és amelyek információtartalma így a teljes adatsort szemlélve elenyésző. Jellemzően ilyen a később kiemelt, Kumar et al. 2002 által említett, 1120 nm-es hullámhosszhoz köthető, többségében az alkotó lignin.

Ezt jól mutatja néhány – az előbbiekkel összhangban lévő – sávpár-korrelációt bemutató szóródási diagram, amelyeknek a forrása egy a későbbiekben is felhasznált Hyperion-felvétel (ID: EO1H1880272014084110KA).

Természetesen a magas korreláció nem minden esetben fejez ki valódi kapcsolatot, ahogyan az alacsony korreláció sem feltétlen jelenti azt, hogy két adatsor között nincs kapcsolat, de a jelenség a fenti esetben egyértelmű lehet. Ebből a következtetésből vissza lehet mutatni a fejezet elején felvetett problémára: ha több, egymással jól korreláló, spektrálisan egymáshoz közel elhelyezkedő adatsor is szerepel a teljes adattömbben, akkor azon ténylezők, amelyekre a több, egymással korreláló adatsor is érzékeny felülvizsgáltatásra, lesznek.

Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

- 50 -
III.2.1.2. Az FWHM szerepe

A következő témát akár külön fejezetet is megérdemelne (amennyiben lenne a disszertációnak olyan fejezete, ami kifejezetten a hiperspektrális érzékelők technikai hátterével foglalkozik mindenképpen így lenne), azonban annak híján most itt kap helyet. Az előző fejezetben tárgyalt magas korreláció okozta problémáknak az oka lehet ugyan az is, ami az előző fejezetben leírásra került (azaz egy-egy fizikai-kémiai tulajdonság refeektanciára gyakorolt hatása csak ritkán köthető egyetlen hullámhosszhoz), azonban legalább ekkora súlyval szerepelnek a műszerek kiforratlanságából fakadó okok is.

A hiperspektrális érzékelők egyes sávjainak egyik nagyon fontos paramétere az FWHM, azaz a „Full With at Half Maximum”. Ez az érték sokszor mellékesnek látszik, azonban igen fontos szerepet játszik, ha egy-egy sáv „egyediségét”, információtartalmának használhatóságát és reprezentáltságát kivánjuk jellemezni. Ez az érték nm-ben kifejezhető, adott sávban található mért értékek lefedettségének tartományát mutatja – hasonlóan sávszélességhez (érzékelési tartományhoz). Azonban van egy fontos különbség. Az érzékelési tartomány azt adja meg, hogy i-ik sáv (N) melyik két tartomány között érzékel (legyen ez \(\lambda_1 \) és \(\lambda_2 \)) – azaz egy sáv szélességét úgy írhatjuk le, hogy

\[
N_i[\lambda_1 ; \lambda_2]
\]

addig az FWHM az N-hez tartozó érzékenységi görbét írja le, jellemzően egy normális eloszlást mutató görbével szemléltetve (Hungate et al. 2007).
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

18. ábra: Az FWHM érték vizualizációja (Internet 3)

A 18. ábrán látható esetben az FWHM viszonylag jól vizualizálható: A teljes érzékenységi görbe magasságának (f_{max}) felénél ((f_{max})/2) húzott egyenesnél mérhető görbeszélességet jelenti. Könnyen belátható, hogy minél nagyobb az FWHM érték, annál szélesebb a görbe, ami pedig szélesebb érzékelési tartományt jelent (szélsőséges esetben az FWHM érték sokszorosa a sávszélességnek, ami tulajdonképpen azt jelenti, hogy az érzékenységi csúcs több sávon is átível). A problémát ráadásul tovább nehezíti az, hogy az FWHM érték nem csak sávonként tér el, de a fotonok műszerre vetített eltérő beesési szöge miatt a felvétel egy-egy pontján mérve sem azonos (Wang et al. 2010), ami pedig jelentősen összefügg a már korábban említette „spectral simle” problémájával.

Azonban mindez csak akkor válik igazán jelentőssé, ha az FWHM érték által leírt érzékenységi görbe két szélsőértéke a 19. ábrán látható módon más sávokba is átnyúlik.
Ebben az esetben az egyes sávok közti korreláció nem csak azért nő, mert az őket befolyásoló fizikai-kémiai tényezők mindegyiket befolyásolják (azaz a fentiek értelmében az egyes sávok már csak ezért sem függetlenek), hanem azért is, mert az egyes sávokhoz társított pixelértékek a szomszédos sávokhoz tartozó besugárzás-értékekből is táplálkoznak.

A fentiek elkerülése, de legalábbis egyértelműsítése érdekében ma már gyakrabban kerül a sávszélesség helyett a központi hullámhossz és az FWHM érték megadása, ami már jobban mutatja, hogy egy-egy sáv milyen hullámhosszok adatait tartalmazza, tehát mekkora kritikával kell kezelni az ott mért értékeket.

III.2. A dimenziószám csökkentésének lehetőségei

A fenti probléma feloldására számos módszer létezik, amelyekről még bővebben az V.1. fejezetben értekezem. Egyesek jobban elterjedtek, mások kevésbé, azonban a leggyakrabban a feljebb már említett PCA (Principal Component Analysis), azaz főkomponens-analízis, illetve a rá épülő eljárások kerülnek felhasználásra – kiemelten ismert ezek közül az MNF (Minimum Noise Fraction), amelynek ugyancsak a főkomponens-analízis az alapja, azonban a főkomponensek kinyerése előtt az algoritmus az adatsoron általános zajszűrést is alkalmaz (Green et al. 1988; Boardman és Kruse 1994).
Mindkét fenti eljárás hátránya a főkomponens-analízis természetéből fakad. Bár egy-egy főkomponens az adatsort jól leírja, de annak ortogonális transzformációja után, az eredeti mértékegységek vissza nem fejthető módon elvesznek, így nem lehet azt megállapitani, hogy a legnagyobb információ tartalommal bíró első főkomponens tulajdonképpen milyen fizikai-kémiai hatások összességét mutatja. Másképp szólvá: a főkomponens-analízis lépéseinek végrehajtása után bár a teljes adattomb dimenziószáma kisebb lesz, az adat azonban mértékegység nélkülívé (jelen esetben a szót másképp használva dimenziótlaná) válik. Ez nem probléma, amennyiben a célunk csupán az adat dimenziószámának csökkentése és a főkomponensekből további elemzéseket levonni nem kívánunk.

Azonban, ha a csökkentett adatokból további következtetéseket szeretnénk levonni – pl. arra vagyunk kíváncsiak, hogy egy osztályozás után az egyes klaszterek kialakításában mely tényezők játszották a legfontosabb szerepet – már más eljárás után kell néznünk. Szintén probléma, hogy a főkomponens-analízis csupán a teljes adatsort tudja vizsgálni, amelyben minden pont egyforma jelentőséggel bír, azaz az egyes felszínborítási foltok (amelyeket még nem létező klaszterek reprezentálnak) a dimenziócsökkentés eljárása során semmilyen szerepet nem játszanak. Ez különösen akkor probléma, ha egyes felszínborítási foltok különösen érzékenyek a teljes adattombhöz képest jellegtelen spektrális jellemzőkre – kiemelt példa lehet a később is vizsgált eltérő vegetációs típusok osztályozásának problémája. Amennyiben a teljes adatsorban a vegetációs területek aránya viszonylag csekély – viszont a vegetáció belül már jelentős, de a teljes adatsort tekintve kismértékű a változékonyság, a főkomponens-analízis természetéből fakadóan a vegetációs típusok közti különbségeket nem örzi meg. Ezzel az eljárással tehát (illetve az MNF-fel együtt két eljárással) adott felvétel ugyan alkalmas lesz egy általános felszínborítási osztályozásra, de amennyiben az egész felvételre lefuttatjuk, éppen a hiperspektrális adatok adta részletgazdag elemzésre nyújtott lehetőségeket vesznek el, ráadásul a végeredményként létrejövő főkomponenseket sem lehet majd egyértelműen semmilyen spektrális tulajdonsághoz kötni.

A helyzetet tovább bonyolítja, hogy már fent említett EO1H1880272014084110KA azonosítószámú Hyperion-felvétel elemzésének példáján a főkomponens-analízis eredményeképp az alábbi köomls-diagram jött létre (20. ábra).
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

- 55 -

20. ábra: Főkomponens-analízis eredményeképp létrejött kőomlás-diagram (ID: EO1H1880272014084110KA)

Jól látszik rajta, hogy a teljes információ tartalom csakúgy, mint a multispektrális adatok esetében, az első három főkomponensben jól megfogható. Azaz a hiperspektrális adatok dimenziószámát ezzel az eljárással igen jó lehet csökkenteni – természetesen csak a fent említett megkötések mellett, ugyanis ebben az esetben az egyes vegetációtípusok közti különbséget tartalmazó információ a 4. vagy még kisebb sajátértékkel rendelkező főkomponensben lesz elrejtve – ahogy azt a későbbi fejezetben, kifejezetten vegetációs elemzések kapcsán kifejtem.

Egy másik elterjedt dimenziócsökkentési módszer a diszkriminancia-analízis, aminek távérzékelésében a leggyakrabban elterjedt változata az SDA (Stepwise Discriminant Analysis). Az eljárás segítségével amennyiben dimenziócsökkentésre használjuk szintén csoportosítást történik, azonban ez a csoportosítás nem a felszínborítási foltokat, hanem az egyes bemenő paramétereket, ebben az esetben a sávokat érinti. Ebben az esetben a Wilks-féle lambda érték alapján lehet az egyes paramétereket (sávokat) rangsorolni, ami érték azt mutatja meg, hogy egy paraméter milyen mértékben határozza meg a teljes adatsor információtartalmát (minél közelebb jár ez az érték a 0-hoz, annál jobban). Ebben az esetben is rangsorolni lehet az adatokat, majd a főkomponens-analízis kőomlás-diagramjához hasonló módon kiválasztani azokat, amelyek felhasználása adott esetben javasolt.

A fenti két módszer gyakorlati példáinak bemutatása részletesen is megtörténik az V. fejezetben.
IV. A hiperspektrális adatok kiértékelési lehetőségei

Mint már említettem, a disszertáció megírása és a megölttes kutatás célja a legfontosabb, a hiperspektrális adatok felhasználhatóságát érintő problémák feloldása. Ezek közül a legfontosabb, hogy a spektrálisan nem elkülönülő felszínborítási típusok térképezése nehézkes és nem megoldott, kiemelten ha azt egy pixelen belül próbálja az ember elvégezni. Ezért az alábbi két – egymással akár közösen is használható – adatkiértékelési, adatelőkészítési megközelítést részletesen bemutatom azért, hogy a később vegetációs osztályozás során levezetett lépések kellően meg legyenek alapozta.

IV.1. Spektrális szétkeverési módszerek

Kiemelt helyen említendők azok az eljárások, amelyek a pixelen belüli információt célozzák kinyerni. Ezek elsősorban nem gyakorlati alkalmazásuknak száma, hanem jelen disszertációban betöltött kiemelt szerepüknek köszönhető, hiszen a spektrális keveredés problémája, illetve annak feloldása kiemelt jelentőségű téma.

IV.1.1. Lineáris szétkeverés és a V-I-S modell

A lineáris szétkeverés módszerét több szoftver is ismeri, azonban ezek közül a legjobb és legegyszerűbb megoldást véleményem szerint az ENVI szoftvercsalád kínálja. A módszer működési elve viszonylag egyszerű: a megfelelő végállású pontok kiválasztása után azok keverésével az algoritmus megkísérli visszafejteni a célgorbát. A vizsgálat célja lényegében a fenti algoritmus ismeretlen paramétereinek, azaz a végállású pontok egy pixelre eső keveredési arányának meghatározása. Azaz az alábbi képletben:

\[x = \sum_{i=1}^{M} a_i s_i + \omega_i \]

\(x \) = a vizsgált pixel teljes reflektanciája
\(s_i \) = az i-ik végállású pont spektruma
\(a_i \) = az i-ik végállású pont aránya
\(M \) = a végállású pontok száma
\(\omega_i \) = az i-ik végállású ponthoz tartozó hiba (zaj)

ezúttal az \(a_i \) lesz az ismeretlen, ami minden más érték ismeretében kiszámolható (Keshava és Mustard 2002; Keshava 2003).
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Egy gyakorlati példánál maradva, az említett fiktív fekete-fehér bolygónál a szürke (az egyszerűség kedvéért 127-es értékű) pixel kikeverés az alábbi képlettel jöhet létre (0-s zajértéket feltételezve):

\[
127 = (0.5 \times 0 + 0) + (0.5 \times 254 + 0)
\]

Azaz fele részt fekete (0-s érték) 0-s zajjal + fele részt fehér (most a tört számok elkerülése véggett 254-es értékkel számolva) 0-s zajjal. Szándékosan került aláhúzásra a 0,5-ös érték, hiszen a fenti egyenletben ez volt az a két ismeretlen, amit vissza kívántunk nyerni. Szerencsére kizárólag ezek behelyettesítésével lehetett a kiindulási, 127-es értéket kikeverni, illetve a korábban bemutatott feltételeknek megfeleve, összegük 1 (abundance sum constraint) és egyik sem negatív (abundance negativity constraint). Ez spektrális távolságra lefordítva azt jelenti, hogy a fekete (0-s értékű) végállású ponttól 0,5-ös, a fehértől (254) pedig ugyancsak 0,5-ös távolságra található a kikeverni vágyott pont – így végső soron egy távolságértéket adtunk meg.

Fontos még kitérni a megfelelő végállású pontok kiválasztásának módszerére, hiszen ha hiperspektrális adatok estén – nagyobb információartalmuknál fogva – ha a pixelek heterogénebbek, akkor a végállású pontok kiválasztásának is különösen nagy jelentőséget kell szentelni. Más képp szóval, mivel egy multispektrális felvételhez képest többsége felszínborítást különlíthatunk el, ezért kevesebb lesz a homogén (vagy közül homogén) pixel, azaz egy-egy pixel a teljes felvételnél csak egy kisebb részt (szélsőséges esetben csak saját magát) reprezentálja igazán jól.

Ahhoz tehát, hogy a fent felvázolt lineáris keveredési modellhez tartozó szétkeverési algoritmus jól működhesse, megfelelő végállású pontok rögzítésére van szükség. Feljebb már kifejtésre került a „végállású pont” (angolul: „endmember”) definíciója, azonban most részletessebb meghatározásra van szükség, ami leginkább a következőképpen írható le:

Végállású pontok azok a homogén, egymástól spektrálisan jól elkülönülő felszínborítási foltok, amelyek keveredése alakotja minden pixel mérhető információartalmát.

A fogalmat eredendően az ásványtanban használták, mégpedig az elemi és tiszta, azaz „sztöchiometriailag ideális összetételű” ásványok megnevezésére, amelyek bizonyos arányú keveréséből a többi ásvány is elkészíthető. A végállású pontok – mint ahogy a nevük is mutatja
– a spektrális pontfelhő szélén helyezkednek el, így azok megfelelő arányú felhasználásával az összes többi pixel leírható (21. ábra).

21. ábra: Szóródási diagram 2 dimenziós metszete és a hozzá tartozó végállású pontok (A, B, C, D)

Forrás: Keshava és Mustard 2002

Felhívom a figyelmet, hogy bár a hiperspektrális adatokra eddig sem képként, hanem adathalmazként kellett tekinteni, ezen a ponton ez hatványozzottan igaz. A továbbiakban minden szempontból eltértünk a felvétel képként történő értelmezésétől és mostantól sokkal inkább n-dimenziós (nD) adathalmazként tekintünk rá, ahol n egyenlő a sávok számával. Másképp szólva a spektrális térben egy olyan pontfelhő vizsgálata történik, ahol az egyes tengelyek nem geometriai koordinátákat jelölnek, hanem a teljes adatsorban az egyes hullámhosszon mérhető besugárzást, illetve pontosabban szólva pixelértéket jellemzik.

Az, hogy egy végállású pont milyen felszínborítást jelent felvételenként változó, elsősorban a reprezentálni kívánt területtől, a felvételezés idejétől, valamint az érzékelő korlátaitól függ. Egy kopár talajfolton (az érzékelő spektrális felbontásának függvényében) két
külön végállású pont lehet a szervesanyagban gazdag és szegény talajfelszín (hiszen a spektrális tér két külön szélén helyezkednek el), míg egy városi területen a talaj – legyen az akármilyen heterogén – valószínűleg egy kategóriát alkot, mellette azonban megjelenik a beépített terület és a vegetáció is (22. ábra). Ezeket jól kijelölni tehát mindig csak az adott adattömb ismeretében lehetséges.

22. ábra: Szóródási diagram végállású pontokkal. a: kopár talajterület, b: beépített terület, c: vegetáció

Ridd 1995 szerint a módszer legjobban a települési vizsgálatok során alkalmazható, ahol a településeket távérzékelési szempontból három végállású ponttal lehet leírni: Vegetáció (Vegetation – V), beépített (Impervious – I), valamint talaj (Soil – S). Amennyiben egy pixel 100%-ban beépítettnek látszik, akkor az belvárosi terület, amennyiben 100%-ban vegetációt, akkor gyepterület (ennek a települési funkcionális megfelelője nagy valószínűséggel egy park), amennyiben viszont 50%-ban beépített, 50%-ban viszont gyepterület, akkor vélhetőleg egy külvárosi beépítésre jellemző kertes házról van szó (23. ábra).

Elméletem szerint a fenti modell bizonyos kitételekkel (ezekről a következő fejezetben írok) átültethető a vegetációs vizsgálatokba is, és amint azt a V.4.3. fejezetben kifejtem, ugyancsak igaz lesz a kevert állományú erdökre is: amennyiben egy erdőfolt spektrálisan 100%-ban magán viseli a tölgyesek jellemzőit az tölgyes, amennyiben 100%-ban bükkre hasonlít, az bükkerdő, amennyiben viszont kb. 50-50%-ban megoszló a két állományalkotó faj (vegetációs osztály) között, abban az esetben tölgyes-bükkösrlől beszélhetünk.
Végállású pontok keresésére több eljárás is létezik függően attól, hogy manuális vagy automatizált módszerről beszélünk. Általában 3-4 végállású pont jól leír egy területet, de természetesen ez függ annak a méretétől és összetételétől is – a fentiek értelmében településeken belül rendszerint 3 végállású pont a jellemző (illetve bár jellemzően nem keveredik, de 4. pontként a vízfelületet is ide lehet érteni). A módszerek közül az egyik legelterjedtebb a SMACC (Sequential Maximum Angle Convex Cone). Az eljárás lényege, hogy az első végállású pontot az algoritmus a 0-tól legtávolabbinak választja ki – ez jellemzően egy rendkívül fényes visszaverődési pont, mesterséges felszínek esetén pl. egy tükröződő üvegfelület lesz. A második az ettől a kettőtől – illetve a rájuk állított egyenestől – legtávolabbi, a harmadik az ettől a háromtól a legtávolabb és így tovább, eljutva egy, a felhasználó által megadott számú végállású pont-csoport kiválasztásáig (ezek a pixelek nem mellékesen sokszor megegyeznek a legnagyobb tisztaságú – „Pixel Purity” – pontokkal). A redundáns pontokat az algoritmus végén egy tetszőleges nyilású n-dimenziós kúp (convex cone) segítségével szüntethetjük meg – ezen a kúpon belül csak egy pont maradhat, mégpedig az, amelyik a többitől a legjobban elkülönül (Gruninger et al. 2004).

23. ábra: Egy település felszínborítási típusai a V-I-S modell alapján (Ridd 1995 nyomán)
Az algoritmus által talált végállású pontokra példa a 24. ábrán látható. Érdemes megfigyelni, hogy a pirossal jelölt „Endmember 1” névre hallgató végállású pont a kivágaton alig látszik. Ennek az oka a SMACC által fent említett keresési algoritmusában keresendő, ugyanis – mint feljebb említettem – az első végállású pont a legfényesebb (tehát az origótól) legtávolabbi lesz, ami általában egy olyan extrém magas reflektanciával rendelkező felszínborítási típus, aminek a felvételeben belüli reprezentáltsága rendkívül alacsony. Ennek következtében SMACC segítségével talált végállású pontok közül az elsőt a további elemzésekből érdemes kizárni.

24. ábra: Végállású pontok a spektrális térben

A terület ismeretének tükrében lehetőségünk van a végállású pontokat manuálisan is kiválasztani – ahogy az a későbbi lépések során is történt, ekkor azonban fokozottan ügyelni kell a spektrális szeparabilitás maximalizálására. A kiválasztott pontok ellenőrzésére jól szolgálatot tehet az ENVI „n-Dimensional visualizer” nevű eszköze, ami animálva képes megjeleníteni az összes sávpár 2 dimenziós metszetét, lehetővé téve a végállású pontok
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

spektrális elhelyezkedésének vizuális ellenőrzését (a 23. és a 24. ábra ennek az eszköznek a segítségével készült).

Az eljárás lényege, hogy az algoritmus a kiválasztott végállású pontok segítségével megpróbálja rekonstruálni az eredeti felvételt. A folyamat közben létrejön egy új információ, mégpedig az egyes végállású pontok „hozzájárulásnak” nevezzett, pixelenként levizualizálható súlya, amit később mennyiségéggé (angolul „abundance”) lehet alakítani oly módon, hogy 0,1 „hozzájárulás” 10% „mennyiségnek” felel meg. A hozzájárulás mértéke ebben az esetben egy 0 és 1 közötti szám lesz, ami lényegében párhuzamba vonható az adott végállású pont egy pixelre eső mennyiségével (0 = 0%, 0,5 = 50%, 1=100%).

25. ábra: Egy budapesti Landsat 8 felvétel spektrális szétkeverési eredménye.

A 25. ábrán egy Budapestet ábrázoló multispektrális Landsat 8 felvétel keveredését vezettem le (a vízfelszínek maszkolása nélkül). A legjobb végállású pontok egy beépített

IV.1.2. Nemlineáris szétkeverés

A spektrális szétkeverési algoritmusok közül eddig csak a lineáris szétkeveréssel foglalkoztam, de mint feljebb említettem, elvben más eljárások is létezhetnek – bár ezek gyakorlati alkalmazására viszonylag kevés példa van. Ahhoz, hogy szemléletet tudjam, hogy milyen lehetőség van nemlineáris szétkeverésre először vissza kell tekinteni az előző fejezetben leírt képletre és a 21. ábrára.

A lineáris szétkeverés képletében az \(a_i \) érték lényegében az \(i \)-ik végállású ponthoz tartozó súlyt mutatja. Egy-egy pixel kikeverése tehát úgy történhet meg, hogy az összes végállású pontot valamilyen mértékben súlyozzuk, majd azokat összeadjuk. Ebből viszont nagyon határozottan következik egy matematikai tény, mégpedig hogy az egyes végállású pontok esetében voltaképpen – elég kacifántosan – egy dinamikusan változó, de mindeneképp egyenes vonalban mért távolság vektorának hosszát írjuk le, hiszen tehát \(i \)-ik végállású pont kikeveréséhez szükséges súlyérték voltaképpen a többi végállású pont távolságértékével arányos távolsága úgy, hogy azok összesen 1-et kell, hogy kiadjanak.

A kulcs viszont a fenti mondatban az volt, hogy ezen távolság egyenes vonalon mérhető – hiszen elvben előfordulhat, hogy az egyes vizsgált pixelek és végállású pontok között a kikeverés arányát nem a közük lévő euklídészi távolság, hanem valami más határoz meg. Amennyiben ez a valami nem egy egyenes vonal mentén mérhető távolságot jelent, ez lesz a nemlineáris szétkeverés. Szintén voltak már ennek a vizsgálatát célzó kutatások (Ji et al. 2017), azonban azok csak egyszerűbb mintaterületen, jellemzően a nem túl élénk, de jól lehatárolható sivatagi vegetáció elkülönülését vizsgáltak és leginkább a különböző mérhető szóródási paraméterekből következtettek a felszín összetételére.

Megoldásként kínálja magát az egyes osztályozó algoritmusok által létrehozott osztályozási erősségeket tartalmazó adators („rule image”). Ez minden pixel alapú osztályozás során kötelező közbenső lépés, lényegében pixelenként azt írja le, hogy adott pixel mekkora erősséget tartozhat egy-egy osztályba. Ez nagyon sokféle érték lehet, attól függően, hogy adott
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

osztályozó hogyan működik – de most az egyszerűség kedvéért maradjunk a maximum likelihood (legnagyobb valószínűségi) osztályozó példájánál. Ez az eljárás – kicsit leegyszerűsítve – nem csak az osztályközéppontok és a vizsgált pixel távolságát vizsgálja, hanem figyelembe veszi azt is, hogy a kialakított osztályoknak normális eloszlásúnak kell lennie (Strahler 1980). Az algoritmus végén minden pixel kap egy osztályhoz tartozó valószínűségi értéket és végül abba az osztályba kerül besorolásra, amelyikre a legnagyobb valószínűség mutat.

Csakhogy könnyen elképzelhető, hogy adott pixel két osztályra is magas értéket kap, aminek az oka lehet természetesen a vak véletlenné válás (hiszen mégiscsak a valószínűségek világában mozgunk), de ennél sokkal nagyobban a valószínűsége annak, hogy mindkét osztályba valóban egyforma erősséggel tartozik. Ebben az esetben adott pixel osztályba sorolási valószínűsége – és így a benne található felszínborítási foltok aránya – nem lineárisan, hanem a normális eloszlás igényét figyelembe véve került kiszámításra. Ebből kiindulva pedig már le lehet vonni a logikus következtetést:

Ha egy pixel két osztályba is egyforma valószínűséggel tartozhat, akkor nagy valószínűséggel mindkét osztályba is tartozik.

Ezt a módszert később a support vector machine (támasztó vektorok módszere, SVM) osztályozó segítségével terjesztettem majd ki.

IV.2. Klaszterezési eljárások

Számos olyan példát lehet hozni a terület irodalmából, amelyekben a szerzők a fentinél lényegesen megszokottabb, különböző osztályozási – klaszterezési – eljárások segítségével értékelték ki a hiperspektrális adatokat. Ez a fejezet éppen ezért rendkívül terjengős is lehetne – annak pedig, hogy mégsem lett az a témát felgöngyölti, akkor nagyon nehéz megállni, hiszen a vonatkozó publikációk listája rendkívül hosszú, ráadásul lényegében nem tér el a multispektrális adatokon végzett hasonló összehasonlító tanulmányok tartalmától – így csak a legfontosabbakat említem meg.

Érdekes eredmény, hogy nem ismert olyan kutatási eredmény, amelyik kimondaná azt, hogy a számos osztályozási eljárás közül valamelyik egyértelműen kiemelkedő lenne
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Ez utóbbi publikáció azért is különösen lényeges, mert a vegetációs osztályozás során a vegetációs elemek kémiai összetétel mellett osztályozó faktorként megjelölték a fák fiziognómiaját is. Azaz az osztályba sorolás nem kizárólag az ott található fa-egyedek vegetációs elemeinek kémiai összetételén múlt, hanem az egyes egyedek felépítésén is – ami viszont szoros összefüggésben van azzal, hogy a vizsgált, 30x30 m-es pixelen belül milyen arányban látszik levélzet, faág, kibukkanó talaj vagy akár a fák alatt található lágyszárú növényzet.

Összességében azonban elmondható, hogy kutatások alapján, amennyiben teljes felvételt érintő, nem csak vegetációs, hanem „általános” felszínborítási osztályozás történt a főbb felszínborítási osztályok bevonásával (pl. talaj, erdős vegetáció, vízes vegetáció, lágyszárú vegetáció, vízfelület, beépített terület), úgy a hiperspektrális adatok bár némileg jobb eredményeket hoztak, mint a multispektrális érzékelők, azonban még az sem jelentett szignifikáns különbséget (Goodenough et al. 2002; Xu & Gong 2013).

IV.3. Egyéb kiértékelési módszerek

IV.3.1. Nem klaszteranalízis alapú osztályozási eljárások

A fenti kikövetkező, hogy a hiperspektrális adatok ereje nem a „szokványos” klaszterezési eljárások során mutatkozik meg, hanem jól meghatározott hullámhosszokon alapuló, célzott elemzések során. Mivel azonban a hiperspektrális adatok rendkívül nagy hullámhossz-tartományt lefednek, ezen vizsgálatok első lépése sokszor éppen azon sávos kiválasztása, amelyek később relevánsak lehetnek.

Azon publikációk, amelyek jelen disszertáció szempontjából a leginkább relevánsak, szinte kivétel nélkül vegetációs vizsgálati céllal íródhatnak. Ennek két fő oka van: egyrészt a vegetáció tud akkora, összefüggő, de mégis heterogén felszínborítási foltokat alkotni, amelyek vizsgálatához egy Hyperionhoz hasonló közepes felbontású érzékelő érdemben hozzájárulhat valamit. A másik indok azonban megegyezik azzal, amiért jelen disszertációban is a vegetációs vizsgálatok kerültek előre: bár a vegetáció látszólag homogén foltokat alkot, számos
paramétertét tekintve – amely paraméterek jó része pont hiperspektrális adatok segítségével válik elemezhetővé – rendkívül heterogén.

A módszert egy jó példán keresztül vezetem le, amely egy ausztrál cukornád-ültetvény vizsgálata volt, amely feladattal a multispektrális érzékelők nem boldogultak (Apan et al. 2004). A vizsgálat során a kutatók megpróbálták feltární, hogy egy ún. „orange rust” nevű, gombás fertőzéssel sújtott cukornád-ültetvény mely részei fertőzöttek és melyek egészségesek.

Logikusnak tűnhet egyfajta vegetációs index alkalmazása (a beteg egyedek NDVI értéke logikusan alacsonyabb, mint az egészségesek), azonban a cél volt a fertőzés pontos térbeli lehatárolása mellett az is, hogy a kutatók megalkossák a szóban forgó fertőzés reflektancia-spektrumát. Ezzel lényegében elsőként alkottak meg egy olyan spektrális könyvtárat, ami nem egy felszínborítási típust tartalmazott, hanem egy más spektrumokat befolyásoló tényezőt. A vizsgálat menete viszonylag egyszerű volt: a szakemberek GPS-szel lehatárolták az egészséges és a beteg növényfoltokat, majd megvizsgálták a két terület spektrális eltérésein (26. ábra).

Az ábrán remekül látszik, hogy egyes hullámhossz-tartományokban az eltérés a fertőzött és az egészséges foltokat tekintve valahol pozitív, valahol pedig negatív – de mindenképpen jól kijövödik egy kb. +/- 3%-os, változó és egyedi lefutástú görbe. Érdekességképp a különbséget mutató görbe alakja rendkívül hasonlít az eredeti cukornád görbéjére – így ez a spektrális ujjlenyomatként is értékelhető eredmény nem is igazán a fertőzést okozó gomba, hanem sokkal inkább annak a növényre gyakorolt hatását mutatja – ebből egyébként azt is ki lehetne mutatni, hogy mely paraméterekre van igazán hatással. Logikus feltételezés lehet a sokszor emlegetett 2000 nm-es, H₂O tartalomhoz tartozó abszorbancia-csúcs, ami itt további negatív értékként rajzolódik ki – tehát vélhetőleg a fertőzött növények H₂O tárolási kapacitása csökkent (habár ez az állítás még bőven igényli némi alátámasztást).

A publikáció – bár a vizsgált területet tekintve egyedi (Mackay, Ausztrália), jól megvilágítja azt, hogy a hiperspektrális adatok kiértékelése során a szokványos osztályozástól eltérő módszereket érdemes felhasználni. Hasonló módszert alkalmazott még Galvão et al. 2005, azonban ebben az esetben nem fertőzés, hanem különböző cukornád-típusok elkülönítése volt a cél.
26. ábra: Orange rust fertőzött és nem fertőzött területek reflektancia-görbéje (a) és azok különbsége (b) (Apan et al. 2004)
IV.3.2. Spektroszkópiai vizsgálatok

A fent részletezett módszerekkel szemben jogos kritika lehet, hogy bár azok alapvetően nem klaszterezési alapúak, mégiscsak a céljuk egyfajta osztályozás volt – így különösebb novum nincs benne, csupán más módon történt a pixelekben rejlő különbségek megragadása. Fontos különbség azonban, hogy az más, egyedi kiértékelési szempontok alapján történt – bár az élesszemű olvasó közbevetheti, hogy végső soron ebben az esetben is klaszterek kialakítása volt a cél, még ha nem is a klasszikusan használt osztályozó algoritmusok használatával. Ezzel szemben van még a hiperspektrális adatoknak egy olyan komoly felhasználási csoportja, amelybe azon vizsgálatok és kutatások sorolhatók, amelyek a távérzékelési módszerek helyett közelebb állnak a laboratóriumi spektroszkópia világához – ezen a ponton viszont sokkal inkább a „képalkotó spektroszkópia” elnevezés válik a korrekté. Ezek az eljárások természetükből fakadóan inkább talajtani vizsgálatok esetén alkalmazhatók, hiszen céljuk rendszerint valamilyen kémiai tulajdonság kimutatása, ami leginkább az egyes talajparaméterek, nem pedig vegetációs vagy beépített területek esetén birhat nagy jelentőséggel.

Véleményem szerint a legjobb példa Choe et al. 2008 nehézfém-szennyezést célzó vizsgálata, ami bár nem műholdas adatok segítségével készült, de jól leírja az alkalmazott módszertant, valamint annak a tapasztalt előnyeit és hátrányait. Ezen eljárás esetében nem a teljes reflektancia-spektrum, hanem annak csupán egy kulcsfontosságú része került kiválasztásra, majd különböző matematikai eljárások alapján történt a megfelelő kiértékelés. Ebben az esetben a cél a laboratóriumi vizsgálatok során alkalmazott módszerek távérzékelési kiértékelése volt oly módon, hogy a kémiai specitoszkópiában megszokott eljárások kerültek kiterjesztésre.

A mintaterület a spanyolországi Rodalquilar aranybányája, illetve a bánya mellett található folyó időszakosan szárazulattá váló medre volt, ahol a kutatók az üledékből mintákat vettek, majd azokat először laboratóriumi vizsgálatokkal értékeltek ki. A várakozásnak megfelelően a nehézfém tartalom a megszokottnál jóval magasabb volt, hiszen a folyóba kerülő relative nagy mennyiségű arany (max. 19507 ppm) miatt a talajok nehézfémekre vonatkoztató pufferkapacitása lecsökkent, így az arén, ólom és más nehézfémek helyett a kolloidok aranyat adsorbeáltak, aminek következtében az üledékből található nehézfémek mennyisége jelentősen megnőtt.

Ezt követően a kutatók – természetesen korábbi kutatásokra alapozva – megvizsgálták, hogy az értékek mely spektrális tulajdonsággal mutatnak erős korrelációt (27. ábra).
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

![Diagram](image)

27. ábra: Különböző reflektancia-gőrbék és azok nehézfém-tartalma. a) Eredeti görbe, b) Folytonosság-csökkentett adat, c) Normalizált, folytonosság-csökkentett adat (Choe et al. 2008)

A reflektancia görbéknek kiszámították a szakaszos, folytonosság nélküli változatát (lényegében egy szakaszoltan kiegyenlített és trend nélküli, „continuum removed” adatot képezve), így az adatban már csak a tényleges negatív, tehát abszorbcíos csúcsok maradtak meg. Ezen csúcsok elemzésével a kutatók több következtetésre is jutottak. Egyrész kiszámolták, hogy az arzéntartalom, valamint a 2200 nm körüli negatív csúcs területén 10-es alapú logaritmus értékeinek lineáris regressziós együthatója (R^2) 0,876 – azaz viszonylag erősnek látszik a kapcsolat. Másrészt kimutatták azt is, hogy az egyéb nehézfémek és hozzájuk társítható csúcsok más paramétereinek (pl. a 2200 nm körüli csúcs aszimmetriája) lineáris regressziós együthatója (R^2) 0,47 és 0,65 között mozog – ami viszont már gyenge összefüggésnek látszik (de mint tudjuk az negatív eredmény is eredmény). Végül pedig a fént módszereket felhasználva valamilyen pontossággal meg tudták becsülni az egyes nehézfémek tartalmát. Az ólom esetében 0,614, a cink esetében 0,596, az arzén esetében 0,876 a teljes nehézfém-tartalom esetében pedig 0,649 R^2 értéket lehetett elérni.

Erős kritikával élve azt lehet mondani, hogy az arzéntartalom becslése jól sikerült, a többi nehézfém vizsgálata azonban még további kutatásokat igényel. Azonban nem szabad elmenni amellett a rendkövül pontos tény mellett, hogy az összefüggések a legtöbb esetben átlépték a véletlenszerűség határát, határozottan jelen lévő – ámde gyenge – összefüggésre mutatnak rá. Ezen a ponton tehát kijelenthető, hogy hipserspektrális távérzékelt adatokkal becsülhetők egyes kémiai talajparaméterek, a kérdés csupán az, hogy milyen pontossággal? Az optimista válasz erre a kérdésre az, hogy ez csupán módszertani eljárás kérdése és a jövő kutatóinak feladata megtalálni azokat az eljárásokat, amelyekkel a távérzékelt, pixel alapon felvételezett és a laboratóriumi, pontszerű méréseken alapuló spektroszkópiai elemzések összekapcsolásra kerülhessenek.
Elméletben a fenti eredményeket fel lehetne használni hiperspektrális műholdfelvételek kiértékelésére is, azonban véleményem szerint az alacsony korreláció kialakulásában nem az alkalmazott spektroszkópiai módszerek, hanem a felvételezésben található viszonylag alacsony térbeli felbontás (4 m/px) okozta mintavételi heterogenitás – illetve egész pontosan a feljebb már említett spektrális keveredés – játszott szerepet. Ebből viszont az következik, hogy a felbontás további csökkenésével a mért összefüggés válhatóan ha nem is biztos, hogy csökken, de érdemben nem emelkedhet – természetesen csak ha a fenti módszertant alkalmazzuk.

Az eljárás a fentihez hasonló volt: terepi mintavétel után laboratóriumi vizsgálat következett, aminek később megtörtént a távérzékelési eszközök történő átültetése. A legfontosabbnak látszó (ám valójában módszertanilag marginális) különbség a két eljárás között, hogy míg Choe et al. 2008 esetében a 2200 nm körüli hullámhossz-tartomány körül forgott a vizsgálat, addig a talajok esetében a szervesanyag elsősorban – egyébként az elvárásokkal és a nemzetközi szakirodalommal összhangban – leginkább a vörös, red edge és közeli infravörös tartományban, 610-810 nm-nél mutatott különbségeket. Ez nem meglepő, ha azt vesszük, hogy a magas szervesanyag-tartalom már a népnyelvben is jelentősen összefüggött a talajok színével: egy talaj minél barnább és sötétebb volt, annál inkább termékenynek bizonyult. Gondoljunk csak a csernozjom, „fekete föld” elnevezésére. Nem nehéz tehát levenni a jelen disszertációban elfogultatlanak semmiképp sem nevezhető következtetést: a népi megfigyelések segítségével a gazdálkodók végső soron már a laboratóriumi spektroszkópia feltalálása előtt spektrális tulajdonságok (azaz szín) alapján becsülték egy talaj szervesanyag-tartalmát (28. ábra).

A fenti esetben kialakított módszertan minden matematikai szigor mellett is megállja a helyét, a mért és becsült értékek lineáris regressziós együttthatója igen magas, 0,93 volt, ami bátran használható kiterjedt formában is elemzésre. A képlet az alábbi módon néz ki:

\[
\ln (\text{SOM}) = 1.72 - 2001 \times N'(\lambda 580) + 746.82 \times N'(\lambda 730) + 993.15 \times N'(\lambda 630)
\]

ahol \(\ln(\text{SOM})\) a teljes talaj-szervesanyag logaritmosa, \(N'(\lambda)\) pedig az I-edik hullámhosszon mért folytonosság-csökkentett reflektancia-érték.

Mindkét esetben egy további tanulság, hogy bár a levezetett képletek lineáris összefüggést sejtetnek, illetve a rájuk épített regressziós számítások is lineáris összefüggést vizsgálnak, azonban mind a néházfém-tartalom, mind pedig a talaj-szervesanyag esetében a vizsgált talajparaméter esetében logaritmixált adators került kiértékelésre. Ebből viszont az következik, hogy a lineárisnak leírt összefüggés tulajdonképpen a talajparaméterek oldaláról vizsgálva logaritmikus, a távérzékelési adatok felől szemlélve viszont exponenciális.

A fenti elemzések bár jól bemutatják, hogy maga a módszer mire képes, azonban az érzékelők viszonylag kis felbontása miatt – különösképp, ha a pontszerű méréseken alapuló laboratóriumi vizsgálatokkal vetőük őket össze – kiterjeszthetőségük kér déses. Logikus lenne, hogy erre is a spektrális szétkeverés adjon választ, azonban még a jelenleg elérhető, 30 m/px körüli felbontású eszközök számára is az egyes pixelek információtartalmában a
talajparaméterek olyan kis süllyal szerepelnek, hogy azok elvesznek a számos egyéb tulajdonság között.

IV.4. High-tech megoldások

IV.4.1. Marsi adatforrások

Bár más égitestek vizsgálatának módszerei nem térnek el jelentősen a fent leírtaktól, a témakör körül is kering hiperspektrális érzékelővel felszerelt űrszonda, mégpedig az indiai Chandrayaan-2, aminek a fedélzetén található a Moon Mineralogy Mapper (M3) nevű hiperspektrális érzékelő, égi kísérők felszíne számunkra most nem elég változatos (főleg a szubpixeles osztályozás vetületében), a vizsgálatok többsége inkább csak a gazdasági szempontból érdekes fémek és H2O keresésére irányul (pl. Isaacson et al. 2011 és McCord et al. 2011). Így elsősorban a távérzékelési szempontból valamivel izgalmasabb, valamint fejlettebb érzékelőkkel kutatott Mars bolygóról gyűjthető adatokat említem. Annak, hogy ez a téma külön fejezetet érdemelt több oka is van.

Egyrészt a terepi mintavételezés jelentős korlátozottsága miatt alig találhatunk referencia-méréseket (kizárólag a leszállóegységek közvetlen környezetében), így a Földön mintaterületeken kifejlesztett távérzékelési módszertan kiemelt jelentőséggel bír. Másrészt a felszínborítás földi viszonylatban vett végében egyszerűsége olyan eltérő elemzéseket tesz lehetővé – tehát a reflektanciában olyan paraméterek válnak láthatóvá –, amelyek inkább a föld emlitett spektroszkópiai vizsgálatokat, nem pedig a felszínborítás térképezését célozzák (29. ábra). Míg a Földön egy CRISM-hez hasonló terepi felbontású (17 m/px) eszköz számára nagyon nehéz lenne olyan területeket találni, ahol a spektrális keveredés ne nehezetene meg minden talajjal kapcsolatos elemzést (a IV.3.2.-es fejezetben felvázolt módszerek kiterjeszthetősége, ahogy már említettem, erősen kérdéses), addig ez a marsi, nagy, összefüggő, homogén területek esetén könnyűszerrel megtörténhet. Másképp szólvá: míg a Földön egy 17x17 m-es területen akár a talajok összetételét, akár a felszínborítást tekintve spektrálisan jelentős változások észlelhetők (tehát nagyon heterogén pixelekre számíthatunk), addig a Marson ezek a területek – a szenzorok korlátaiba is figyelembe véve – spektrálisan sokkal inkább homogénnek lesznek, a heterogenitást pedig földi viszonylatban jellegtelen kémiai tulajdonságok adják.
Érdekes vizsgálati terület még ez a jelentősen eltérő atmoszférikusz összetétel miatt is (a rendkívül ritka marsi légkörben nitrogén helyett a szén-dioxid van túlnyomó többségben) a távérzékelt adatokra gyakorolt atmoszférikusz hatások tehát jelentősen eltérnek a Földön megszokottól, azaz olyan hullámhosszok segítségével is vizsgálható a felszín, amelyek a Földön nem esnek bele az atmoszférikusz ablakokba.

Az elemzések végrehajtásához a legjobb eszköz (nem csak a szerző, de más kutatók véleménye szerint is) az ENVI CAT, azaz az ENVI szoftver CRISM Analysis Tool nevű ingyenes kiegészítője (nem nehéz tetten érni a szakterületre jellemző, többszörösen egymásba ágazott mozaikszavak használatát, hiszen a „CRISM” már önmagában is a Compact Reconnaissance Imaging Spectrometer for Mars rövidítése). Fontos megemlíteni azt is, hogy a CRISM bár képes a látható tartományban is adatokat rögzíteni, alapvetően az elemzéseket

29. ábra: A Valles Marineris oldala egy CRISM felvételen, valódi színes sávkiosztásban. CRISM ID: FRT00007AF6
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

támogató színes felvételek elkészítésére a fizikailag közvetlenül mellette helyet foglaló, rendkívül hangzatos nevű MARCI használatos (MaRs Color Imager).

A két eszköz képességei alapvetően eltérők, a MARCI csupán a 260 nm, 320 nm, 425 nm, 550 nm, 600 nm, 650 nm és 725 nm hullámhosszokban tud érzékelni, amelyek elsősorban a látható tartományt fedik le (bár ha megfigyeljük itt szerepel két UV sáv is, amelyeket a Mars eltérő légköre nem tesz olyan zajossá, mint a földi atmoszféra). A CRISM azonban ennél összetettebb elemzésekre képes, köszönhetően annak, hogy nem is egy, hanem két érzékelőből áll, amelyek két hiperspektrális adatkockát állítanak elő (csakúgy, mint a Hyperion).

30. ábra: A CRISM különböző FWHM-értékei eltérő hullámhosszokban és látószögnél
(Murchie et al. 2007)

A rövid hullámhosszú adatok 410-1023 nm közötti tartományban (látható, illetve közeli és rövidhullámú infravörös tartomány alja), összesen 88 sávban rögzítenek (azaz az átlagos sávszélesség kb. 6,95 nm), addig a hosszú hullámhosszú szenzor 1021-3823 nm között rögzít összesen 430 sávban (tehát az átlagos sávszélesség kb. 4,19 nm).

Ebből látszólag az következne, hogy mivel a rövidebb hullámhosszú adatok látszólag kevesebb, csaknem 1/5-őd sávot tartalmaznak, mint a hosszú hullámhosszúak, az általuk tárolt információ mennyisége is 1/5-őd mértékű. Természetesen ahogy korábban már említettem, nem
csak a sávszélesség, hanem az érzékenységi tartomány szélessége, az FWHM is fontos. Ez az érték a rövid hullámhosszú műszer esetében 8 nm – azaz az egyes sávok viszonylag jól lehatároltak –, addig a hosszú hullámhosszú műszer esetében akár 15 nm is lehet. Ez azt jelenti, hogy egy 4,19 nm széles sáv értéke akár összesen három (önmaga, valamint a két mellette lévő) sáv átlagát tükrözi – természetesen középen az érzékelési csúccsal (Murchie et al. 2007).

Azonban a 30. ábrára tekintve még az is látszik, hogy az adatok a korábban említett spectral smile hatásnak köszönhetően a látómezőn belül el is térnek, ami a hosszú hullámhosszú érzékelő adataira még inkább igaz, hiszen azok csak akkor lennének korrektak, ha minden három sávból egyet képeznénk (hiszen egy sáv információértékmérték lényegében önmaga és a két mellette lévő adja). Így az effektíven használható sávok száma mindössze 143 körül kéne, hogy alakuljon, ami a 88 rövid hullámhosszú sávhoz viszonyítva már nem jelent lényeges eltérést. Az, hogy ez mégsem így történt minden bizonytal technikai korlátozók és magáraható: a hosszúhullámú érzékelő vitathatatlan előnye, hogy a hosszú hullámhosszokban is érzékel (tulajdonképpen még a nevét is onnan kapta), addig hátránya, hogy ezért cserébe megnő az érzékelési tartomány.

A CRISM adatok elemzésének módszerei viszont már nem térnek el jelentősen a Földön megszokott eljárásoktól. Számos spektrális index áll a felhasználók rendelkezésére, amelyek többsége valamilyen ásványcsoport (pl. aluminium-hidroxid ásványok, piroxének), vízjég, szárazjég, esetleg konkrét ásvány (pl. gipsz) keresését célozzák (31. ábra). A levezetett adatok olykor normalizáltak, olykor valamilyen mással összehasonlítható relatív értékeket mutatnak és jellemzően 3-4 sáv elemzésének a segítségével mutathatók ki (Pelkey et al. 2007).

A Marson távérzékelési szempontból a legkutatóabb témák közé a vízjég, illetve szárazjég keresése tartozik, így a leginkább mélyreható vizsgálatok is ezek keresését célozzák, sokszor felszíni analógia-vizsgálatokkal megtámogatva (Cull et al. 2010a; Cull et al. 2010b). Emellett mindenképpen említésre méltók azon vizsgálatok is, amelyek nem kifejezetten a valamilyen formában jelenlévő H₂O vagy szárazjég jelenlétét kutatják, hanem azok is, amelyek a bolygó múltjára utaló ásványokat keresik akár a pólusokon (Brown et al. 2010), akár más területeken (Amador et al. 2018; Mustard et al. 2008).

A fenti módszerek említése nem csupán a teljesség kedvéért történt meg – bár egy mindenre kiterjedő hiperspektrális adatokkal foglalkozó áttekintés ehhez elengedhetetlenül szükséges, hanem azért is, mert a CRISM módszerei, illetve a fent felvettet problémák később még visszaköszönhetnek. Ami a fentiekből talán a legfontosabb következtetés az, hogy a II.4.2-es fejezetben tárgyalt pixel-homogenitás elvének megfelelően komplexebb ásványtani
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

elemzések csak a Marshoz (vagy más égitestekhez) hasonló, kevésbé változatos felszínen lehetségesek.

![Image](image.png)

31. ábra: Egy CRISM felvétel (A), illetve a belőle levezetett vas-index (B) (CRISM ID: FRT00017C94)

IV.4.2. Drónos felmérések

Ezen a ponton érdemes kitérni a drónos hyperspektrális felvételezés lehetőségeire is, hiszen egy rendkívül újszerű és ütőtő témáról van szó – aminek teljes felkutatása önmagában is megérne legalább egy, de inkább több jelen disszertációhoz hasonló terjedelmű művet. A témában közvetlenül még viszonylag kevés kutatás készült – bár közvetetten nekem is van szerencsémm a fejlődését figyelni – bátran állíthatjuk, hogy egyelőre több a benne rejlő bizonytalanság, mint amennyi a megoldott probléma. A drónok – avagy hivatalos nevükön „pilóta nélküli légijárművek”, ami az angol „unmanned aerial vehicle” (UAV) hivatalosnak mondható fordítása – felhasználási területe egyre nő legyen az fotogrammetria (Bertalan et al. 2018; Casagrande et al. 2018), infravörös sávokat is felhasználó multispektrális agrár-távérzékelés (Hunt et al. 2010; Chao et al. 2008) vagy akár a jelenleg legérdekesebb hyperspektrális adatfeldolgozás (Mitchell et al. 2012; Árvai et al. 2018).

Ezek a szenzorok rendszerint kicsik és könnyűek (32. ábra), hiszen a legtöbb drón emelési kapacitása is csak néhány kg körül, vagy az alatt alakul, ennek megfelelően a műszeraj nagyobb, az effektív pixelszám pedig kisebb, mint egy repülőre szerelhető műszer esetén.
A drónos hiperspektrális adatoknak látszólag egy komoly előnye van a légi felvétellezéssel szemben is: az alacsonyabb repülési magasság jóval nagyobb terepi felbontást jelent, így ez a fajta adatgyűjtés már lényegesen közelebb viheti a felhasználót a laboratóriumban mérhető reflektancia-spektrumok világához. Azonban véleményem szerint, ahogy az ürfelvételek esetében, itt is a felbontás az, ami a legnagyobb előny mellett egyben a legnagyobb hátrány is – csak épp azért, mert pont fordítva ülünk a lovon. Azaz bár pont az lenne logikus, hogy az ürfelvételek kisebb felbontását hátrányként kezeljük, míg a drónos felmérések akár cm/pixeles mérettartományát előnyként, a valóság mégsem ennyire egyszerű.

A Hyperion adatainál a közepes felbontás bár sok részletet elfed, ezzel együtt pedig jóindulatúan összemossa az egy-egy vizsgálat szempontjából lényeges és nem lényeges, zajos vagy zavaró elemeket, így ha nem is veszi ki őket a képletből legalább pixelenként nagyjából azonos szinten tartja. Jó példa erre egy NDVI számítás, ahol számíthatunk arra, hogy a szomszédos pixelek esetén hozzávetőlegesen. azonos a kibukkanó talajfoltok aránya – így ezzel a faktorral nem szükséges az adatokat korrigálni (az más kérdés, hogy ez a probléma máskor jelentős, ezért jöttek létre kifejezetten talajra is érzékeny spektrális indexek). Egy drónos felmérés esetében azonban ezen tényezők szerepe miatt a pixelek összehasonlíthatósága – további előfeldolgozási lépések nélkül – komolyan megkérdőjelezhető.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Ez a gyakorlatban azt jelenti, hogy a drónos adatoknál már-már olyan nagy lett a felbontás, hogy egy vegetációs egyed – például egy fa – NDVI értékének kiszámítása jelentős többletmunkával jár, hiszen egy-egy pixel nem a vizsgált egyedet, csak annak egy kis részletét mutatja. Ez a részlet a szomszédos pixeleket összehasonlítva eltérő arányban tartalmazhat a fotoszintézis szempontjából lényegesen faágot és lényeges levélfelületet, így a számított NDVI is eltérő lesz még akkor is, ha az egy pixelre eső fotoszintézis szempontjából lényeges növényi részek között nincs különbség. Természetesen az megoldás, ha (akkor egy szegmentálás után) az egy egyedhez tartozó pixelek átlagértékét vesszük, de az jelentős többletfeladat – azt pedig könnyen beláthatjuk, hogy ugyanezt a lépést egy kisebb felbontású adatforrás esetén nem szükséges megtenni.

Másképpen szólva: a pixelek ebben a mérettartományban bár heterogénnek (hiszen eltérő arányban tartalmaznak különböző önállóan mérhető paramétereket), de ezt a heterogenitást már olyan, felszínborításnak igazából nem nevezhető elemek okozzák (pl. faág, közetdarab, szélsőséges esetben csészelevél, illetve talaj-szervesanyag – hogy a mesterséges felszínekről most ne is beszéljünk), amelyek gyakorlatban mérhető, pixel alapon mért reflektanciára gyakorolt hatása még nem megfelelően kutatott. Egyelőre tehát nem léteznék megfelelő spektrális könyvtárak, így az ezzel foglalkozó kíválo kutatók véleményem szerint a következő évek távérzékelési témái közül a legizgalmasabbal ismerkedhetnek meg – ráadásul nem kizárt az sem, hogy a megoldás épp a szubpixeles azonosítási módszerekben rejlő majd, hiszen egy NDVI érték már jól korrigálható, ha adott pixelen belül kimutatható válik a fotoszintetikus és nem fotoszintetikus felület aránya. Mindezeket összevetve tehát a hiperspektrális adatok felhasználása egyelőre csak akkor áll biztos lábakon, ha több eltérő adatforrás is bevonásra kerül (Kalisperakis et al. 2015).

Jelen disszertációban nem célem a probléma teljes körű feltárása, de komoly körül nem tekintésre vallana, ha nem említeném meg a technológia tagadhatatlan előnyeit is. A nagyobb felbontás azt jelenti, hogy a felszín olyan elemei válnak vizsgálhatóvá, mégpedig olyan részletes felbontásban, ahogy eddig még soha. Amennyiben a cél a talajfoltok kémiai összetételének akár mikroterületen mérhető változásának és vegetációval vagy mikroklimával történő összefüggésének a vizsgálata, az ezen eszközök felhasználásával ez minden eddiginél könnyebben megtörténhet. Ugyanilyen újszerű és nagyon jó előzetes eredményekkel kecsegtető irány az is, ha egy drónos felmérés – akár azonos szenzort használva – fotogrammetria felméréssel egészül ki, majd az adatok együttesen kerülnek kiértékelésre – így egy növényfajt
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

pl. nem csak spektrális jellemzői, de méretei vagy felületének geometriai tulajdonságai alapján is osztályozni lehet.

33. ábra: Erdei rénzuzmó (Cladonia arbuscula) visszaverődési értékei eltérő irányokból mérve (Kaasalinen et al. 2005)

Véleményem szerint azonban az új potenciális tématerületek közül a legérdekesebb az iránybesugárzás (goniometria) témája (Burkart et al. 2015). Régi probléma, hogy az egyes felszínborítási foltokon, vegetációtipusokon, de akár még a különböző talajtípusokon is eltérő reflektancia-értékek mérhetők, ha a szenzor eltérő szögben látja őket – hiszen egyes detektált elemek másképp néznek ki (pl. a levelek eltérő szögből szemlélve lapjukkal vagy élükkel látszanak). Ez a probléma légi vagy műholdas felmérések esetén kevésbé releváns, hiszen a szenzor rendszerint (közel) nadir szögben látja a felszínt (31. ábra), illetve kiemelten a műholdas felvételek esetén az oldalirányú felvételezésből fakadó vastagabbnak látszó
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

atmoszféra is befolyásolja az eredményeket, ezért ott jól kutatott (és kerülendő) a téma, de földi vagy drónos mérések esetén komoly dilemmát jelenthet (Kaasalainen et al. 2005).

Amennyiben elfogadjuk azt a tényt, hogy nem mindegy, hogy egy növénynek a felvételen északi vagy déli oldala jelenik meg (jellemzően bármireme különbség e kettő oldal között a legjelentősebb), és ez a spektrális tulajdonságokban is meglátszik (ez is jól alátámasztott tény) akkor azt is beláthatjuk, hogy egy nagyobb látószöggel felszerelt drón a programozott útvonalán haladva (vélhető legalább 40%-os átfedéskor) ha a vizsgált egyedtől délre halad, akkor a déli oldalát, északon haladva pedig az északit látja, de az is lehet, hogy a kettő között egyszer zenitben is gyűjt adatot. Mivel ez a fentiek értelmében ez mind eltérő reflektanciát jelent, ezen eszköztárat használó kutatók egy új, eddig kevésbé lényeges előfeldolgozási lépést is be kell hogy vezessenek, ez pedig a jelenleg még csak gyerekcipőben járó goniometrikus korrekció lesz (Holopainen et al. 2007).

A drónos adatok felhasználása tehát rendkívül sok lehetőséggel kecsegtet és véleményem szerint a szükséges technológia is rendelkezésre áll. Kihívást jelent ugyanakkor a megfelelő módszertanok kidolgozása (alkalmazott kutatási szempontból talán ez a legizgalmasabb) és az ehhez kapcsolódó kiértékelő szoftverek, algoritmusok fejlesztése. Kiemelt feladatnak érzem még a spektrális könyvtárak fejlesztését is, amelyek éppen ebben a néhány cm-es tartományban hiányosak (hiszen léteznek adatok pontszerű mérésekre és néhány m/px-es légi felmérésekre is).
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

V. Újszerű hiperspektrális adatfeldolgozási módszerek vegetációs vizsgálatok példáján

A hiperspektrális adatok tehát számos olyan elemzésre adnak lehetőséget, amelyek csak mintavételezéses, költséges és lassú terepi vagy laboratóriumi módszerekkel lennének elvégezhetők. A tagadhatatlan előnyök mellett azonban a szakemberek a felhasználásuk során számos kihívással néznek szembe. Ezen problémák egy része ugyanából a tényből fakad, mint amiből az egész hiperspektrális adatfeldolgozás előnye is származik: a nagy mennyiségű adat és a kiértékeléshez használható számos paraméter (azaz a nagy dimenziószám) bár rengeteg hasznos információt tartalmaz, a szükséges előfeldolgozásra fektetendő komoly hangsúly miatt óvatosságra is inti a felhasználót.

Ezért a disszertációban amellett, hogy fontos célom volt a fenti problémák feltárása, megpróbálok azokra kielégítő megoldásokat is adni. Fontos azt is megjegyezni, hogy bár a kutatás elsősorban a Hyperion adatfolyam történt, az tetszőlegesen felhasználható más hiperspektrális felvételek kiértékelése során is.

Végül célként a szubpixeles osztályozási módszerek vegetációs osztályozást célzó felhasználásának finomítása mentén indultam el, hiszen ott előkerül minden fent vázolt probléma, azaz:

- az egyes osztályok közti spektrális eltérés olyan kicsi, hogy az adatban található zaj könnyen befolyásolhatja a végeredményt,
- az egyes vegetációs osztályok egymástól spektrálisan – a teljes adattömbhöz viszonyítva – nem különülnek el jól,
- valamint számos olyan pixel akad, ami nem egy, hanem több osztály keverékéből áll.

Emellett célom volt az is, hogy az osztályozási folyamat egy lépésében azonosításra kerülhessenek azon „kulcsâllámhosszok” (azaz a későbbiekben a szerzőtársakkal közösen jegyzett kapcsolódó publikációval összhangban „influential bands”-ként emlegetett sávok), amelyekből megállapítható, hogy egy-egy hiperspektrális űrfelvételen mely fizikai-kémiai tényezőhöz köthető hullámhossz-tartományokban különíthetők el a legjobban az egyes vegetációs osztályok, illetve melyek azok, amelyek egyes vegetációs osztályok elkülönítésében a leginkább részt vesznek. A cél kitűzésekor még nem tudtam, hogy az a lépés a dimenziócsökkentés lépésével együtt történik, ahogy azt sem, hogy minden várakozással
ellentétben nem (csak) a klorofill-reflektancia tartomány bír majd kiemelt jelentőséggel, hanem más – elsősorban a faágak kémiai tartalmához köthető – anyagok is.

V.1. Vegetációs vizsgálatok hiperspektrális adatokkal

Bár a hiperspektrális adatok nyújtotta lehetőségekről általában már értekeztem, de érdemes azt is áttekinteni, hogy ez a szükebb – vegetációval foglalkozó – tématerület napjainkban milyen eredményeket tud felmutatni.

A legtöbbször – ahogy a fenti esetekben is – a hagyományosabb, klasztterezés alapú osztályozási eljárások kerülnek felhasználásra, ami – jellemzően nem fajszintű – vegetációs osztályozás esetén a nagy fokú spektrális hasonlóság miatt kiemelten komplexnek bizonyulhat. Ez kiemelten érinti azon vizsgálatokat, ahol nem csak egyfajta bináris osztályozás (pl. leégett/egészséges vegetáció) osztályozás a cél, hanem vegetációtípusok (fás szárú, lágyszárú, cserje) elkülönítése történik. Ez történhet vegyes vegetáció (Burai et al. 2015), lombhullató (Gong 1997; Dalponte et al. 2013) vagy trópusi erdő esetén (Clark et al. 2005) de izgalmás kutatási téma a vízparti területek – ilyen módon a vízalatt gyökerező – vegetációjának vizsgálata, ahol a a víz, mint radikálisan elkülönülő felszínborítási típus is megjelenik (Williams et al. 2003, Ndewga és Boitt 2014).

Amellett, hogy egy-egy terület vegetációs térképének az elkészítése a cél, egyre gyakrabban kerülne elő olyan módszertani vizsgálatok, ahol az osztályozás pontosságának
növelése a cél – ahogy az általában osztályozási módszertani kutatások esetén lenni szokott. Ez történhet egy már létező módszer megfelelő paraméterezésével vagy több módszer együttes használatával (jelen sorok szerzője érthető okokból erős szimpátiát érez ezen szerzőkkel, hiszen a később megfogalmazott célok is ebbe a kategóriába tartoznak).

A módszertani fejlesztések során manapság nem csak a már létező algoritmusok finomítása hozhat újabb eredményeket, hanem eddig még nem létező, vagy kevésbé tesztelt módszerek továbbfejlesztése is – az utóbbi néhány évben például különbösen népszerűvé váltak különféle szenzorfúzió segítségével előálló komplex osztályozó eljárások. Ezek a spektrális információk mellett legtöbbször valamilyen, a felszín geometriáját leíró (legyen az dombokzat vagy a vegetáció felülete) pontfelhőt, a legtöbbször LiDAR adatot használnak fel (Zhang 2014). Amennyiben más forrásból származó adat nincs, de adott kutató mégis érzi a szenzorfúzióban rejlő lehetőségeket, akkor jó iránynak látszik az is, ha a felvételekből szegmentációs eljárásokkal kinyerve a lombkoronák geometriai paramétereit tartalmazó adatbázis (pl. átlagos lombkorona-méret, szórás, szomszédok mérete) bevonása történik (Tarabalka et al. 2009).

Ezért számos olyan módszer van, ahol a Hyperion adataival történik a vegetációs osztályozás – ráadásul bőven akad közük olyan is, ahol kifejezetten a fajszintű azonosítás volt a cél (George, et al. 2014; Goodenough et al. 2002). Ezen a ponton a figyelmes olvasó felteheti a kérdést: ha a fajszintű osztályozás már működik, akkor mi értelme van a további vizsgálatoknak? A válasz a korábbi problémafelejtést figyelembe véve viszonylag egyszerű: ezek a vizsgálatok nem veszik figyelembe a pixelen belüli keveredést, így elfogadható (80%
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

fölötti) eredmények jellemzően csak akkor születtek, amikor a vizsgált vegetációtipus fajosszetételét tekintve homogén térbeli egységekből állt. Ez történhetett vagy azért, mert a távérzékelési szempontból fontosabb felső lomkorona-szintben egy-egy faj egyértelműen domináns állományalkotóként jelent meg (Thenkabail et al. 2004), vagy pedig eleve fajszegény erdő volt a vizsgálat célpontja (Galidaki és Gitas 2015), így elegyesedés jellemzően nem alakult ki.

A fenti irodalom átolvasása után egyértelműen kiderülhet, hogy a Hyperion alkalmazási lehetőségei jól kutattak, a korábbi fejezetekben vázolt problémákra azonban egyik publikáció sem kínál átfotó megoldást. Mindegyik esetben az egyes vegetációs osztályok alacsony szeparabilitása és a fajok tekintetében mérhető erős pixel-heterogenitás – amelyet mostantól célszerűbb kevert pixeleknek nevezzí – okozza a problémát, azaz a nagy dimenziószám és a spektrális keveredés okozta problémák továbbra is jelen vannak, gyakorlatilag lehetetlenné téve a vizsgálatokat egy átlagos (már amennyiben létezik ilyen) magyarországi erdő esetében, amennyiben fajszintű osztályozás a cél.

Felületes volnánk, ha nem említenén meg (korábbi ígéretemhez híven), hogy a spektrális szétkeverés és a dimenziócsökkentés témája külön-külön már meglehetősen jól kutatott – sőt, a dimenziócsökkentés és sávkiválasztás témájában jelentős hazai eredmények is születtek (Csillag et al. 1993). Ez előbbiről korábban értekeztem – említe, hogy a gyakorlati megoldások leginkább a lineáris szétkeverést alkalmazzák –, azonban a dimenziócsökkentés témája még érdemel néhány sort.

Az összes módszer közül kiemelendő a távérzékelési vizsgálatokban nagy szerepet játszó főkomponens-analízis (PCA), annak a zajszűrésel ellátott változata (MNF), valamint a diszkriminancia-analízis (SDA). Ezek mind sikerrel kerültek alkalmazásra, rendszerint jelentősen csökkentve az adatmennyiséget (Du és Fowler 2007), ráadásul sok esetben jelentősen növelve az osztályozási pontosságot (Xu et al. 2012; Licciardi és Chanussot 2015), egyes növényfajok esetében akár 100%-ra emelve azt. Fontos megjegyezni, hogy bár egyes fajok magas pontossággal kerültek lehatárolásra, a teljes felvételt tekintve a pontosság még mindig 80% alatt maradt (Licciardi et al. 2012), ami a dolog mélyére hatolva mindjárt más megvilágításba helyezi az eredményeket. Ez a 80%-os a vizsgálati célokat figyelembe véve egyébként rossznak nem mondható pontosság nagyjából megfelel a szakirodalomban olvasható átlagnak – amennyiben nem jól szeparálható, jellemzően különböző vegetációs osztályokat érint. Éppen ezért érdemes a magas értékeket alapvetően anomáliáként kezelni az eredményeket pedig kritikával is kezelni, hiszen Licciardi et al. 2012-es említett vizsgálatában a 100%-os
pontosság is csak úgy alakulhatott létszögal ilyen jól, hogy egy egyébként meglehetősen vegyes mezőgazdasági területen – ahol a lucerna mellett jórészt kalácsosokat, hagymaféléket és burgonyát vizsgáltak – külön-külön osztályba lett sorolva a nagy pontossággal lehatárolt hagyma, a fokhagyma és a burgonya. A hagyma és a burgonya megjelenésének köszönhetően spektrálisan jól elkülönült a többi osztálytól, a fokhagyma pedig eltérő vegetációs fázisban volt – így végül az osztályozási pontosság úgy lett csak igazán jó, hogy eltérő vegetációs fázisban, egyébként is spektrálisan jól elkülönülő fajok kerültek vizsgálatra (ez a tény ihlette a mintaterület és a felvétel kiválasztásakor azt az igényt és célt, hogy azonos vegetációs fázisban lévő, spektrálisan hasonló fajokat különítsenek el).

A problémát már más kutatók is felismerték (Chang és Ifarraguierri 2000; Prasad és Bruce 2008; Farrell és Mersereau 2005), a kapcsolódó publikációknak jellemzően a problémával mélyen azonosuló címet adva (pl. „Limitations of Principal Components Analysis for Hyperspectral Target Recognition”), utalva arra, hogy valódi megoldás – azon kívül, hogy a problémakör felismerésre és leírásra került – egyelőre nem született. A spektrálisan hasonló osztályok elkülönítésének a kulcsa a nemzetközi szakirodalom szerint tehát nem a dimenziócsökkentésben keresendő – éppen erre próbálok a későbbiekben, legalábbis részben, rácáfolni.

Az a problémakör sem elhanyagolható, hogy melyik klaszterezési algoritmus a legalkalmasabb a Hyperion adatainak osztályozására. A témában kiterjedt összehasonlító elemzések születtek, amelyek azonos tanulóterület alapján célozták az azonos osztályokba sorolást – így ezt a témát részletesen nem tervezem körüljárni. A tapasztalatok alapján a legjobb eredményeket a spektrális szögeltérés (Spectral Angle Mapper – SAM), a régi és jól bevált legnagyobb valószínűségen alapuló osztályozó (Maximum Likelihood Clasification – MLC), valamint az újszerű gépi tanulásba hajló támasztó vektorok módszere (Support Vector Machines – SVM) adta (Huang et al. 2002; Pal és Mather 2006; Vyas et al. 2011) – a legtöbbször az SVM-et hozva ki a legalkalmasabbnak, amellyel saját vizsgálataim is összecsengenek (Deák et al. 2014). Érdekes, hogy egyik eljárás sem egzakt, tehát mindegyik esetben elképzelhető, hogy „A” osztály tanulóterületeként megadott pixelek végül „B” osztályba kerülnek besorolásra. Ennek a oka, hogy a SAM esetében az osztályozás alapját egy a tanulóterületek alapján számtalan pixelt fiktív osztályközéppont adja, az MLC és az SVM esetében pedig ugyancsak a fiktív osztályközéppont, valamint a tanulópixelek (azaz n-dimenziós spektrális térben felvett pontok) eloszlása alapján történik az osztályba sorolás valószínűségének számítása oly módon, hogy szinte 0-s valószínűséggel kap a saját osztályába.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

sorolásra 1-es valószínűséget egy tanulóterületként meghatározott pixel. Mindegyik esetben tehát elképzelhető (bár valószínűtlen), hogy az osztályba sorolási erősségek meghatározása során más klaszterrel való kapcsolat erősebbnek bizonyul, mint ami az eredeti tanulóterülethez tartozik.

Vizsgálatom során ezért a célom az volt, hogy olyan mintán végezzek el vegetációs elkülönítést osztályozást, ami
• a teljes adatsort tekintve nem jól szeparált,
• heterogén pixeleket alkot,
• és akár erdészeti szempontból is hasznos lehet,
ráadásul vizsgálataim során később logikus lépésnek tűnt a munka elején gondolatkísérletként felmerült, szubpixeles információk alapján történő kevert osztályokba sorolás is.

Így esett a választás a Budai-hegység egy erdőfoltjára, ahol egy júliusi felvételen (tehát amikor minden vizsgált faj közel azonos vegetációs fázisban volt) azonosíthatóvá váltak az egyes erdőfoltok. Cél volt, hogy a tanulóterületek kiválasztásának könnyítése céljából ezen erdőfoltok fajosszétételüket tekintve részben homogén egységeket is alkossanak, részben azonban elegyesedve jelentek meg. A probléma feloldásához később felhasználásra került a már korábban említett V-I-S modell, ami először multispektrális adatokra fókuszálva, városi területen került kidolgozásra (Ridd 1995).

V.2. A mintaterület

A fenti vizsgálatok elvégzéséhez a Budai-hegység egy részlete, azon belül is a János-hegy – Csillebérc – Farkas-árok által határolt terület került kiválasztásra (34. ábra). A terület a Pannóniai flóratartomány, azon belül is a Bakonyicum flóravidék része.

A terület klimája alapvetően enyhe szubmediterrán hatással szinesített kontinentális, a magassági övezetesség pedig ekkora léptékben nem érhető látványosan tetten (bár a János-hegy 559 m-es magassága ezt nem is igazán indokolja). A klima vegetációra gyakorolt hatása inkább csak az eltérő kitettségű lejtőkön figyelhető meg, így az északi, árnyékos oldalakon a tapasztalatok alapján akár szubmontán elemeket is fel lehet fedezni. Az alapkőzet jellemzően karbonátos (ezen a területen vegyesen mészkő és dolomit), így a jellemző talajtípus is a barna erdőtalaj lett.

Mindegy együttesen a tölgyes társulások kialakulását segítette elő. Mivel a terület alapvetően védett és erdőgazdálkodás alól is kivont (főként azért, mert Budapest egyik fő kirándulóhelyének számít), a társulásokban azon fajok dominálnak, amelyek gyorsabban nönek.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

(Somlyai 2009; Nagy és Malatinszky 2019), amit az elmúlt évtizedek erdészeti beavatkozásai sem igen zavartak meg, leszámítva a nagy mennyiségű, de már idősnek számító feketefenyő (Pinus nigra) homogén foltokban megjelenő csoportjait.

34. ábra: A mintaterület

A jellemző állományalkotó fajok így természetes vegetáció esetén a kocsánytalan tölgy (Quercus petraea) és közönséges gyertyán (Carpinus betulus) lennének, azonban bár ezek is elterjedtek (illetve később látható, hogy a tölgy voltaképpen dominál), mégsem olyan mértékben, mint azt a biogeográfiai tényezők egyébként indokolnák – ez különösen igaz a mintaterületen alig megjelenő gyertyánra. A hűvösebb helyeken (északi lejtőkön, szurdokvölgyekben) nagy számban megtalálható még bükk (Fagus sylvatica), valamint különböző telepített juharfélék – kiemelten a hegyi juhar (Acer pseudoplatanus) és a mezei juhar (Acer campestre). Az erdő azonban jellemzően egy keveredő, heterogén képet mutat, hiszen a fenti fajok mellett megjelenik – szigorúan csak elegyesen, mikroklimatikus vagy közethatásra – a hárs (Tilia platyphyllos) és a barkócaberkenye (Sorbus torminalis). A legnagyobb területen azonban – csak a lombkoronaszintet szemlélve – elegyes foltokat találtunk, ahol tölgy-fenyő (jellemzően csak két homogén folt határán), tölgy-juhar, ritkán juhar-bükk, északi lejtőkön pedig tölgy-bükk keveredett.

Eddig nem véletlenül csak a nagyobb termetű, fás szárú növényeket említettel, hiszen a vizsgálat során az űrtávérzékelési szempontból fontosabb lombkoronaszint került elemzésre.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

A lágyszárú, illetve cserjeszint a szubpixeles információkat tekintve most csak egyfajta távérzékelési „anomáliaként”, háttérzajként jelenik meg, amit a későbbiekben (valószínűleg egy biológus vagy erdész végzettségű szakember számára horrorba illő módon) az „aljnövényzet” kategóriába vontam össze. Ilyen módon nem lett különbség téve a fenyvesekre jellemző szinte hiányzó, a bükkösöknél megfigyelhető ritkább, és a nyíltabb tölgyeseknél tapasztalható dús és egyébként meglehetősen fajgazdag lágyszárú és cserje fajok között. Azok tehát egy egységként kezelve, a lombkorona alól eltérő arányban kibukkanva – így pixelenként eltérő arányban befolyásolva a reflektanciát – leginkább az erdőfoltok eltérő záródásából fakadó spektrális különbségekre adott magyarázatot (amit az eredmények később vissza is igazolnak).

V.3. Adatelőkészítés

Az adatelőkészítés több lépésből állt, amelybe beletartozott úgy a felvétel szoftveres előfeldolgozása, ahogy a terepi mintavételezés is. Mindkettő célja az volt, hogy a későbbi két módszer (dimenziócsökkentés és kevert osztályokba sorolás) hatékonysága minél jobb legyen: azaz a következő fejezetekben olyan célspecifikus adatelőkészítési módszereket kerülnék leírásra, amelyek elengedhetetlenül szükségesek ahhoz, hogy jó vizsgálati eredmények szülessenek. Fontos, hogy ezen előfeldolgozási lépések egy része eszközspecifikus, de mindenképpen más területekre is jól kiterjeszthetők.

V.3.1. Előfeldolgozás

A vizsgálathoz az USGS-sel történt kiterjedt levelezésem és igénylésem után több Hyperion-felvétel is készült (szám szerint 44), az elemzéshez használt darab azonban végül az lett, ami az EO-1 2013. július 14-én történő elhaladása során állt elő (ID: EO1H1880272013195110KA_SG1_01). Ennek az oka egyrészt az volt, hogy a tanulóterületek terepi kijelölése közel ebben az időszakban történt, másrészt pedig több nyári, felhőmentes felvétel nem készült. Mivel a többi felvételezés jellemzően tavaszi vagy őszi időszakban történt, amikor az egyes fent említett fajok eltérő vegetációs fázisban voltak pont a vizsgálat egyik célja vesztt volna el, hiszen az egyes tanulóterületek spektrális szeparabilitása ezekben az időszakokban a biológia törvényeinek megfelelően jelentősen megváltozott.

A letöltött adatok feldolgozottsága magas, geometriailag korrigált volt (L1GST), a vizsgálat végig UTM34-es vetületben történt (EPSG: 32634), később további geometriai módosítás nem történt. Érdekes téma lenne az adatok újramintavételezése a szubpixeles
információk megtartásának függvéényében, de ezt a kérdést a jövő kutatóira hagyom, hiszen most nem volt releváns.

Mivel a felvétel számos a III. fejezetben tárgyalt hibával volt terhelt – ezért az előfeldolgozást is az ott megjelölt lépések szerint, a vonatkozó irodalom útmutatásait követve végeztem el (Apan et al. 2004; Datt et al. 2003; Khurshid et al. 2006). Ezen előfeldolgozási lépések többsége az ENVI szoftver 5.2-es, illetve később 5.3-as verziójával könnyen megtörténhetett. Emellett a hibás sávok kiszűrése (vagy azért, mert a jel/zaj arány alacsonynak bizonyult, vagy azért, mert azok az atmoszférikusz ablakokon kívül estek, vagy pedig azért, mert a műszer hibából fakadóan eleve zajosak voltak) is sokat segített, így a későbbiekben végül 121 zajmentes, előfeldolgozott sáv került felhasználásra.

Joggal merülhet fel az atmoszférikusz korrekció kérdése is. Mivel a mintaterület viszonylag kicsi volt (kb. 6 km²), komplex modellek alkalmazását nem láttam indokoltnak, hiszen a területen belüli varianciát eltérő légköiri foltok csak elhanyagolható valószínűséggel okozhattak. Ezért az ENVI-be épített általános (nem klima- és aeroszol-specifikus) légköri modellt, valamint a Nap felvételkor esedékes beesési szögét figyelembe vevő QUAC atmoszférikusz korrekciós modult futattam le. A felhőborítottság igen csekély volt (1% alatti), azonban az érintett pixelek maszkolásra kerültek – árnyékos pixel a mintaterületre nem esett.

V.3.2. Terepi mintavételezés

A tanulóterületeket terepen, a szemrevételezés ősi és jól bevált módszerével választottam ki. A terepi vizsgálatok során alapvetően homogén, illetve heterogén erdőfoltok keresése volt a cél, amelyek később – eltérő kontextusban – később mind tanuló, mind pedig kontroll-területként kerültek elő.

Ugyancsak fontos megjegyezni, hogy a későbbiekben bár fajszintű osztályozásról beszélünk, az egyes, egymásra spektrálisan és fizigoniómiájukat tekintve rendkívül hasonló, de mégis eltérő egy nemzetiséghoz tartozó fajokat összevontan kezeltem. Jelelmezően ebbe a kategóriába estek a szórtan megjelent kocsányos tölgy egyedek, amik a kocsánytalan tölgygyel együtt kerültek osztályozásra, illetve a hegyi és mezei juhar fajok együtt szerepelnek a „juhar” kategóriában. A fenyő, illetve bükk osztályban kizárólag fekete fenyő, illetve közönséges bükk található.

A bejárás során az egyes foltok GPS-szel kerültek lehatárolásra, a legrosszabb esetben is 7 m-es pontossággal jelölve ki a poligonokat (mivel a felvételek felbontása 30 m/px-es volt, ez nem okozott problémát). Végül 588 homogén foltot tartalmazó pixel került a terepen
lehatárolásra, amiből 314 lett tanulóterület és 274 pixel kontroll. Kevert mintaterületként 173 került lehatárolásra, amiből 115 pixel a későbbiekben az eredményt nem befolyásoló további vizsgálathoz is fel lett használva, 58 pixel viszont tisztán kontroll maradt.

Az egyes terepen gyűjtött pixelek számosága jól tükrözi a teljes terület vegetációs arányait, ami a 4. táblázatban látható módon alakult. Jól látszik, hogy a tölgy és a bükk (minden várakozás ellenére) alig keveredett, nem kizárt, hogy antropogén hatásra. A tölgy-fenyő elegyesedés sem volt jellemző – ami logikus, ha homogén, telepített fenyőfoltokról beszélhetünk –, így később látszani fog, hogy ez leginkább két homogén folt határán figyelhető meg. Ennek két oka lehet: az optimista hozzáállás szerint az egyébként tájidegen fenyőállományban újra teret tudott nyerni az űshonosnak számító tölgy – a pesszimista eset azonban az, hogy a telepített (és egyébként meglehetősen igénytelennek számító) fekete fenyő a tölgyknél versenyképessébnek bizonyult, így a telepített foltokból kitörve már elkezdte elhódítani előle is az életteret. Jelen kutatásnak nem célja ebben a kérdésben igazságot tenni, de a későbbi osztályozási eredmények legalább a kérdés eldöntéséhez alapot megadhatják.

<table>
<thead>
<tr>
<th>Osztály</th>
<th>Tanulópixelek száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aljnövényzet</td>
<td>38</td>
</tr>
<tr>
<td>Fenyő</td>
<td>114</td>
</tr>
<tr>
<td>Bükk</td>
<td>83</td>
</tr>
<tr>
<td>Juhar</td>
<td>24</td>
</tr>
<tr>
<td>Tölgy</td>
<td>55</td>
</tr>
<tr>
<td>Juhar-bükk</td>
<td>62</td>
</tr>
<tr>
<td>Tölgy-bükk</td>
<td>5</td>
</tr>
<tr>
<td>Tölgy-fenyő</td>
<td>71</td>
</tr>
<tr>
<td>Tölgy-juhar</td>
<td>35</td>
</tr>
</tbody>
</table>

4. táblázat: Az egyes terepen azonosított tanulópixelek száma

Az egyes osztályokban a tanuló- és kontrollpixelek aránya eltérő, aminek az oka az, hogy nem véletlenszerűen kiválasztott pixeleket, hanem komplett foltokat használtam – így a juhar esetében például 24 tanulópixelre 29 kontrollpixel jutott.

V.3.3. A mintaterület lehatárolásának jelentősége

Amellett, hogy a felvételekről kivágtam a mintaterületet, ugyancsak maszkolva lett a csekély számú beépített terület is – aminek a legnagyobb részét a csillebérci KFKI adta. Az olvasó ekkor már figyelmes lehet egy nagyon fontos lépésre: azzal, hogy a mintaterületet szűken lehatároltam, illetve a nem vegetációs foltokat eltávolítottam a teljes adattömb (azaz az
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

eredeti felvétel), dominánsan beépített, illetve mezőgazdasági foltai eltűntek, így az erdőfoltok közti spektrális eltérések az eddigi – teljes adattartalmat tekintve – marginálisból hirtelen lényegessé váltak.

35. ábra: Az egyes tanulóterületek reflektancia-görbéje, valamint területen domináló beépített terület és talaj mintája

Ez kicsit kifejtve azt jelenti, hogy ha a teljes felvételt szemléljük, akkor a pixelek többsége nem erdőfolt, ami pedig mégis az (pl. a Dunakanyar felé tartva a Pilis vagy a Visegrádi-hegység egy-egy részlete) ott is akkora a fajváltozatosság, hogy végső soron a teljes adattömböt tekintve a fent leírt mintaterület növényvilágának spektrális változatossága alig különnél el a strukturális fehér zajtól. Amennyiben tehát bármilyen módszer a teljes adattömböt vizsgálta volna úgy, hogy a jellemző felszínborítási foltok mellett (amelyek a teljesség igénye nélkül: kopár talaj, lágyszárú vegetáció, tűlevelű növényzet, lombos erdő, vízfelület, aszfaltozott felszín) kialakításra kerülnek fajokat tartalmazó osztályok is, a későbbi osztályozás minden bizonnyal jóval alacsonyabb pontosságú lett volna. Azaz a III.2.1.-es, nagy dimenziószából fakadó problémákat taglaló fejezetben részletezett matematikai jelenség (a
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

sok, egymással korreláló paraméter egy-egy tulajdonság felüllreprezentáltságát okozza) hirtelen gyakorlati problémává vált. Fontos azt is megjegyezní, hogy nem csak egy-egy paraméter (azaz sávhoz kötődő fizikai-kémiai tényező) felüllreprezentáltsága torzíthatja a vizsgálati eredményeket, hanem az összes mintában (pixelben) megjelenő felszínborítási foltok aránytalansága is fáls végeredményt hozhat.

Azzal viszont, hogy dönten csak azok a pixelek kerültek kiválasztásra, amelyek a szétkeverés során relevánsak lehetnek, az eddig funkcionálisan homogén pixelek hirtelen heterogénnek változtak, azaz a figyelembe vehető tanulóterületek és osztályok szeparabilitása is jelentősebb lesz.

A 35. ábrán jól látszik, hogy az egyes kialakított tanulóterületek reflektancia-görbéje a fenyőt leszámítva (ami a tülevelek fotonokra gyakorolt erős szórása miatt jellemzően egyébként is el szokott térni a lombos vegetációtól) lényegesen hasonlít – füleg a klorofill-reflektancia-tartományban –, míg a felvétel jelentős részét kivevő talaj és beépített terület átlagos értéke jobban elkülönül. Az ábrán egyébként még egy jelenség látszik (a későbbi kiértékelés során ez nem játszott szerepet): a grafikon elkészítéséhez vegetációs osztályok mintavételezése korábban, a sávszűrés előtt exportált görbékkel történt, míg a talaj és beépített területek már egy szürt felvételen kerültek megjelölésre. Ezért a vegetációs osztályok esetében a görbében megjelennek a 0-ra állított sávok is – ezért van az, hogy sok helyen, ahol a beépített terület és a talaj görbéje megszakad, a vegetációs minták ott is folytatódnak (később a hibás sávok ezen mintákból is törlésre kerültek).

V.4. Módszertan

Jelen fejezet bizonyos szempontból a disszertáció központi eleme, hiszen itt írom le azon eredményeket, amelyek célja a nagypontosságú szubpixeles osztályozás (azaz a kevert osztályok kialakítása) lehetőségének megteremtése, lehetővé téve a pixeleken belüli kevert információk – legalábbis részleges – visszanyerését. Az egyik fő eredményem egy olyan új dimenziócsökkentési eljárás kidolgozása („influential band analysis” – IBA), amelynek célja, hogy úgy csökkente a megtartott sávok számát, hogy közben növelje a kialakított tanulóterületek közti szeparabilitást. A másik eredményem egy már létező spektrális szétkeverési eljárás vegetációs osztályozásba történő átültetése, ami a fent már említett V-I-S modellen alapul, azonban a városi felszínborítás végállású pontjai helyett a dimenziócsökkentés után immáron jól szeparált osztályokat használja fel.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

V.4.1. Dimenziócsökkentés Influential Band Analysis segítségével

Már többször is említettem, hogy távérzékelési adatokra számos dimenziócsökkentési eljárás lett már kihegyezve. Kiemelendő az egyre szélesebb körben alkalmazott SDA (George et al. 2014; Vyas et al. 2011) és a PCA ami már talán számos hátránya mellett távérzékelési adatok kiértékelése során a legelterjedtebb dimenziócsökkentési módszer. A PCA hátrányai között említendő egyrészt, hogy a sávcsökkentés eredményeként visszakapott főkomponensek dimenziótlanok, nem lehet őket egy-egy hullámhossznak (így fizikai-kémiai paraméterek) megfeleltetni. Amennyiben tehát jelen vizsgálat során PCA-t használnánk, nem születhetne meg eredményként, hogy a megtartott sávok a vegetáció mely tulajdonságához kapcsolódnak – legyen az klorofil-tartalom, látszó fatörzsgarány, vagy H₂O abszorbancia. Másrészt bár a PCA során csökken a teljes adattömb dimenziószáma, a megtartott információ kiválasztása azonban irányítatlanul, a tanulóterületek figyelembevételének nélkül történik, determinálva a hiperspektrális adatockában legjobban reprezentált felszínborítási típus spektrális jellemzőinek későbbi dominanciáját. Másképp szóvala: mindebből az következik, hogy a teljes adatsorban felülvizsgált paraméterek alapján történik a dimenziócsökkentés, míg a kisebb arányban jelenlévő, de adott esetben jól diszkrimináló paraméterek nagy valószínűséggel nem kerülnek felhasználásra.

![36. ábra: Egy fiktív adatsor pontjai és a tengelyekre vetített távolságok](image)

Az influential band analysis eljárás célja tehát az, hogy eltüntesse a teljes adatsorból azokat a sávokat, amelyeknél az egyes tanulóosztályok közti keveredés nagy valószínűséggel megtörténhet, megtartva azokat, amelyeknél az osztályok közti legkisebb különbség a

Ez jól látszik az osztályközéppontoknak megfeleltethető fiktív adatokat 34. ábrán, ahol észrevehető, hogy a két tengelyen mérhető minimum távolság eltér. Az 1. dimenzió esetén 12, míg a 2. dimenzió esetén 29 – tehát a 2. dimenzió az osztályozásra alkalmasabb, hiszen azon pontok, amelyek az osztályközéppontokat adták kevésbé kimerednek. A teljes eljárásban a dimenziókénti minimum értékek kerülnek figyelembevételre (ebben az esetben ez 12 és 29), majd azok kerültek kiválasztásra, amelyek értéke nagyobb minden minimum érték átlagánál. Bár a fenti példa fiktív, de jól látszik az is, hogy nem feltétlenül a térben két legközelebb álló osztály határozza meg a tengelyenkénti keveredést: míg az 1. dimenzióban a C és D osztály állt egymáshoz a legközelebb, addig a 2. dimenzióban már a C és E volt az.

Természetesen alapfeltétel, hogy ne maradhasson csupán egy sáv, illetve ezen eljárásnál – matematikailag legalábbis – megvan az a valószínűsége, hogy egy olyan osztály eltávolításával, ami látszólag rossz eredményt mutat az osztályok közti távolság csökken. A fenti példánál maradva ha a rossznak gondolt 1. dimenzió eltávolításra kerül, akkor C és E osztály szeparabilitása jelentősen csökken – pedig a 2. dimenzióban köztük volt mérhető a legkisebb távolság. A tapasztalat azonban azt mutatja, hogy ilyen fajta probléma nem merült fel, vegetációs osztályozás esetében az osztályok közti távolság nőni tudott.

A fentieken alapuló, kutatótársaimmal közösen finomhangolt eljárás tehát a következő lépésekétől állt – ami részletesen publikálásra is került (Deák et al. 2017):

1. Minden osztályra elkészültek az osztályközéppontok,
2. kiszámításra került az egyes osztályközéppontok közti távolság minden egyes sávban,
3. majd minden sávhoz társítva lett az ott mérhető minimális távolság-érték függetlenül attól, hogy az melyik két osztály között jött létre (ez lesz később a „minimum intensity difference” – mid) – ez a 36. ábrán a C-D, illetve C-E érték,
4. kiszámításra került a minimális távolság-értékek átlaga (azaz a mid értékek átlaga),
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

5. majd csak azok a sávok kerültek kiválasztásra, ahol a mid értékek a fenti átlagértéket meghaladták.

A fenti lépéseket egy boolean típusú függvény segítségével lehetett a legjobban leírni, ahol 1-es értéket (másképp fogalmazva: a későbbiekben 1-es súlyt) kaptak a kiválasztott sávok, 0-sat pedig azok, amelyek a további elemzésben nem vettek részt. Ez a képlet az alábbi módon írható le:

\[
\text{mid}(b_i) = \min_{1 \leq j < k \leq m} |I(j, b_i) - I(k, b_i)|
\]

\[
\text{IB}(b_i) = \begin{cases}
1, & \text{ha } \text{mid}(b_i) > \frac{1}{n} \sum_{l=1}^{n} \text{mid}(b_l) \\
0, & \text{ha } \text{mid}(b_i) \leq \frac{1}{n} \sum_{l=1}^{n} \text{mid}(b_l)
\end{cases}
\]

ahol \(b_i \) a vizsgált sáv, \(\text{mid}(b_i) \) az \(i \)-ik sávban mérhető „minimum intensity difference” osztályok közti minimális érték. \(j \) és \(k \) az egyes sávok azonosítója (jelen esetben fenyő, tölgy, bükk, juhar és aljnövényzet). Ebből viszont következik, hogy \(I(j, b_i) \) nem más, mint a \(j \) osztályhoz tartozó osztályközéppont intenzitása az \(i \)-ik sávban, \(\text{IB}(b) \) pedig az eredményül kapott boolean típusú változó. Következésképp \(j, k \in (1...m) \) és \(i \in (1...n) \), ahol \(m \) az összes osztály száma, \(n \) pedig az összes sáv a száma.

A fenti módszer segítségével kiválasztottam összesen 51 sávot, amelyek pixelértékei a teljes adatsorhoz képest a 37. ábrán láthatók.

Egy ilyesfajta módszertani vizsgálat azonban megkívánja, hogy más, hasonló módszerekkel is összevevősek. Ezért elvégzetem a sávcsökkentést az SDA segítségével is, ahol a sávok számának kiválasztása a Wilk-féle lambda értékek alapján történt – itt 47 sáv maradt. Nem meglepő módon az átfedés igen magas volt, de azért eltérések is akadtak.

A 5. táblázatot szemléltve a két kiválasztott sávcsoporthoz között az alábbi eltérések szűrhatnak szemét: IBA-val kiválasztásra került a 711,72, 884,7, 1013,3, 1114,19, 1194,97 és 1205,07 nm-hez köthető sáv, míg az egyetlen olyan sáv pedig, amit IBA-val nem került kiválasztásra, de SDA-val igen, az a 742,25 nm-es – ami nem meglepő módon a fotoszintetikusan reflektív tartományba tartozik. A fenti hullámhosszok jelentőségéről bővebben az V.5.3.-as fejezetben írok.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

37. ábra: Eredeti és IBA-val csökkentett adatsor
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

IBA-val kiválasztott sávok (51 sáv)

<table>
<thead>
<tr>
<th>Sáv ID</th>
<th>H.hossz (nm)</th>
<th>Sáv ID</th>
<th>H.hossz (nm)</th>
<th>Sáv ID</th>
<th>H.hossz (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>711,72</td>
<td>57</td>
<td>884,70</td>
<td>102</td>
<td>1164,68</td>
</tr>
<tr>
<td>40</td>
<td>752,43</td>
<td>78</td>
<td>993,17</td>
<td>103</td>
<td>1174,77</td>
</tr>
<tr>
<td>41</td>
<td>762,60</td>
<td>82</td>
<td>1013,30</td>
<td>104</td>
<td>1184,87</td>
</tr>
<tr>
<td>42</td>
<td>772,78</td>
<td>83</td>
<td>1016,98</td>
<td>105</td>
<td>1194,97</td>
</tr>
<tr>
<td>43</td>
<td>782,95</td>
<td>84</td>
<td>1023,40</td>
<td>106</td>
<td>1205,07</td>
</tr>
<tr>
<td>44</td>
<td>793,13</td>
<td>85</td>
<td>1027,16</td>
<td>107</td>
<td>1215,17</td>
</tr>
<tr>
<td>45</td>
<td>803,30</td>
<td>86</td>
<td>1033,49</td>
<td>108</td>
<td>1225,17</td>
</tr>
<tr>
<td>46</td>
<td>813,48</td>
<td>87</td>
<td>1037,33</td>
<td>109</td>
<td>1235,27</td>
</tr>
<tr>
<td>47</td>
<td>823,65</td>
<td>88</td>
<td>1043,59</td>
<td>110</td>
<td>1245,36</td>
</tr>
<tr>
<td>48</td>
<td>833,83</td>
<td>89</td>
<td>1047,51</td>
<td>111</td>
<td>1255,46</td>
</tr>
<tr>
<td>49</td>
<td>844,00</td>
<td>90</td>
<td>1053,69</td>
<td>112</td>
<td>1265,56</td>
</tr>
<tr>
<td>50</td>
<td>851,92</td>
<td>91</td>
<td>1057,68</td>
<td>113</td>
<td>1275,66</td>
</tr>
<tr>
<td>51</td>
<td>854,18</td>
<td>92</td>
<td>1063,79</td>
<td>114</td>
<td>1285,76</td>
</tr>
<tr>
<td>52</td>
<td>862,01</td>
<td>93</td>
<td>1073,89</td>
<td>115</td>
<td>1295,86</td>
</tr>
<tr>
<td>53</td>
<td>864,35</td>
<td>94</td>
<td>1083,99</td>
<td>116</td>
<td>1305,96</td>
</tr>
<tr>
<td>54</td>
<td>872,10</td>
<td>95</td>
<td>1094,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>874,53</td>
<td>96</td>
<td>1104,19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>882,19</td>
<td>97</td>
<td>1114,19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SDA-val kiválasztott sávok (47 sáv)

<table>
<thead>
<tr>
<th>Sáv ID</th>
<th>H.hossz (nm)</th>
<th>Sáv ID</th>
<th>H.hossz (nm)</th>
<th>Sáv ID</th>
<th>H.hossz (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>742,25</td>
<td>78</td>
<td>993,17</td>
<td>105</td>
<td>1194,97</td>
</tr>
<tr>
<td>40</td>
<td>752,43</td>
<td>83</td>
<td>1016,98</td>
<td>107</td>
<td>1215,17</td>
</tr>
<tr>
<td>41</td>
<td>762,60</td>
<td>84</td>
<td>1023,40</td>
<td>108</td>
<td>1225,17</td>
</tr>
<tr>
<td>42</td>
<td>772,78</td>
<td>85</td>
<td>1027,16</td>
<td>109</td>
<td>1235,27</td>
</tr>
<tr>
<td>43</td>
<td>782,95</td>
<td>86</td>
<td>1033,49</td>
<td>110</td>
<td>1245,36</td>
</tr>
<tr>
<td>44</td>
<td>793,13</td>
<td>87</td>
<td>1037,33</td>
<td>111</td>
<td>1255,46</td>
</tr>
<tr>
<td>45</td>
<td>803,30</td>
<td>88</td>
<td>1043,59</td>
<td>112</td>
<td>1265,56</td>
</tr>
<tr>
<td>46</td>
<td>813,48</td>
<td>89</td>
<td>1047,51</td>
<td>113</td>
<td>1275,66</td>
</tr>
<tr>
<td>47</td>
<td>823,65</td>
<td>90</td>
<td>1053,69</td>
<td>114</td>
<td>1285,76</td>
</tr>
<tr>
<td>48</td>
<td>833,83</td>
<td>91</td>
<td>1057,68</td>
<td>115</td>
<td>1295,86</td>
</tr>
<tr>
<td>49</td>
<td>844,00</td>
<td>92</td>
<td>1063,79</td>
<td>116</td>
<td>1305,96</td>
</tr>
<tr>
<td>50</td>
<td>851,92</td>
<td>93</td>
<td>1073,89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>854,18</td>
<td>94</td>
<td>1083,99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>862,01</td>
<td>95</td>
<td>1094,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>864,35</td>
<td>96</td>
<td>1104,19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>872,10</td>
<td>102</td>
<td>1164,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>874,53</td>
<td>103</td>
<td>1174,77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>882,19</td>
<td>104</td>
<td>1184,87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. táblázat: IBA-val és SDA-val csökkentett sávok
V.4.2. Osztályozás

A feldolgozás végső célja szubpixeles osztályozás, illetve kevert osztályok kialakítása volt, de ehhez először a felvétel pixeljeit egy-egy egyetlen csoportba tartozó osztályba kellett sorolni. Ehhez az SVM algoritmust használtam, mégpedig azért, mert a vonatkozó kutatások alapján ezzel érhető el – a Hyperion adatainak esetében legalábbis – a legnagyobb pontosság, de jól működik más jól korreláló adatsorok esetében is (Pal és Mather 2006). A módszer alátámasztásának céljából az osztályozást elvégeztettem a teljes adatsoron, majd a PCA-val, SDA-val és IBA-val csökkentett változaton is.

A következő lépésben jogosan merülhet fel kérdésként, hogy a PCA-val csökkentett adatsor hány főkomponenst használ – a válasz azonban erre viszonylag egyszerű. A korábbi 20. ábrán jól látszik, hogy a sajátérték a harmadik főkomponens után meredeken zuhanni kezd – azaz a teljes felvétel információtartalmának többsége itt található meg. Ugyanakkor felületes volnának, ha beérném ennyivel, hiszen korábban hosszú fejezeteket szenteltem annak a problémának, hogy nem tudhatjuk, hogy a PCA során hányadik kiszámított főkomponensben található meg a vegetációtípusok elkülönítéséhez szükséges információ.

Erre a 38. ábra ad választ: a harmadikban, a tizenegyedikben és a tizennyolcadikban – hiszen a kiválasztott vegetációs osztályokra történő osztályozási pontosság itt nőtt meg. Ennek a kérdésnek a megvizsgálása céljából ugyanis elvégeztem egy-egy osztályozást (a fent említett kontrollterületeket használva) minden főkomponenst felhasználva (tehát először csak az 1. főkomponensre, aztán az első kettőre és így tovább) azzal a céljakkal, hogy megnézzem, hogy hány főkomponens felhasználása esetén lesz az osztályozási pontosság a legmagasabb. A végeredmény egyértelműen a 3 lett, azonban a figyelmes szemlélő kiszűrhatja, hogy a pontosság a 14. és 18. főkomponens bevonásakor megugrik – majd újra csökkenni kezd. Ezért a későbbiekben a legnagyobb pontosságot produkáló, első három főkomponens kerül felhasználásra.
Az osztályozást először homogén mintaterületek alapján, a domináns osztályokra végeztem el (ezek a fenti csoportok voltak, azaz bükk, juhar, tölgy, fenyő, aljnövényzet), de mivel tudtam, hogy a terület alapvetően homogén vegetációfoltokkal tarkított heterogén társulásokból áll, számítani lehetett arra, hogy az eredmények sokszor hibásak lesznek, illetve az osztályba sorolás erőssége több osztálynál is egyformán magas lesz. Ehhez az SVM osztályozó került felhasználásra és így létrejött a minden egyes pixelhez tartozó osztályozási erősségeket tartalmazó adatorsor („rule image”), ami az SVM esetében osztályozási valószínűséget takar. Ebben az esetben minél magasabb az érték, annál nagyobb valószínűséggel kerül adott felvétel egy osztályba – a végső osztályozás során pedig abba az osztályba kerül, ahová a legnagyobb valószínűség mutat.

Az SVM paraméterezése kiemelten fontos, azonban ebben az esetben azt a kevésbé elegáns, de már tudományos alapokkal is rendelkező hozzáállást lehet alkalmazni, miszerint egy algoritmus akkor van jól paraméterezve, ha az eredmények megfelelők. Ehhez a „grid search” módszertan került felhasználásra – ami egyébként alig több a „szisztematikus próbálkozás” tudományos megnevezésénél, de legalább jól mutatja, az algoritmus összetettségét (Hsu et al. 2008). Ennek megfelelően RBF kernel, 0,25-ös gamma érték, valamint 100-as büntetőparaméter került kiválasztásra – hiszen ezek adták a legjobb eredményt.
V.4.3. Kevert osztályokba sorolás

A következő lépés szintén a disszertáció egyik középpontjának tekinthető, ugyanis a domináns osztályokba sorolás után kevert osztályok kialakítása volt a cél. Ezt indokolta az is, hogy a domináns osztályok kialakítása során a pontosság „csupán” 84,28%-os volt (ami tekintve, hogy meglehetősen rosszul elkülönülő foltok osztályozása volt a cél nem számít rossz eredmények), azonban a kevert osztályok kialakításával a pontosság – az elméletem szerint – még tovább volt növelhető.

V.4.3.1. Az SVM alkalmazása spektrális szétkeverés során

39. ábra: Példa a támasztó vektorokra lineáris kernel esetén
Az eljárás lényege, hogy az megkeresi az osztályok közti legnagyobb határt (ami egy n-dimenziós, kerneltől függő függvényen leírható hipersik) úgy, hogy a sík és az osztályok között a legnagyobb legyen az a terület, amelybe egy osztály sem tartozik – minden osztálypárra egy hipersik jön létre. Támasztó (illetve magyarul talán a „távtartó” lenne a megfelelő kifejezés) vektor lesz a síkhoz legközelebb eső, minden pont és a hipersik közé állított vektor.

Az eljárás célja a legegyszerűbb, lineáris osztályozás esetén az, hogy az algoritmus megfelelő paraméterezés után a tanulóterületekhez igazodva létrehozzon egy olyan síkot, aminek a képlete igaz a sík bármely tetszőleges pontjára:

\[
\beta_0 + \beta_0 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n = 0
\]

Amely pontok ettől síktól \((x_1, x_2, \ldots, x_n)\) pozitív irányba (tehát „A” osztály irányába) esnek a képlete az alábbi:

\[
\beta_0 + \beta_0 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n > 0
\]

Amelyek pedig negatív irányba (tehát „B” osztály irányába”), azok az alábbi módon írhatók fel:

\[
\beta_0 + \beta_0 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n < 0
\]

Az egyes pontok osztályozása a következő lépésben az alapján történik, hogy milyen messze találhatók a fenti síktól. Az eljárás azonban ekkor még csak lineáris osztályozásra lenne képes. A különböző kernelek célja azonban éppen az, hogy a fenti sík ne csak egy egyenes mentén húzódjon, hanem szinte bármilyen alakot felvehessen (gondoljunk csak bele: egy potenciálisan végében hatványú, akár hány dimenziós polinom függvény lefutása bármilyen alakú lehet) és így az osztályozás ne csak egyenesen húzódó síkhoz, hanem más alakzathoz mért távolság alapján is megtörténhessen (40. ábra). A később használt „radial basis function” függvény képlete például az alábbi módon írható fel:

\[
k(x, y) = \exp(-\|x - y\|^2/ (\sigma^2))
\]

Az osztályba sorolás később az ezen síktól mért távolság alapján történik úgy, hogy a legtávolabb pontok kapják a legnagyobb valószínűséget, a támasztó vektorok létrehozásához használt pontok pedig a legkisebbet (0 a valószínűségi érték a síkon, 1 az attól legtávolabb területen).
Ezen a ponton az értekezés célkitűzéseinek szempontjából logikus következtetés, hogy az osztályokat elválasztó síktól mért távolság – ilyen módon tulajdonképpen egy számított osztályba tartozási valószínűség – a hiperspektrális űrfelvételek pixeleire lefordítva az osztályok keveredésének mérőszáma, hiszen ebben az esetben minél közelebb van egy pont a támasztó vektorhoz, annál jobban hasonlít a szeparálni kívánt osztályok mindegyikére – ezzel szemben pedig minél távolabbi, annál közelebb áll a „tisztának” gondolt végállású ponthoz. A későbbiekben tehát logikus következtetés, hogy ha ezen módszerrel egy pixel azonosan magas valószínűséget kap a besorolásra több osztály esetében is, akkor mindkét osztály spektrális jele megtalálható benne, mégpedig azonos arányban.

Ezért a későbbiekben a lineáris szétekeresnél értelmezett relatív, lineáris távolságok helyett a fenti osztályozásban elért valószínűséget is elfoglaltam az adott osztályba sorolás erősségének. Hiszen ha belegondolunk logikus következtetés, hogy mivel az egyes osztályozás során felvett pontok megfelelnek egy pixelnek (azaz egy spektrális jelen), akkor belátható, hogy a fenti módszer azok között nem csak csoportosít, de a köztük lévő jól szeparáló síktól.
mért távolság által létrehozott valószínűségek meghatározásával azt is lefektetí, hogy egy-egy spektrális jel egy nem lineáris rendszerben milyen mértékben hasonlít „A” és „B” osztály ideális középpontjára. Ebből viszont az következik, hogy az így meghatározott valószínűségi értékekből az egyes szubpixeles információk spektrális jelekben betöltött arányára is következtetni lehet.

V.4.3.2. A V-I-S modell és a kettős osztályozás

Először csak gondolatkísérletként, később kompletten módszertanként itt lépett be a képbe a korábban említett V-I-S modell. Ezen elmélet szerint a városi területek felszínborítása szétkeverhető, amennyiben jól elkülönített végállású pontok felhasználásával történik – ezek egyébként: vegetáció (Vegetation), beépített (Impervious), talaj (Soil). A későbbiekben hasonló gondolat vezetett engem is, azaz állítsám szerint a vegetációs foltok szétkeverhetők, amennyiben a szétkeveréshez használt osztályok szeparabilitása megfelelő.

Ezzel a céljával az SVM által létrehozott rule image-ek kerültek felhasználásra a IV.1.1. fejezetben említett lineáris spektrális szétkeverés logikáját inspirációként használva. Az előző fejezet következtetéseinek értelmében a jól szeparált végállású pontok esetén az osztályozási erősségek nem csak azt mutatják meg, hogy egy-egy pixel mekkora valószínűséggel tartozik „A” vagy „B” osztályba, hanem azt is, hogy ha kevert pixelről van szó, akkor azok milyen arányban keverednek. Ezért most a következő logikával érvelek: ha egy pixel legalább két osztályban elér bizonyos (de később egzakt módszerrel mért) valószínűségi értéket, akkor mindegyik a tagja függetlenül attól, hogy melyik a valószínűbb. A terepi tapasztalatok alapján a nem megjelenő elegyes állományokat (fenyő-juhar, fenyő-bükk) nem vizsgáltam.

A következő lépés tehát az volt, hogy a terepen felvett elegyes tanulóterületekből kinyertem az egyes osztályokhoz tartozó osztályozási erősségeket mutató értékeket, mégpedig a korábban terepen felvett kevert területeket ábrázoló tanuló poligonok segítségével. Ezek a kevert osztályok a már korábban említett bükk-juhar, tölgy-bükk, tölgy-juhar és tölgy-fenyő letek (6. táblázat, 41. ábra). Jól látszik, hogy a kevert osztályú mintaterületeken minden esetben a terepen felvett osztályok esetében lehetett mérni a legnagyobb osztályozási erősséget, amelyek minden esetben meghaladták a P=0,251-es valószínűségi értéket (a tanuló osztályok célja csupán ezen érték kinyerése volt).

Természetesen elméletben bármelyik osztály keveredhetett aljnövényzettel, azonban – a módszer egyfajta visszaigazolásaként – nem vért, de megerősítő eredmény lett, hogy a
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

fenyővel érintett elegyes foltok és az aljnövényzet az ökológia törvényeinek megfelelően szinte egyáltalán nem mutatott keveredést.

<table>
<thead>
<tr>
<th></th>
<th>Bükk-Juhar</th>
<th>Tölgy-Bükk</th>
<th>Tölgy-Juhar</th>
<th>Tölgy-Fenyő</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bükk</td>
<td>0,364</td>
<td>0,251</td>
<td>0,081</td>
<td>0,007</td>
</tr>
<tr>
<td>Juhar</td>
<td>0,297</td>
<td>0,141</td>
<td>0,334</td>
<td>0,056</td>
</tr>
<tr>
<td>Tölgy</td>
<td>0,124</td>
<td>0,401</td>
<td>0,424</td>
<td>0,489</td>
</tr>
<tr>
<td>Fenyő</td>
<td>0,066</td>
<td>0,097</td>
<td>0,117</td>
<td>0,442</td>
</tr>
<tr>
<td>Aljnövényzet</td>
<td>0,147</td>
<td>0,112</td>
<td>0,042</td>
<td>0,004</td>
</tr>
</tbody>
</table>

6. táblázat: Az egyes kevert osztályok mintaterületein tapasztalt osztályozási erősség táblázatosan

41. ábra: Az egyes kevert osztályok mintaterületein tapasztalt osztályozási erősség

Fontos megjegyezni, hogy a fenti értékek területenként mért átlagok, amelyben az egyes pixelek ezektől akár jelentős (P=0,3) mértékben el is térhetnek, jól látszik az egyes kevert osztályok összetétele. Az értékekből leolvasható az alapprobléma – a legjobban talán a tölgy-fenyő kevert területeknél – mégpedig, hogy ezen pixelek tölgyként kerültek volna osztályozásra, de mégis bátor lenne az az ember, aki azt állítja, hogy a területen fenyőt nem fog találni. Másik két domináns faj elkülönülése ilyen mértékben nem érhető tetten – vélhetőleg a spektrális hasonlóság miatt, de jól lehatárolható csúcsértékek ott is látszanak.

Az is megfigyelhető, hogy a P=0,25-ös, tanulóterületeknél tapasztalható értéket egy esetben sem közelítette meg három osztály, így háromsoros keveredés – a terepen tapasztaltakkal összhangban – nem került osztályozásra (habár a módszer elméletben...
megengedi), illetve a más korábban leírt esetekben ez előzetesen kizárásra is került például azzal, hogy nem sikerült megfelelő tanulóterületet találni, így a keveredés nem volt jellemző.

A következő lépésben tehát kialakítottam egy döntéssfa alapú osztályozót, ami hasonló szubpixeles osztályozási módszerek esetében – városi környezetben – még csak ritkán került felhasználásra (Tooke et al. 2009), bár a távérzékelési felhasználást tekintve nem új keletű gondolat (Friedl és Brodley 1997). Ilyen módon a domináns osztályba sorolásnál (tehát az SVM szokásos eljárása esetén) „L” pixel osztályozásra került „ij” osztályba, amennyiben

\[L = \max \{P_j | j \in (1...n)\} \]

ahol \(P_i \) az „i” osztályhoz tartozó osztályozási valószínűség. Ezt a gondolatsort azonban még egy lépéssel megoldottam: amennyiben ez után

\[L = \min 0,251 \{P_k | k \in (1...n)\} \]

akkor „L” pixel osztályozásra kerül „k” osztályba is – tehát létrejön \(L_{ij,k} \). Fontos megjegyezni, hogy a 0,251 itt kizárólag empirikus érték, vélhetőleg más területen mérhető gyakorlati felhasználás esetén a tanulóterületek alapján más értéket szükséges meghatározni.

V.5. Vizsgálati eredmények

V.5.1. Osztályozási eredmények

Az osztályozási eredményeket bemutató térképeken jól látszik, hogy az egyes módszerek között radikális különbségek nem voltak, inkább a részletek lettek azok, amelyek a különbségeket – és így azt a néhány %-os pontossági eltérést – adják (42. ábra). Mindegyik eredménytérképen jól lehatárolásra kerültek a tőlevelű foltok, valamint a nagyobb, lágyszárú fajokkal borított területek. Látványosan elkölötnézhető a terület nyugati felén található aljnövényzetként lehatárolt folt, ami Makkosmária és a magaskői kőfejtő közti erdőirtás, a dél–nyugati sorkab található telepített fenyves, valamint nagyjából a terület közepétől északra található Anna-rét, ahogy déli juharos is megjelenik minden térképen. Más igazán jól azonosítható folt a felvételen nincs, de remekül látszik, hogy a kevert osztályokba sorolás után számos, addig homogén folt kevert osztályba került.

Komoly visszaigazolásként értékelhető, hogy olyan kevert pixel nem jelent meg egy területen sem, ami előtte a keveredést alkotó egyik osztályba sem tartozott. Különösen látványos ez a szinte végig homogén foltként megmaradó (egyébként keleti és észak–keleti
lejtőkön megjelenő) bükkösök esetében, ahol a homogén bükkfoltok helyén sokszor – helyesen – juhar-bükk elegyes osztály jelent meg. A kevert osztályok bevezetésének pozitív hatása azonban a legjobban a déli területeken látszik, ahol jól láthatóan az addigi tölgyből és juharból álló két homogén folt ezúttal a homogén tölgy és juhar mellett nagy mennyiségű tölgy-juhar elegyes társulásként jelent meg – illetve ugyanitt látható a homogén juhar és bükk, ami juhar-bükk elegyes társulásként került osztályozásra.

Az efféle eredmények kiértékelésekor nem is a vizuális megjelenítés a fő (bár kétségkívül az is fontos), hanem a kapcsolódó számok és táblázatok elemzése, valamint az azokból fakadó következetések és tanulságok levonása. Számomra megnyugtató volt, amikor a
fenti módszertan alkalmazásával – ha csak orrhosszal is –, de jobb eredményt sikerült elérni, mint a PCA vagy SDA felhasználásával. Mindkét esetben táblázatosan kiemelésre került a Producer’s Accuracy (PA) pontossági érték, azonban kiemeltem a módszertani vizsgálatoknál véleményem szerint fontosabb User’s Accuracyt is. Míg a PA azt mutatja meg, hogy adott (pl. tölgy) kontroll területeinek hány %-a lett tölgyként osztályozva, az UA addig gyakorlatiasabb értéket mutat: az összes tölgyként osztályozott, bármilyen kontrollerületre eső pixelek hány %-a esett tölgy kontrollba – azaz aki ezen térkép alapján keres tölgyet, mekkora valószínűséggel talál azt (Story és Congalton 1986).

<table>
<thead>
<tr>
<th>Összes sáv (κ = 0,6871; Teljes pontosság = 76,67%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tölgy</td>
</tr>
<tr>
<td>Tölgy</td>
</tr>
<tr>
<td>Aljnővényzet</td>
</tr>
<tr>
<td>Juhar</td>
</tr>
<tr>
<td>Fenyő</td>
</tr>
<tr>
<td>Bükk</td>
</tr>
<tr>
<td>Pontosság (UA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCA (κ = 0,7611; Teljes pontosság = 81,92%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tölgy</td>
</tr>
<tr>
<td>Tölgy</td>
</tr>
<tr>
<td>Aljnővényzet</td>
</tr>
<tr>
<td>Juhar</td>
</tr>
<tr>
<td>Fenyő</td>
</tr>
<tr>
<td>Bükk</td>
</tr>
<tr>
<td>Pontosság (UA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDA (κ = 0,7702; Teljes pontosság = 82,85%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tölgy</td>
</tr>
<tr>
<td>Tölgy</td>
</tr>
<tr>
<td>Aljnővényzet</td>
</tr>
<tr>
<td>Juhar</td>
</tr>
<tr>
<td>Fenyő</td>
</tr>
<tr>
<td>Bükk</td>
</tr>
<tr>
<td>Pontosság (UA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBA (κ = 0,7890; Teljes pontosság = 84,28%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tölgy</td>
</tr>
<tr>
<td>Tölgy</td>
</tr>
<tr>
<td>Aljnővényzet</td>
</tr>
<tr>
<td>Juhar</td>
</tr>
<tr>
<td>Fenyő</td>
</tr>
<tr>
<td>Bükk</td>
</tr>
<tr>
<td>Pontosság (UA)</td>
</tr>
</tbody>
</table>

7. táblázat: Osztályozási pontosság domináns osztályok esetén
Az osztályozási pontosság a teljes 121 sávos adatsor felhasználásával lett a legrosszabb, 76,67%-os, a PCA-val csökkentett azt kb. 5%-kal megelőzte és 81,92%-ot ért el, a 47 sávos SDA-val 82,85% lett, míg az IBA segítségével kiválasztott adatok pontossága pedig 84,28%-ra jött ki – mind kizárólag a domináns fajokat keresve (7. táblázat).

Jól látszik, hogy keveredés mindegyik esetben azonos csoportok között jött létre: rendszerint a bükköt nem sikerült jól osztályozni (meglepő módon itt a PCA felülteljesített) és a juhar is meglehetősen gyengén szerepelt, de a legalacsonyabb pontszámt rendszerint a tölgy szerezte.

Amennyiben a kevert osztályokat is figyelembe vettem (8. táblázat), az osztályozási pontosság megnőtt egészen 85,78%-ig, ami tekintettel arra, hogy közepes felbontású, azonos vegetációs fázisban lévő (ráadásul töbnyire lombos) fafajok azonosítása esetén került levezetésre, kifejezetten jónak mondható. Az igazi eredmény azonban nem is a teljes adatsor esetében elért pontosság, hanem az egyes osztályok esetében elért pontosság növekedésében látszik.

A fenti táblázatban a legfontosabb eredmény véleményem szerint az, hogy a kevert osztályok bevonásával egy-egy osztály pontossága jelentősen megőrült és a bükköt leszámítva egyik sem került 80% alá (a bükk romló eredménye vélhetőleg rosszul kiválasztott tanuló vagy kontrollerületek eredménye, amit alátámaszt az, hogy user’s accuracy lényegen magasabb lett, mint a producers accuracy). Azzal tehát, hogy megjelent például a tölgy-juhar osztály, nőtt mind a tölgy, mind pedig a juhar osztály pontossága – külön kategóriába terelve a kevert pixeleket.
V.5.2. A szubpixeles információ jelentősége és a V-I-S modell hatékonysága

A fenti eredmények vizsgálata alapján kijelenthető, hogy az IBA segítségével kiemelt osztályok alkalmasak szubpixeles információ kinyerésére – de csak ha és amennyiben tudjuk, hogy mi az az információ, amit keresünk. A módszer még távol áll attól, hogy szubpixeles információkra spektrális könyvtárak készüljenek (azaz hogy leírásra kerüljön, hogy pl. hogyan néz ki a tölgy, ha bükkkel elegendik), de a módszer maga eredményesnek látszik. A jövőbeli közepes felbontású hiperspektrális érzékelők (pl. EnMap) esetén a fenti módszerek vélhetőleg jól használhatók lesznek.

A módszernek természetesen megvannak a maga korlátjai is. Semmiképp sem javaslok hasonló elemzéseket elvégezni, ha spektrálisan még ennél is hasonlóbb osztályok vannak, vagy ha multispektrális érzékelő adatai kerülnek felhasználásra – azaz a pixelek adott osztályokra vonatkoztatva homogének. Jelen esetben tehát meg sem próbáltam különbséget tenni a hegyi juhar és a mezei juhar között – ahogy a kocsányos és a kocsánytalan tölgy is egy osztályba került. Ugyanakkor vizsgálat nélkül is biztosan állíthatom: a módszer szubpixeles információ kinyerésére, így kevert osztályok kialakítására alkalmas és városi vizsgálatok esetén – ahol viszont a pixelek még egy multispektrális érzékelő számára is heterogének, hiszen végállású pontok jelentősen elkülönülnek – a jövőben így szinte minden bizonytal nagyon komoly eredmények születhetnek.

V.5.3. A kiválasztott sávok biológiai jelentősége

Az V.4.1.-es, módszertani fejezetben kiválasztott sávokból viszonylag egyszerű csoportokat alkotni. Az IBA-val kiválasztott sávok esetében a 711,72 nm külön szerepel, de logikailag a 752,43-884,7 nm-es csoportba tartozik, hiszen mindegyik elég könnyen
megfeleltethető a közeli infravörös klorofill-reflektancia tartományának (Curran et al. 1991; Kumar et al. 2002) – azaz a várakozásoknak megfelelően a kíválasztott 51 sávból mindössze 19 köthető a fotoszintetikusan reflektív tartományhoz. A következő tartomány a 1013,3 és 1114,19 nm közötti (a 993,17 nm-es sáv itt szintén a többítő külön található), ami a faágakban található lignin, cellulóz, proteinek és kötött H2O jellemző reflektancia-tartománya (Kumar et al. 2002; Serrano et al. 2002).

A fentiekre logikus magyarázat egy olyan evidenciának tűnő jelenség, ami minden erdészeti távérzékelési vizsgálat során kimondatlanul is az eredmények egyik fő befolyásoló tényezője: a végső reflektancia nem csak egy-egy egyed (vagy egy pixelre eső egyed-csoport) kémiai tulajdonságaitól függ, hanem az egyes egyedek fiziognomiájától is. Az, hogy mekkora ágfelület látszik (és így az osztályozást mennyire befolyásolja a fent részletezett második hullámhossz-csoport) jelentősen függ a fák lombkoronájának alakjától, ami pedig függ a fajtól, a záródástól, az általános egészségi állapottól, az évi átlagos napfénytől és még számos más paramétertől. Ráadásul ezen paraméterek egyetlen faj esetén is variálódhatnak, többek között attól függően, hogy a vizsgált erőben a dombokat mennyire változatos, milyen a talaj változékonysága vagy milyen kompetitív fajok vannak jelen – tehát minden olyan tényezőtől függ, ami egy társulás megjelenését befolyásolja.

Mindez a matematika nyelvén a következő képp néz ki: ha egy pixelen belül azonos korú egyedekből álló, egyenletes záródású, közvet virágzat vagy terepen kialakult társulás látszik, akkor az osztályon belüli variancia váratlanul kicsi lesz. Ennek azonban az ellentéte is igaz: ha változatos vegetáció alakul ki, akkor az osztályon belüli variancia is megnő. Szerencsére itt a viszonylag kis felbontás épp a segítségünkre van, hiszen a nagy számok törvénye alapján a véletlenszerű próbálkozások átlaga közéleti a várható értéket, azaz ha elméletben végtelenül sok, heterogén paraméterekkel rendelkező egyedet vizsgálunk, akkor a pixelek átlaga meg fog egyezni azzal, mintha ugyancsak végtelen sok, „átlagosnak” megfelelő homogén egyedünk lennének. A mintaterület kiterjesztésével tehát (mindaddig, amíg csupán egyetlen faj látszik a felvételen) az adatok az egyes egyedek pixelen belüli válós varianciától függetlenül egyre jobban közötik az adott fajra jellemző „ideális” reflektancia-spektrumot – természetesen feltételezve azt, hogy a reflektanciában mérhető értékek az adott fajra jellemző ideális értékek körül szórók.

Azt a tényt, hogy a természetben csak a legritkább esetben jelenik meg valami a gének által diktált ideális formában (azaz fajra jellemző „ideális” reflektancia nem létezik, ahogy
homogén megjelenésű egyedekből álló csoport sem), a módszertani alátámaszthatóság miatt most jóhiszeműen mellőzni kényszerülők és fenti eszmefuttatás inkább elméleti síkon marad.

V.5.4. A dimenziócsökkentett adatokon mérhető osztály-szeparabilitás

Bár nem volt cél, de mivel annyiszor említésre került megvizsgáltam a különböző dimenzió-csökkentési eljárások átesett felvételeken mérhető osztály-szeparabilitást is. A terepen felvett szeparabilitását közvetlenül a szakirodalomnak megfelelően Jeffries-Matusita távolság mérésével végeztem (Borges et al. 2007), azonban ez most némi akadályba ütközött. Nem volt mindegyik adatsor esetében kiszámítható, hiszen ott alapfeltétel, hogy legalább eggyel nagyobb elemszámú minta (tanulópixel) létezzen, mint amennyi a sávok száma. Tekintettel arra, hogy 5 tiszta osztály került kialakításra, az eredeti felvétel pedig 121 sávos az legalább 610 tanulópixelt jelentett volna úgy, hogy minden osztályba legalább 122-nek kell tartoznia – a dimenziócsökkentett adatoknál ez már nem volt probléma. Ezért a későbbiekben a teljes adatsor alapján számolt osztály-szeparabilitást mellőzöm (bár tekintettel arra, hogy mindhárom módszer célja a szeparabilitás növelése, elfogadhatjuk axiómaként hogy abban az esetben kisebb).

Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

42. ábra: Az egyes tanulóterületek közti Jeffries-Matusita távolság

<table>
<thead>
<tr>
<th></th>
<th>PCA</th>
<th>SDA</th>
<th>IBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>bükk - fenyő</td>
<td>1,712</td>
<td>1,821</td>
<td>1,836</td>
</tr>
<tr>
<td>bükk - juhar</td>
<td>1,527</td>
<td>1,650</td>
<td>1,752</td>
</tr>
<tr>
<td>bükk - aljnöv.</td>
<td>1,349</td>
<td>1,466</td>
<td>1,534</td>
</tr>
<tr>
<td>bükk - tölgy</td>
<td>1,698</td>
<td>1,670</td>
<td>1,821</td>
</tr>
<tr>
<td>fenyő - juhar</td>
<td>1,790</td>
<td>1,871</td>
<td>1,917</td>
</tr>
<tr>
<td>fenyő - aljnöv.</td>
<td>1,839</td>
<td>1,938</td>
<td>1,964</td>
</tr>
<tr>
<td>fenyő - tölgy</td>
<td>1,650</td>
<td>1,351</td>
<td>1,742</td>
</tr>
<tr>
<td>juhar - aljnöv.</td>
<td>1,958</td>
<td>1,967</td>
<td>1,985</td>
</tr>
<tr>
<td>juhar - tölgy</td>
<td>1,284</td>
<td>1,580</td>
<td>1,416</td>
</tr>
<tr>
<td>aljnöv. - tölgy</td>
<td>1,958</td>
<td>1,941</td>
<td>1,986</td>
</tr>
<tr>
<td>ÁTLAG</td>
<td>1,676</td>
<td>1,725</td>
<td>1,795</td>
</tr>
</tbody>
</table>

9. táblázat: Az egyes osztályok közti Jeffries-Matusita távolság táblázatosan (három tizedesre kerekítve)

A keveredés tehát jól kimutatható a spektrálisan hasonló osztályok között, így a fentiek tükrében a 9. táblázatra visszatekintve jelentős keveredést várhatunk az osztályozási eredményeket mutató mátrixban például a 43. ábrában megfelelően a legkisebb szeparabilitást mutatva a PCA-csökkentett adatok esetén a juhar és a tölgy között. Ez a várakozásoknak megfelelően esetben meg is jelent, mígpedig 59,26%-ban tévesen tölgy pixeleket juharként, ezzel a teljes osztályozás két legnagyobb hibaértékét produkálva. Véleményem szerint tehát ezen a ponton újabb helyes következtetés: mind a diszkrimináló függvények, mind pedig a Jeffries-Matusita távolság jól előrejelzik, hogy mely osztályok keveredése várható.
Azonban egy ennél is fontosabb következtetés – illetve mivel célkitűzés volt talán pontosabb eredménynek neveznii: az IBA segítségével dimenziócsökkentett adatokban a vizsgált osztályok szeparabilitása nagyobb, mintha az PCA vagy SDA segítségével történne.

V.6. További vizsgálati lehetőségek

Mint minden módszernek, a fenti két eljárásnak (IBA és spektrális szétkeverés) is megvannak a maga, egyelőre kevésbé jól kutatott korlátai, amelyek feltárása mindenképpen további, tervezett vizsgálatokat igényel. Fő hiányosságnak látom, hogy a vizsgálat egyelőre csak egy (bár jól felfogott szempontok alapján kiválasztott) mintaterületen történt, ahol bár a pixelek száma matematikailag véleményem szerint eléggé robosztus mintát adott, nem zárhatjuk ki, hogy vannak olyan területek, ahol a PCA vagy az SDA jobb eredményeket ad.

Kiemelten ide tartoznak azok a területek, ahol az elkülönítés eleve jobban szétválasztható osztályok esetében történik – akár más, korábban említett olyan vegetációs területeken, ahol a szeparabilitás eleve magas (pl. nyílt mediterrán erdőkben) vagy városi mintákon. Szintén érdekes vizsgálati téma lehet az, hogy ugyanez a vizsgálat eltérő vegetációs fázisban hogyan működik (akár PCA-val vagy SDA-val összehasonlítva) hiszen a fenti vizsgálat abból – az egyébként nemzetközi szakirodalom által jól megtámasztott – feltételezésből indult ki, hogy az egyes fajokat tartalmazó osztályok eltérő vegetációs fázisban spektrálisan jobban elkülönülnek. Ez egyelőre még az IBA esetében nem került alátámasztásra – és mint említettem, a szakirodalom alapján egy erős feltételezésből indulhatunk ki, ezt most célként sem tűzem ki.

A fenti eredmények következtében megállapítható, hogy a bemutatott eljárás szubpixeles vegetációs osztályozásra alkalmás, így számos új vizsgálati lehetőség nyilik meg, mégpedig az egyes hazai fajok vagy nemzetségek elkülöníthetőségének vizsgálata. Ez most ugyancsak nem volt cél, elsősorban azért, mert a hazai fás szárú fajok számából kiindulva ez szinte véget áthatatlan feladat lenne. De fontos megjegyezni, hogy a Kárpát-medencére jellemző állományalkotó fajok vagy nemzetségek közül a fenti vizsgálatból több is kimaradt – hogy csak a leggyakoribbakat említem: az akác, nyír, nyár, gesztenye és berkenye-félék (amelyek egy része nyomokban egyébként felfedezhető volt a mintaterületen), valamint a magasabb térszíneken gazdag tőlevelű-fajok elkülönítése más mintaterületeken releváns vizsgálattá válhatnak.

Szintén fontos tapasztalatnak látom – egyébként közel sem példanélküli eredményként –, hogy a főkomponens-analízisnél (PCA) a diszkriminancia-analízis (SDA) jobb
eredményeket adott. Érdemes lehet a jövőben tovább boncolgatni ezt a kérdést és megvizsgálni, hogy mely felszínborítási foltok esetén érdemes SDA-t és hol az egyébként sokkal több szoftverben, kényelmesen elérhető PCA-t alkalmazni.
VI. Eredmények

A problémára a választ adó módszerek kidolgozásához az inspirációt a városi területeken már alkalmazott V-I-S (Vegetation-Impervious-Soil) modell adta, ami lineáris szétkeverési eljárást használt erősen kevert, városi felszínek esetén. Megvizsgáltam, hogy az egyes végállású pontok vegetációs elemzések esetén hogyan viselkedhetnek és megállapítottam, hogy mivel a vegetációs csoportok közti spektrális különbségek a teljes adatsort tekintve igen kicsik, az adat előkészítése kritikus jelentőségű.

A következő probléma a nagy dimenziószámú adatok kialakítása és bekerülése a Hyperion előfeldolgozás után 121 sávja még mindig redundáns adatokat tartalmazott, ráadásul az egyes osztályok sem különültek el megfelelő mértékben. Ezért elővettem a nemzetközi szakirodalomban forgó, legtöbbet használt dimenziócsökkentési módszert, ami főkomponens-analízis (PCA) volt, de megállapítottam, hogy a nagy dimenziószámú adatok és kis szeparabilitási osztályok esetén az eredményeket csak erős kritikával szabad kezelnii. Ennek az oka, hogy – mint azt az V. fejezetben kimutattam – könnyen elvesznek azok a spektrális jelek, amelyek egymáshoz hasonló osztályok szétválasztását lehetővé teszik. Ezzel egyidőben megvizsgáltam a diszkriminancia-analízisben (SDA) rejlő lehetőségeket is. A fenti
két módszer gondolatmenetén elindulva pedig kidolgoztam egy új, tanulóterületeket is figyelembe vevő dimenziócsökkentési eljárást, ami az infuential band analysis (IBA) nevet kapta. Így a mintaterületen felvett vegetációs osztályok elkülönítése céljából – amelyek tölgy, juhar, bükk, fenyő és aljnövényzet lettek – mindhárom fent említett módszer segítségével (PCA, SDA, IBA) elvégeztem a dimenziócsökkentést, majd SVM algoritmussal osztályoztam összehasonlíttatam az osztályozási eredményeket – az IBA bizonyult legpontosabbnak. Az osztályozási eredmények sorrendben a következők lettek: összes sáv esetén 76,67%, PCA-val kiválasztott sávok esetén 81,92%, SDA-val kiválasztott adatok esetén 82,85%, IBA-val kiválasztott adatok esetén pedig 84,28%. Keveredés jellemezően (és teljesen logikusan) csak azon osztályok között volt, amelyek kevésbé jól szeparálódottak, ami elsősorban a tölgy és bükk osztályokat jelentette.

Az egyik felvetett probléma azonban ekkor még nem került megválaszolásra, mégpedig az, hogy a subpixeles információk alapján szétkeverhetők-e az egyes pixelek. Ezért ugyancsak eredményként írtam le, hogy a városi területeken már sikerrel alkalmazott V-I-S módszert úgy módosítottam, hogy az a support vector machine (SVM) osztályozóval is kompatibilis lett. Lényegében az osztályozó által létrehozott rule image-ek alapján megvizsgáltam, hogy egy-egy pixel mekkora valószínűséggel kerülhet egy osztályba, majd terepen lehatárolt tanulóterületek alapján meghatároztam kevert állományok esetén az egyes fajokra vonatkozó osztályba sorolási valószínűségeket, majd terepi módszerekkel meghatározott minták alapján megállapítottam a kevert osztályokra jellemző osztályozási értékeket, majd egy döntésfa algoritmussal létrehoztam a végső kevert osztályokat. Ezzel az osztályozási pontosság 85,78%-ig nőtt úgy, hogy csaknem minden osztály esetében külön-külön is jelentősen nőtt az osztályozási pontosság.

Járulékos eredmény, hogy az IBA-val csökkentett adatsor esetén az osztály-szeparabilitás a tanuló osztályok esetében – Jeffries-Matusita-távolság mérése alapján – kimutathatóan nőtt, ami szorosan összefügg azzal, hogy az osztályozási pontosság is magasabb lett. Csaknem ilyen fontos, hogy a fenti eljárások segítségével azonosításra kerültek azok a főbb hullámhosszok, amelyekben az egyes vegetációs osztályok jól elkülönültek, majd ezeket társítottam egy-egy növényi részhez. A várakozásoknak megfelelően nem csak a klorofill reflektancia-tartományba tartoznak, hanem más, vegetációs elemekhez (pl. fakéreg) jól köthető hullámhosszok is kiválasztásra kerültek.
VII. Absztrakt

Disszertációmban a hiperspektrális adatok vegetációs osztályozásának lehetőségét vizsgáltam, kiemelten szemügyre véve a technológia fejlődési irányait és potenciális jövőbeli szenzorait. A nemzetközi szakirodalom alapján az általánosabb problémák felvázolása után kitérem a jelen esetben kiemelten vizsgált Earth Observing-1 műhold Hyperion érzékelőjére, az adatok hiányosságaira, problémájára és előfeldolgozási lépéseire – megállapítva, hogy bár az adat számos hibával terhelt, a főbb előfeldolgozási lépések azokat kiszűrik.

A későbbi fejezetekben a közepes felbontású (30 m/px) hiperspektrális űrfelvételek esetén két kiemelt problémát elemeztem, amelyek a nagy dimenziószámból fakadó redundancia, valamint spektrális keveredés kérdése. Mindkét problémát a vegetációs területek, erdőfoltok és más, nehezen szétkeverhető felszínek esetén keresztül vizsgáltam meg – röviden kitérve a városi felszínek esetére, ahol a fenti problémák egyszerűbben (bár semmiképp sem egyszerűen) jelennek meg.

A fenti tapasztalatok alapján javaslatot tettem egy kollégáimmal együtt kidolgozott újszerű dimenziócsökkentési (Influential Band Analysis – IBA) eljárásra, valamint ettől függetlenül egy V-I-S modellen alapuló szubpixeles osztályozási módszerre, amellyel elvégeztet egy olyan, Budai-hegységben található erdőterület osztályozását, amelyben egyszerre találhatók homogén és heterogén vegetációs foltok.

Az eredményeket összehasonlítottam a hazai és nemzetközi szakirodalomban elterjedt, hasonló módszerek által adott eredményekkel. Az osztályozási eredmények a spektrálisan nem szétkevert pixelekre a következők lettek: összes sáv esetén 76,67%, PCA-val kiválasztott sávok esetén 81,92%, SDA-val kiválasztott adatok esetén 82,85%, IBA-val kiválasztott adatok esetén pedig 84,28%. A spektrális szétkeveréssel meghatározott kevert osztályok implementálása után az osztályozási pontosság tovább nőtt 85,78%-ra.

A fenti két javasolt módszer tehát bár további vizsgálatra szorul, kevert vegetációs foltok esetén jobb eredményekat adott, mint a hasonló eljárások. A módszer további eredménye, hogy az osztály-szeparabilitás a tanuló osztályok esetében IBA-val történő dimenziócsökkentés után Jeffries-Matusita-távolság alapján meghatározták nőtt, valamint meghatározásra kerülhettek azok a főbb hullámhosszok, amelyekben az egyes vegetációs osztályok jól elkülönültek.
VIII. Abstract (in English)

In present thesis studied the possibilities of vegetation classification using hyperspectral satellite data in relation of the trends of the technical advancement and future sensors. Studying the relevant international publications I pointed out the main possible problems and went into details in case of the Hyperion sensor on board of the Earth Observing-1 satellite. I concluded that the users have to face many problems while using the abovementioned images, but they can be mostly corrected using the proper pre-processing steps.

In the following chapters I analyzed two problems which – in my opinion – are the biggest ones in case of middle-resolution (30 m/px) hyperspectral satellite data, which are data redundancy due to high dimensionality and spectral mixture. I described both problems through diverse vegetation, forest and other well mixing land cover types – briefly comparing them to more diverse built-up surfaces where the same problems are somewhat simpler (although they are still far from being simple).

Using the experiences mentioned above I proposed – and perfected together with colleagues – a new method aiming to reduce the high number of bands (Influential Band Analysis – IBA). Independent of this I also proposed a subpixel classification method inspired by the V-I-S method to classify a forest in the Budai-hills where there are homogeneous and heterogeneous vegetation patches alike.

I compared my results to ones which were given by similar. The classification accuracy for the unmixed pixels are 76.67% using all the bands, 81.92% using only the bands selected by PCA, 82.85% using SDA and 84.28% using IBA. Introducing spectral unmixing raised the classification accuracy even further to 85.78%. Conclusion is that while there are undenied shortcomings of the above mentioned methods, the results are inarguably better than using PCA or SDA and even better by combining it with spectral unmixing. Further results are that spectral separability raised using IBA (in case of the training areas, measured by Jeffries-Matusita-distance) and I also managed to point out a couple of key wavelengths for vegetation classification.
IX. Köszönetnyilvánítás

Jelen dolgozat megírása után számos embernek tartozom köszönettel. Közülük kiemelendő dr. Mari László témavezetőm, aki amellett, hogy felkeltette a téma iránt az érdeklődésem, megtanította a távérzékelés alapjait, kellő türelemmel állt a kérdéseimhez és mindig fordulhattam hozzá, ha szakmai támogatásra volt szükségem.

Köszönettel tartozom dr. Telbisz Tamásnak és dr. Kovács Józsefnak, akikhez bátran fordulhattam, ha a matematikai problémák labirintusában eltévedtem. Szintén köszönet illeti dr. Árvai Mátyást, aki nálam jobban ismeri az erdőket és a témavezetőm, aki nélkül nem történhetett volna meg a mintaterületek felmérése.

Végül kiemelt köszönet illeti családomat és feleségemet, Sinka Anitát, akik kitartóan és jóindulatúan emlékeztettek arra, hogy a fenti munka még mindig befejezetlen, majd engedték, hogy tölük elszakadva időt fordítsak a befejezésére.
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

X. Ábrajegyzék

1. ábra: Egy vegetációval borított pont radianciája 445 nm és 900 nm között az ALI (piros) és Hyperion (fekete) érzékelővel vizsgálva (felbontás: 30 m/px) .. 11
2. ábra: Példa a Hyperion érzékelő adataira (30 m/px). .. 16
3. ábra: A CHRIS egy felvétele a BEAM VISAT szoftverben megjelenítve (34 m/px). 18
4. ábra: A MODIS érzékelő egy felvétele (1000 m/px). .. 19
5. ábra: TacSat-3 – ARTEMIS felvétel Washingtonról (4 m/px). .. 21
6. ábra: Az Apollo 16 leszállóhelye és a körülfelé lévő törmelék refelktanciája egy M3 felvételen (forrás: Pieters et al. 2009) .. 22
7. ábra: A beeső napsugárzás értéke. Adatforrás: Internet 1 ... 25
8. ábra: Egy mintaterület reflektanciája világűrből (szaggatott), illetve repülőgépről (nem szaggatott) szemléelve .. 26
9. ábra: Példa az atmoszférikus zaj hatására – az EO-1 Hyperion 8. sávjának áttekintő képe (30 m/px) ... 27
10. ábra: Atmoszférikus zaj ugyanazon területen, eltérő hullámhosszokban. A=426 nm, B=467 nm, C=487 nm .. 27
11. ábra: Kétfélé szubpixeles vegetációs eloszlás visszaverődési értékei (Widlowski 2009). 31
12. ábra: Reflektancia a valódi és egy lamberti típusú (ideális) felszín esetében. 35
13. ábra: Drop line a Hyperion 115-ös (1295,86 nm) sávjában. ... 39
14. ábra: „Spectral smile” a Hyperion egyes hullámhosszaiiban 40
15. ábra: Egy Hyperion felvétel kalibrációja az ENVI FLAASH modulban (ENVI 5.3)...... 44
17. ábra: A Hyperion érzékelő egyes sávjainak szóródási diagramja. A: 19 sáv (538 nm), 20. sáv (598 nm), B: 29. sáv (640 nm), 43. sáv (783 nm) .. 51
18. ábra: Az FWHM érték vizualizációja (Internet 3) ... 52
19. ábra: Sávokon átnyúló érzékenységi tartományok ... 53
20. ábra: Főkomponens-analízis eredményeképp létrejött köomlás-diagram (ID: EO1H1880272014084110KA) ... 55
21. ábra: Szóródási diagram 2 dimenziós metszete és a hozzá tartozó végállású pontok (A, B, C, D) .. 58
22. ábra: Szóródási diagram végállású pontokkal. a: kopár talajterület, b: beépített terület, c: vegetáció ... 59
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

23. ábra: Egy település felszínborítási típusai a V-I-S modell alapján (Ridd 1995 nyomán) ... 60
24. ábra: Végállású pontok a spektrális térben ... 61
25. ábra: Egy budapesti Landsat 8 felvétel spektrális szétkeverési eredménye. 62
26. ábra: Orange rust fertőzött és nem fertőzött területek reflektancia-görbje (a) és azok különbsége (b) (Apan et al. 2004) ... 67
27. ábra: Különböző reflektancia-görbék és azok nehézfém-tartalma. a) Eredeti görbe, b) Folytonosság(csökkentett adat, c) Normalizált, folytonosság-csökkentett adat 69
28. ábra: Talaj-szervesanyag értékek és a hozzájuk tartozó folytonosság-csökkentett görbék (Liu et al. 2009) .. 70
29. ábra: A Valles Marineris oldala egy CRISM felvételen, valódí színes sávkiosztásban. CRISM ID: FRT00007AF6.. 73
30. ábra: Egy CRISM felvétel (A), illetve a belőle levezetett vas-index (B) (CRISM ID: FRT0017C94) ... 76
31. ábra: A drónra szerelhető Cubert Fireflye S185 SE szenzor (forrás: Internet 4) 77
32. ábra: Erdei rénzuzmó (Cladonia arbuscula) visszaverődési értékei eltérő irányokból mérve (Kaasalinen et al. 2005) .. 79
33. ábra: A mintaterület ... 87
34. ábra: Az egyes tanulóterületek reflektancia-görbje, valamint területen domináló beépített terület és talaj mintája ... 91
35. ábra: Egy fiktív adators pontjai és a tengelyekre vetített távolságok 93
36. ábra: Eredeti és IBA-val csökkentett adators .. 96
37. ábra: Egy fiktív adators pontjai és a tengelyekre vetített távolságok 99
38. ábra: Példa a támasztó vektorokra lineáris kernel esetén ... 99
39. ábra: Példa a radial basis function kernelre, az osztályozási valószínűségekkel (Hearst et al. 1998) ... 102
40. ábra: Példa a radial basis function kernelre, az osztályozási valószínűségekkel (Hearst et al. 1998) ... 102
42. ábra: Az egyes tanulóterületek közti Jeffries-Matusita távolság 112

1. táblázat: Hibás sávok a Hyperion adataiban Datt et al. 2003 nyomán 41
2. táblázat: A további elemzések során felhasznált sávok .. 47
3. táblázat: A Landsat 8 OLI érzékelője első hét sávjának hullámhossz-tartománya, (forrás: Vanhellemont és Ruddick 2015) .. 49
4. táblázat: Az egyes terepen azonosított tanulópixelek száma... 90
5. táblázat: IBA-val és SDA-val csökkentett sávok ... 97
6. táblázat: Az egyes kevert osztályok mintaterületein tapasztalt osztályozási erősség
táblázatosan .. 104
7. táblázat: Osztályozási pontosság domináns osztályok esetén.. 107
8. táblázat: Osztályozási pontosság kevert osztályok esetén.. 108
9. táblázat: Az egyes tanulóterületek közti Jeffries-Matusita távolság táblázatosan (három
tizedesre kerekítve) ... 112
XI. Irodalomjegyzék

Internet 2: https://slideplayer.com/slide/6977388/ (utolsó elérés: 2019.04.22.)

Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.M.; Chanussot,
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

at: http://doktori.bibl.u-szeged.hu/1759/.

Retrieval of Soil Organic Matter Based on Bare Soil Spectrum. , 389–396.
Licciardi, G.; Marpu, P.R.; Chanussot, J.; Benediktsson, J.A. (2012). Linear Versus Nonlinear PCA for the Classification of Hyperspectral Data Based on the Extended Morphological
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Mucsi L.; Henits L. (2011). Belvízelöntési térképek készítése közepes felbontású űrfelvételek...
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

Vanhellemont, Q.; Ruddick, K. (2015). Advantages of high quality SWIR bands for ocean

XII. Mellékletek

1. sz. melléklet: Az elemzéshez felhasznált Hyperion felvétel-kivágat
(ID: EO1H1880272014084110KA)
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

2. sz. melléklet: Osztályozási eredmény – eredeti adatsor
3. sz. melléklet: Osztályozási eredmény – PCA
Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során

4. sz. melléklet: Osztályozási eredmény – SDA
5. sz. melléklet: Osztályozási eredmény – IBA
6. sz. melléklet: Osztályozási eredmény – IBA, kevert osztályokkal
ADATLAP

a doktori értekezés nyilvánosságra hozatalához

I. A doktori értekezés adatai

A szerző neve: Deák Márton
MTMT-azonosító: 10028466
A doktori értekezés címe és alcíme: Hiperspektrális űrfelvételek szubpixeles kiértékelése vegetációs vizsgálatok során
DOI-azonosító:10.15476/ELTE.2019.099
A doktori iskola neve: Földtudományi Doktori Iskola
A doktori iskolán belüli doktori program neve: Földrajz-meteorológia program
A témavezető neve és tudományos fokozata: dr. Mari László, docens
A témavezető munkahelye: ELTE, Természettudományi Tanszék

II. Nyilatkozatok

1. A doktori értekezés szerzőjeként
 a) hozzájárulok, hogy a doktori fokozat megszerzését követően a doktori értekezésem és a tézisek nyilvánosságára kerüljenek az ELTE Digitális Intézményi Tudástárban. Felhatalmazom a Természettudományi kar Dékáni Hivatal Doktori, Habilitációs és Nemzetközi Ügyek Csoportjának ügyintézőjét, hogy az értekezést és a téziseket feltöltsön az ELTE Digitális Intézményi Tudástárba, és ennek során kitöltse a feltöltéshez szükséges nyilatkozatokat.
 b) kérem, hogy a mellékeltek kérelemben részletezett szabadalmi, illetőleg oltalmi bejelentés közzétételéig a doktori értekezést ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban;
 c) kérem, hogy a nemzetbiztonsági okból minősített adatot tartalmazó doktori értekezést a minősítés (dátum)-ig tartó időtartama alatt ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban;
 d) kérem, hogy a mű kiadására vonatkozó mellékeltek kiadó szerzői jogait a könyv megjelenéséig ne bocsássák nyilvánosságra az Egyetemi Könyvtárban, és az ELTE Digitális Intézményi Tudástárban csak a könyv bibliográfiai adatait tegyék közzé. Ha a könyv a fokozatszerzést követően egy évig nem jelenik meg, hozzájárulok, hogy a doktori értekezésem és a tézisek nyilvánosságára kerüljenek az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban;

2. A doktori értekezés szerzőjeként kijelentem, hogy
 a) az ELTE Digitális Intézményi Tudástárba feltöltendő doktori értekezés és a tézisek saját eredeti, önálló szellemi munkám és legjobb tudomásom szerint nem sértet vele senki szerzői jogait;
 b) a doktori értekezés és a tézisek nyomtatott változatai és az elektronikus adathordozón benyújtott tartalmak (szöveg és ábrák) mindenben megegyeznek.

3. A doktori értekezés szerzőjeként hozzájárulok a doktori értekezés és a tézisek szövegének plágiumkereső adatbázisba helyezéséhez és plágiumellenőrző vizsgálatok lefuttatásához.

……………………………………
a doktori értekezés szerzőjének aláírása