Plazmamembrán Ca\(^{2+}\) ATPázok expressziójának és funkciójának vizsgálata emlőtumorban

Doktori értekezés

Varga Karolina

Eötvös Loránd Tudományegyetem, Természettudományi Kar
Biológia Doktori Iskola
Molekuláris Sejt- és Neurobiológia Program
A doktori iskola vezetője: Dr. Erdei Anna PhD, DSc, MTA tag, egyetemi tanár
Programvezető: Dr. Juhász Gábor PhD, DSc, egyetemi tanár

Témavezető: Dr. Enyedi Ágnes PhD, DSc, tudományos tanácsadó
Semmelweis Egyetem, Általános Orvostudományi Kar, II. sz. Patológiai Intézet

Budapest, 2018
Tartalomjegyzék

Rövidítések jegyzéke .. 7
1. Bevezetés .. 10
 1.1. Az intracelluláris Ca2+ homeosztázis ... 10
 1.1.1. Az intracelluláris Ca2+ koncentrációt emelő folyamtok 12
 1.1.2. Az intracelluláris Ca2+ koncentrációt csökkentő folyamtok 14
 1.2. A plazmamembrán Ca2+ ATPázok .. 16
 1.2.1. A PMCA fehérjék szerkezet ... 17
 1.2.2. A PMCA enzimciklusa és a fehérje szabályozása .. 18
 1.2.3. A PMCA fehérjék interakciós partnerei ... 20
 1.2.4. Az egyes PMCA izoformák expressziója és funkciója ... 21
 1.3. A Ca2+ homeosztázis felborulása tumorokban .. 22
 1.3.1. A Ca2+ jelátvitel szerepe a tumorsejtek proliferációjában 23
 1.3.2. A Ca2+ jelátvitel szerepe a tumorsejtek túlélésében 23
 1.3.3. A Ca2+ jelátvitel szerepe a tumorsejtek migrációjában és inváziójában 24
 1.3.4. A plazmamembrán Ca2+ ATPázok tumorokban .. 25
 1.4. Emlőtumorok ... 26
 1.4.1. Az emlőtumorok molekuláris szubtípusai ... 27
 1.4.2. Az emlőtumorokban szerepet játszó főbb jelátviteli útvonalak 28
 1.4.3. Az emlőtumorok gyógyszeres kezelésének lehetőségei .. 32
 1.5. Hiszton-dezacetiláz inhibitorok ... 33
2. Célkitűzések .. 37
3. Anyagok és módszerek .. 38
 3.1. Immunhisztokémia .. 38
 3.2. Plazmid konstrukciók ... 38
3.3. Sejtvonalak és tenyésztési körülményeik .. 39
3.4. A stabil GCaMP2-t expresszáló sejtvonalak alapítása .. 40
3.5. Az sh-HeLa sejtvonal alapítása .. 40
3.6. Reagensek és kezelések ... 41
3.7. Transziens transzfekció .. 42
3.8. Proliferáció vizsgálata ... 42
3.9. Olajvörös festés .. 42
3.10. Western blot analízis .. 42
3.11. Immunprecipitáció ... 44
3.12. Real-time PCR .. 44
3.13. Immuncitokémia ... 44
3.14. Ca$$^{2+}$$ szignál mérések az emlőtumor sejtekben .. 45
3.15. PIP2 transzlokáció és Ca$$^{2+}$$ szignál mérések HeLa sejtekben 45
3.16. Nyilvánosan elérhető ChIP-Seq adatok analízise ... 46
3.17. Statisztikai analízis .. 46
4. Eredmények .. 47
4.1. A plazmamembrán Ca$$^{2+}$$ ATPázok expressziója emlőtumorban 47
4.1.1. A PMCA4 fehérjét kódoló ATP2B4 gén expressziója szignifikánsan alacsonyabb emlőkarcinómákban, mint normál emlőszövetben .. 47
4.1.2. A PMCA4 fehérje kifejeződik normál emlőszövetben 49
4.1.3. A különböző szubtípusba tartozó emlőtumor sejtvonalak eltérő mértékben fejezik ki az egyes Ca$$^{2+}$$ pumpa fehérjéket .. 49
4.2. A HDAC inhibitorok és a forbol-észter PMA hatása a PMCA expressziójára és aktivitására az MCF-7 emlőtumor sejtvonalban ... 52
4.2.1. A rövid szénláncú zsírsavak és a PMA fokozzák a PMCA4b fehérje kifejeződését MCF-7 sejtekben ... 52
4.2.2. A rövid szénláncú zsírsavak és a forbol-észter PMA gátolják az MCF-7 sejtek proliferációját, és differenciációt indukálnak ... 54

4.2.3. A valerát PMA-val való kombinációja tovább fokozza a PMCA4b expresszió növekedését MCF-7 sejtekben ... 57

4.2.4. A fokozott PMCA4b expresszió megváltoztatja az intracelluláris Ca$^{2+}$ jel lefutását MCF-7 sejtekben ... 61

4.3. A HDAC inhibitorok hatása a PMCA-ra különböző emlőtumor sejtekben 65

4.3.1. A HDAC inhibitorok sejttípustól függően különböző módon befolyásolják a Ca$^{2+}$ pumpák kifejeződését .. 65

4.3.2. A különböző szubtípusba tartozó emlőtumor sejtvonalakban a PMCA4b eltérő sejten belüli lokalizációt mutat .. 69

4.3.3. A PMCA4b nem megfelelő intracelluláris lokalizációja miatt sérül a fehérje funkciója a tripla negatív MDA-MB-231 sejtekben ... 70

4.4. Az ER-α jelpálya szerepe a PMCA expressziójának és aktivitásának szabályozásában különböző emlőtumor sejtekben .. 72

4.4.1. A 17β-össtradiol fokozza a PMCA4b fehérje kifejeződését MCF-7 sejtekben 72

4.4.2. A HDAC inhibitor kezelések tovább fokozzák az ER-α által kiváltott PMCA4b fehérje szint emelkedést MCF-7 sejtekben .. 75

4.4.3. Az ER-α specifikusan MCF-7 sejtekben szabályozza a PMCA4b expresszióját76

4.5. A PMCA expresszió változásának hatása a plazmamembránban elérhető foszfatidilinozitol-4,5-biszfoszfát szintjére ... 78

4.5.1. A PMCA és a PIP$_2$ kölcsönhatása .. 78

4.5.2. A PMCA védi a PIP$_2$ molekulákat a Ca$^{2+}$ ionofórral kiváltott hidrolízisszel szemben ... 78

4.5.3. A PMCA csökkenti a receptor-mediált PIP$_2$ szignalizációt 85

5. Megbeszélés ... 88

5.1. A Ca$^{2+}$ pumpák kifejeződése emlőtumorban .. 88
5.2. A HDAC inhibitorok sejttípustól függő hatása a PMCA expressziójára emlőtumorban...89
5.3. Az ER-α szerepe a PMCA szabályozásában... 92
5.4. A PMCA szerepe a PIP₂ jelátviteli útvonalak szabályozásában................................. 95
6. Összefoglalás...97
7. Summary ..98
8. Saját publikációk jegyzéke ..99
 8.1. Az értekezés alapjául szolgáló közlemények ...99
 8.2. Az értekezés témájához kapcsolódó további közlemények99
 8.3. Az értekezés témájához nem kapcsolódó közlemények ..100
9. Irodalomjegyzék..101
10. Köszönetnyilvánítás ...120
Rövidítések jegyzéke

ATP adenozin-trifoszfát *(adenosine triphosphate)*
DAG diacilglicerol *(diacylglycerol)*
DMEM sejttényező médium *(Dulbecco’s Modified Eagle’s medium)*
E2 17β-ösztradiol *(17β-estradiol)*
eNOS endoteliális nitrogén-monoxid szintáz *(endothelial nitric oxide synthase)*
ER-α ösztrogén receptor alfa *(estrogen receptor alpha)*
ERE ösztrogén válasz elem *(estrogen response element)*
FBS fötális szarvasmarha szérum *(fetal bovine serum)*
FDA amerikai élelmiszer- és gyógyszerellenőrzési hatóság *(Food and Drug Administration)*
GCaMP2 genetikailag kódolt Ca²⁺ indikátor *(genetically encoded Ca²⁺ indicator)*
GPER/GPR30 G-fehérje kapcsolt ösztrogén receptor 1 *(G protein-coupled estrogen receptor 1)*
HER2 humán epidermális növekedési faktor receptor 2 *(human epidermal growth factor receptor 2)*
HDAC hiszton-dezacetiláz *(histone deacetylase)*
HSD17B 17β-hidroxisztéroid-dehidrogenáz *(hydroxysteroid 17β-dehydrogenase)*
IP₃ inozitol-1,4,5-triszfoszfát *(inositol 1,4,5-trisphosphate)*
IP₃R inozitol-1,4,5-triszfoszfát receptor *(inositol 1,4,5-trisphosphate receptor)*
MAGUK membrán-asszociált-guanilát-kináz *(membrane-associated guanylate kinase)*
MAPK mitogén aktivált protein kináz *(mitogen-activated protein kinase)*
MCU mitokondriális Ca²⁺ uniporter *(mitochondrial Ca²⁺ uniporter)*
NCX Na⁺/Ca²⁺ cseretranszporter *(Na⁺/Ca²⁺ exchanger)*
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCKX</td>
<td>Na⁺/Ca²⁺-K⁺ cserettranszporter (Na⁺/Ca²⁺-K⁺ exchanger)</td>
</tr>
<tr>
<td>NFAT</td>
<td>aktivált T-sejt nukleáris faktora (nuclear factor of activated T-cell)</td>
</tr>
<tr>
<td>NHERF2</td>
<td>Na⁺/H⁺ cserélő regulátor faktor 2 (Na⁺/H⁺ exchanger regulatory factor 2)</td>
</tr>
<tr>
<td>nNOS</td>
<td>neurális nitrogén-monoxid szintáz (neuronal nitric oxide synthase)</td>
</tr>
<tr>
<td>PDZ</td>
<td>PSD-95/Dlg/ZO-1</td>
</tr>
<tr>
<td>PH<sub>PLCδ1</sub>-RFP</td>
<td>PIP₂ szenzor (pleckstrin homology domain of PLCδ1 fused to RFP)</td>
</tr>
<tr>
<td>PI3K</td>
<td>foszfatidilinozitol 3 kináz (phosphatidylinositol 3-kinase)</td>
</tr>
<tr>
<td>PIP₂</td>
<td>foszfatidilinozitol-4,5-biszfoszfát (phosphatidylinositol 4,5-bisphosphate)</td>
</tr>
<tr>
<td>PIP₃</td>
<td>foszfatidilinozitol-3,4,5-triszfoszfát (phosphatidylinositol 3,4,5-trisphosphate)</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kináz C (protein kinase C)</td>
</tr>
<tr>
<td>PLC</td>
<td>foszfolipáz C</td>
</tr>
<tr>
<td>PMA</td>
<td>forbol 12-mirisztát 13-acetát (phorbol 12-myristate 13-acetate)</td>
</tr>
<tr>
<td>PMCA (ATP₂B)</td>
<td>plazmamembrán Ca²⁺ ATPáz (plasma membrane Ca²⁺ ATPase)</td>
</tr>
<tr>
<td>PR</td>
<td>progeszteron receptor (progesteron receptor)</td>
</tr>
<tr>
<td>PTEN</td>
<td>protein foszfatáz és tenzin homológ (phosphatase and tensin homolog)</td>
</tr>
<tr>
<td>ROCC</td>
<td>ligandfüggő Ca²⁺ csatorna (receptor-operated Ca²⁺ channel)</td>
</tr>
<tr>
<td>RPMI</td>
<td>sejttenyésztő médium (Roswell Park Memorial Institute 1640 Medium)</td>
</tr>
<tr>
<td>RyR</td>
<td>rianodin receptor (ryanodine receptor)</td>
</tr>
<tr>
<td>SAHA</td>
<td>suberoil anilid hidroxámsav (suberoylanilide hydroxamic acid; Vorinostat)</td>
</tr>
<tr>
<td>SCFA</td>
<td>rövid szénláncú zsírsav (short chain fatty acid)</td>
</tr>
<tr>
<td>SERCA (ATP₂A)</td>
<td>szarko/endoplazmatikus retikulum Ca²⁺ ATPáz (sarco/endoplasmic reticulum Ca²⁺ ATPase)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SERM</td>
<td>szelektív ösztrogén receptor modulátor (selective estrogen receptor modulator)</td>
</tr>
<tr>
<td>SMOCC</td>
<td>másodlagos hírvivő-függő Ca(^{2+}) csatorna (second-messenger-operated Ca(^{2+}) channel)</td>
</tr>
<tr>
<td>SOCC</td>
<td>raktár-függő Ca(^{2+}) csatorna (store-operated Ca(^{2+}) channel)</td>
</tr>
<tr>
<td>SOCE</td>
<td>raktár-függő Ca(^{2+}) belépés (store operated Ca(^{2+}) entry)</td>
</tr>
<tr>
<td>SPCA (ATP2C)</td>
<td>sekretroros útvonalai Ca(^{2+}) ATPáz (secretory pathway Ca(^{2+}) ATPase)</td>
</tr>
<tr>
<td>STIM</td>
<td>sztrómális interakciós molekula (stromal interaction molecule)</td>
</tr>
<tr>
<td>TRPC</td>
<td>tranziens receptor potenciál ioncsatorna (transient receptor potential ion channel)</td>
</tr>
<tr>
<td>VOCC</td>
<td>feszültségfüggő Ca(^{2+}) csatorna (voltage-operated Ca(^{2+}) channel)</td>
</tr>
<tr>
<td>VPA</td>
<td>valproát (valproate)</td>
</tr>
</tbody>
</table>
1. Bevezetés

Az utóbbi években egyre több kutatás irányul a rákos sejtek Ca2+ homeosztázisának vizsgálatára, mivel az intracelluláris Ca2+ koncentráció változásai számos olyan sejtélettani és patológiai folyamatot szabályoznak, melyek kiemelt szerepet játszhatnak a tumorok kialakulásában. Irodalmi adatok alapján egyes daganat típusokban jelentősen megváltozhat azoknak a fehérjéknek az expressziója, melyek a Ca2+ homeosztázis fenntartásáért felelősek [1, 2]. Azonban a rendelkezésünkre álló információ nagyobb része az intracelluláris Ca2+ koncentrációt emelő Ca2+ csatornák vizsgálatából származik. A Ca2+ koncentrációt csökkentő Ca2+ pumpákról még mindig keveset tudunk, pedig jelentőségük már számos betegség esetén bizonyított [3]. Jelen munka során a Ca2+ pumpák, azon belül is a plazmamembrán Ca2+ ATPázok (PMCA) emlőtumorban betöltött szerepét vizsgáljuk.

1.1. Az intracelluláris Ca2+ homeosztázis

A kalcium az ötödik leggyakoribb elem a természetben. Elérhetősége és kedvező kémiai tulajdonságai révén az evolúció folyamán az élő szervezetek fontos szabályozó faktorává vált a prokarióták től kezdve a magasabbnak az élőlényekig. Ez jórészt annak az evolúciós kényszernek köszönhető, hogy az energiaforrásként foszfát vegyületeket használó szervezetek kénytelenek voltak alacsony szinten tartani a sejten belüli szabad Ca2+ koncentrációt, hogy megelőzzék a kalcium-foszfát sók intracelluláris kicsapódását. Az alacsony alap intracelluláris Ca2+ koncentráció lehetőséget teremtett a jelátviteli funkció betöltésére. A sejten belüli szabad Ca2+ ionok univerzális másodlagos hírvivőként számos sejtélettani és patológiai folyamatban vesznek részt a megtermékenyítéstől és sejtosztódástól kezdve, a differenciáció, sejtmozgás szabályozásán át, az exocitózisig vagy programozott sejthalálig [4, 5].

A hatékony és gyors Ca2+ jelátvitel alapja az eukarióta sejtek extra- és intracelluláris terei közötti több mint 10 000-szeres Ca2+ koncentráció különbség. Az extracelluláris térben és testfolyadékban tapasztalható 1–2 mM-os Ca2+ koncentrációval szemben, a citoszóban kisebb mint 100 nM a szabad Ca2+ koncentráció, ami a sejten belül található nagyszámú Ca2+-kötő puffer és effektor fehérjének valamint Ca2+ pumpáknak köszönhető [4, 6]. Ebben a közegben a széles Ca2+ szignalizációs eszköztárnak köszönhetően mind térben, mind időben
nagyon sokoldalú Ca\(^{2+}\) jelek alakulhatnak ki. A rövid Ca\(^{2+}\) tuskék, a Ca\(^{2+}\) oszcilláció vagy a nagyobb, fenntartott Ca\(^{2+}\) jelek mind más-más információt hordoznak [5, 7].

1. ábra. A Ca\(^{2+}\) jelek kialakításában szerepet játszó fő mechanizmusok. Különböző stimulátorok Ca\(^{2+}\) beáramlást indukálnak az extracelluláris térből, vagy a sejt belső raktáraiból a Ca\(^{2+}\) csatornákon keresztül („bekapcsoló” reakciók – pirossal jelölve). Majd a megemelkedett intracelluláris Ca\(^{2+}\) koncentráció következtében működésbe lépnek a Ca\(^{2+}\) pumpák, cserettranszporterek és puffer fehérjék, melyek visszaállítják az alacsony nyugalmi intracelluláris Ca\(^{2+}\) koncentrációt („kikapcsoló” reakciók – kékkel jelölve) [8].

A Ca\(^{2+}\) jeleket szabályozó folyamatokat hagyományosan két csoportra osztjuk. Bizonyos Ca\(^{2+}\) mobilizáló ingerek hatására olyan, úgynevezett „bekapcsoló” reakciók indulnak be a sejtben, melyek az intracelluláris raktárakból Ca\(^{2+}\)-ot szabadítanak fel, és az extracelluláris térből Ca\(^{2+}\) beáramlást okoznak a Ca\(^{2+}\) csatornákon keresztül. A citoplazmába lépő Ca\(^{2+}\) nagy része azonnal Ca\(^{2+}\)-kötő puffer fehérjékehez vagy Ca\(^{2+}\) szenzorokhoz köt. A különböző sejtekben változatos expressziós mintázatot mutató citoszólikus Ca\(^{2+}\) puffer (pl. parvalbumin, kalbindin-D, kalretinin) jelentős szerepet játszanak a Ca\(^{2+}\) jel amplitúdójának, időtartamának valamint térbeli terjedésének kialakításában. A Ca\(^{2+}\) szenzor fehérjék felelnek a megemelkedett intracelluláris Ca\(^{2+}\) koncentráció által hordozott jel továbbításáért az effektor molekulák felé. Közülük legismertebb az izomsejtek kontrakciójában szerepet játszó troponin C, és a jóval általánosabban előforduló kalmodulin, ami a simaizomsejtek kontrakciójától kezdve, jelátviteli útvonalak és gének transzkripciójának regulációján át, az ioncsatornák szabályozásáig számos folyamatban részt vesz. Miután a Ca\(^{2+}\) jel az effektor fehérjéken hatva betöltötte funkcióját, a „kikapcsoló” reakciók során az aktív Ca\(^{2+}\) transzport
mechanizmusoknak és puffereknek köszönhetően gyorsan visszaáll az alacsony nyugvó intracelluláris Ca\(^{2+}\) koncentráció. Az egy adott pillanatban mért intracelluláris Ca\(^{2+}\) koncentráció és a sejt Ca\(^{2+}\) homeosztázisa a „bekapcsoló” és „kikapcsoló” reakciók jól szabályozott egyensúlyán múlik (1. ábra) [5, 7, 8].

1.1.1. Az intracelluláris Ca\(^{2+}\) koncentrációt emelő folyamtok

A „bekapcsoló” reakciók során kialakuló Ca\(^{2+}\) jelek származhatnak mind az extracelluláris térből, mind a különböző intracelluláris Ca\(^{2+}\) raktárakból. A Ca\(^{2+}\) a nagy elektrokémiai gradiensnek köszönhetően passzívan áramlik a citoszólba különböző Ca\(^{2+}\) csatornákon keresztül [7].

1.1.1.1. Ca\(^{2+}\) beáramlás a plazmamembrán Ca\(^{2+}\) csatornákon keresztül

A feszültségfüggő Ca\(^{2+}\) csatornák (voltage-operated Ca\(^{2+}\) channels; VOCCs) főként az ingerelhető ideg- és izomsejtekben expresszálódnak, és a gyors Ca\(^{2+}\) jelek kialakításában vesznek részt [7]. Ezek a csatornák a plazmamembrán depolarizációját érzékelve miliszekundumok alatt képesek az intracelluláris Ca\(^{2+}\) koncentrációt akár tízszeresére növelni [6]. A fehérjecsalád tagjait az eltérő Ca\(^{2+}\) áram típusok alapján csoportosítjuk. Az L-típusú Cav1 alcsalád fehérjéi változatos feladatokat látnak el, mint pl. az izomkontrakció, génexpresszió, endokrin szekréció vagy a neuronok ingerületátvitelének szabályozása. A Cav2 alcsalád tagjai főként a gyors szinapszisok ingerületátvitelében játszanak szerepet. A T-típusú Ca\(^{2+}\) áramot létrehozó Cav3 alcsaládba tartozó csatornák például a szívizomsejtek ismétlődő akciós potenciáljának szabályozásában vesznek részt [9].

A tranziens receptor potenciál ioncsatornák (transient receptor potential channels; TRPCs) többsége nem szelektív kationcsatorna, melyek Ca\(^{2+}\)-ra nézve is átjárhatóak. A TRPC családban tartozó fehérjék expressziója és funkciója is nagyon diverz és sejtfüggő. Ingerelhető sejtekben aktivációjuk a sejt depolarizációját okozza, amivel a VOCC-k kapcsolásában játszanak szerepet. Nem ingerelhető sejtekben pedig a Ca\(^{2+}\)-függő ioncsatornák regulációjában vesznek részt [10]. A TRPC-k alacsony áteresztőképességüknek köszönhetően hosszabb ideig képesek nyitva maradni anélkül, hogy túlzottan megnöve az intracelluláris Ca\(^{2+}\) koncentráció, így fontos szerepet játszanak olyan lassabb folyamatokban, mint pl. a simai zonkontrakció vagy a sejtproliferáció [7]. Újabb kutatások szerint nem csak a plazmamembránban, de intracelluláris organellumokban is megtalálhatóak [10].
A neuronális Ca\(^{2+}\) jelátvitel fontos szereplői a ligandfüggő csatornák (receptor-operated Ca\(^{2+}\) channels; ROCCs). Külső stimulusok, transzmitterek hatására nyílnak, mint pl. az N-metil-D-aszpartát (NMDA) receptorok glutamatátra, a P2X receptorok ATP vagy a nikotinerg acetilkolin (nACh) receptorok acetilkolin hatására [11].

A másodlagos hírvívő-függő Ca\(^{2+}\) csatornák (second-messenger-operated Ca\(^{2+}\) channels; SMOCCs) nem ingerelhető sejtekben fejeződnek ki, és citoszólikus hírvívő molekulák hatására aktiválódnak. Ide tartoznak pl. a ciklikus nukleotid-kapuzott ioncsatornák vagy az arachidonsav-érzékeny csatornák [7].

A raktár-függő Ca\(^{2+}\) csatornák (store-operated Ca\(^{2+}\) channels; SOCCs) a kapacitátiv Ca\(^{2+}\) beáramlás alapvető szereplői. A raktár-függő Ca\(^{2+}\) belépés (store operated Ca\(^{2+}\) entry; SOCE) első lépéseként az endoplasmatikus retikulum membránjában diffúzan expresszálódó Ca\(^{2+}\) szenzor STIM (stromal interaction molecule) fehérjék érzékelik a belső raktár Ca\(^{2+}\) koncentrációjának csökkenését. A STIM fehérjék ennek hatására a membrán olyan kitüntetett szakaszaira transzlokálódnak, ahol az endoplasmatikus retikulum membránja közel kerül a plazmamembránhoz, és itt klasztereket képeznek a plazmamembránban elhelyezkedő Orai Ca\(^{2+}\) csatornákkal. A STIM-Orai kapcsolat hatására nyílnak az Orai csatornák, és az extracelluláris térből megindul a Ca\(^{2+}\) beáramlása, ami lehetőséget teremt az üres intracelluláris Ca\(^{2+}\) raktárak visszatöltésére [12].

1.1.1.2. Ca\(^{2+}\) felszabadulás az intracelluláris raktárakból

Az intracelluláris Ca\(^{2+}\) szignál központi mechanizmusa a Ca\(^{2+}\)-indukált Ca\(^{2+}\) felszabadulás, mely során maga a Ca\(^{2+}\) aktiválja a sejten belüli Ca\(^{2+}\) raktárak ürülését. Az egyik legfontosabb intracelluláris Ca\(^{2+}\) raktár az endoplasmatikus retikulum, illetve izomsejtek esetén a szarkoplasmatikus retikulum. Itt a Ca\(^{2+}\) nagy része kis affinitású raktározó fehérjéhez kötve található, mint pl. a kalszekvesztin izomsejtekben vagy az eukarióta sejtekben általánosan előforduló kalretikulin. A raktárakból történő Ca\(^{2+}\) kiáramlást egyrészt maga az intracelluláris Ca\(^{2+}\) koncentráció változása, másrészt különböző sejtfelszínű receptorok (pl. G-fehérje kapcsolt receptorok, tirozin-kináz receptorok) aktiválódásakor keletkező másodlagos hírvívők indukálják, melyek megváltoztatják a raktárak membránjában elhelyezkedő csatornák Ca\(^{2+}\)-mal szembeni érzékenységét [5, 13]. A belső raktárak Ca\(^{2+}\) csatornái közül a két legjobban kutatott az inozitol-1,4,5-triszfoszfát receptor (IP\(_3\)R) és a rianodonin receptor (RyR).
Számos plazmamembrán receptor ligandkötés hatására aktiválni képes a foszfolipáz C-t (PLC), ami a foszfatidilinositol-4,5-bisfoszfátot (PIP₂) inositol-1,4,5-triszfoszfáttá (IP₃) és diacilglicerollá (DAG) hasítja. Az így felszabaduló IP₃ aktiválja az IP₃R-t. Az IP₃R legfontosabb regulátora maga a Ca²⁺, alacsony Ca²⁺ koncentráció mellett (100-300 nM) aktiválja az IP₃R-t, míg 300 nM-nál magasabb Ca²⁺ koncentráció már gátló hatással van a receptorra. Az IP₃ molekuláris kapcsolóként funkcionál, az IP₃R-hoz kötve a Ca²⁺ IP₃R-t aktiváló hatását erősíti [14].

A harántcsíkolt izom kontrakciójának egyik elsődleges regulátora a RyR. A membrán depolarizációt érzékelő plazmamembrán Ca²⁺ csatornák direkt fehérje-fehérje kapcsolaton keresztül aktiválják a RyR-okat, így mind a külső térből, mind a belső raktárakból felszabadul a kontrakcióhoz szükséges Ca²⁺. Más sejttípusokban nincs ilyen közvetlen kapcsolat a RyR és a plazmamembrán csatornái között, hanem maga a Ca²⁺ aktiválja a receptort. A RyR egyik további fontos szabályozó faktora a ciklikus-ADP-ribóz (cADPR) [15]. A Ca²⁺ jel mintázatának kialakításában fontos szerepe van annak, hogy az IP₃R-ok és RyR-ok a másodlagos hírvivők szintjétől függően képesek akár egyénileg, akár összehangoltan, csoportosan aktiválódni, és így különböző típusú rövid vagy fenntartott jeleket, oszcillációt létrehozni [5, 7].

A mitokondriumok szintén szerepet játszanak a Ca²⁺ jel amplitúdójának, tér- és időbeli lefutásának kialakításában, mivel a magas intracelluláris Ca²⁺ koncentráció és a plazmamembrán csatornái között, hanem maga a Ca²⁺ aktiválja a receptor. A RyR egyik további fontos szabályozó faktora a ciklikus-ADP-ribóz (cADPR) [15]. A Ca²⁺ jel mintázatának kialakításában fontos szerepe van annak, hogy az IP₃R-ok és RyR-ok a másodlagos hírvivők szintjétől függően képesek akár egyénileg, akár összehangoltan, csoportosan aktiválódni, és így különböző típusú rövid vagy fenntartott jeleket, oszcillációt létrehozni [5, 7].

1.1.2. Az intracelluláris Ca²⁺ koncentrációt csökkentő folyamtok

A „kikapcsoló” reakciók során a felesleges Ca²⁺-ot aktív transzport mechanizmusok juttatják az extracelluláris térbe és az intracelluláris raktárakba, mint a gyorsan reagáló szarko-illetteve endoplazmatikus retikulum, a nagy kapacitású, de csekélyebb affinitású mitokondrium és a lassan reagáló Golgi apparázátus [16]. Egy további belső Ca²⁺ raktárként a Golgi apparázátus is részt vesz a Ca²⁺ szignál kialakításában, ahonnan IP₃R-okon keresztül szabadul fel a Ca²⁺ [17].

1.1.2.1. Na⁺/Ca²⁺ és Na⁺/Ca²⁺-K⁺ cseretranszportek a plazmamembránban

A plazmamembrán Ca²⁺ ATPázok mellett a Na⁺/Ca²⁺ és Na⁺/Ca²⁺-K⁺ cseretranszporterek (NCX illetve NCKX) feladata az intracellulárisan felhalmozódott Ca²⁺ extracelluláris térbe való...
juttatása. Ezek kis affinitású, nagy kapacitású transzporterek. Az NCX-ek főként olyan sejtekben expresszálódnak, ahol a citoszól Ca\(^{2+}\) koncentrációjában gyakori és nagy változások következnek be, mint pl. az idegsejtek vagy váz- és szívomsejtek. Egyes izoformái a plazmamembránon kívül a mitokondriumban és egyéb organellumokban is megtalálhatóak. Az NCKX-ek neuronokban, simai zombban és egyéb változatos szövetekben fejeződnek ki. Az NCX-ek egy Ca\(^{2+}\)-ot cserélnek három Na\(^{+}\)-ra, az NCKX-ek egy Ca\(^{2+}\)-ot és egy K\(^{+}\)-ot kotranszportálnak négy Na\(^{+}\) ellenében. A folyamathoz az energiát a negatív membránpotenciál és a Na\(^{+}\) koncentrációgradiens biztosítja [18].

1.1.2.2. Mitokondriális Ca\(^{2+}\) uniporterek

A mitokondriális Ca\(^{2+}\) uniporter (MCU) egy kis affinitású csatornafehérje, mely a Ca\(^{2+}\) mitokondriumba való felvételét végzi a mitokondriális membránpotenciál terhére. Az MCU-k magas citoszólóikus Ca\(^{2+}\) koncentráció (~10 \(\mu M\)) hatására aktiválódnak, ami a globális Ca\(^{2+}\) koncentráció emelkedésén kívül lokálisan is kialakulhat az endoplazmatikus retikulumhoz szorosan asszociálódott mitokondriumok körül, az endoplazmatikus retikumból felszabaduló Ca\(^{2+}\) következtében. Az MCU-k így számtettevően részt vesznek a mitokondriumok Ca\(^{2+}\) szignált befolyásoló működésében, de magáról a fehérjéről kevés adat áll rendelkezésünkre [16, 19].

1.1.2.3. Sekretoros útvonalai Ca\(^{2+}\) ATPázok

A Golgi apparátus membránjában lokalizálódó sekretoros útvonalai Ca\(^{2+}\) ATPázok (SPCA) szintén fontos szerepet játszanak a Ca\(^{2+}\) jel mintázatának, a Ca\(^{2+}\) oszcillációknak a kialakításában. A P-típusú ATPázok családjába tartozó fehérjék Ca\(^{2+}\)-ot és Mn\(^{2+}\)-ot szállítanak a Golgi apparátus lumenébe. A Golgi apparátusban zajló megfelelő fehérje feldolgozáshoz illetve traffickinghez elengedhetetlen a Golgi lumenének jól szabályozott Ca\(^{2+}\) koncentrációja. A Mn\(^{2+}\) egyes Golgiban lokalizálódó enzimek aktivitásához, és a fehérjék glikozilációjához szükséges. A humán SPCA1 és SPCA2 izoformákat az ATP2C1 és ATP2C2 génnek kódolják, az előbbi univerzálisan előfordul, housekeeping génnek tekinthető, míg az ATP2C2 speciálisabb szöveti expressziót mutat [20].

1.1.2.4. A szarko/endoplazmatikus retikulum Ca\(^{2+}\) ATPázok

Az endoplazmatikus retikulum (izomsejtekben szarkoplazmatikus retikulum) Ca\(^{2+}\)-felvételét a szarko/endoplazmatikus retikulum Ca\(^{2+}\) ATPázok (SERCA) biztosítják. Ezek a nagy
affinitású és nagy kapacitású pumpák két Ca\(^{2+}\)-ot transzportálnak egy ATP hidrolízisének terhére a citoplazmából az endoplazmatikus/szarkoplazmatikus retikulum lumenébe. A SERCA fehérjék amellett, hogy részt vesznek az intracelluláris Ca\(^{2+}\) homeosztázis szabályozásában, az endoplazmatikus retikulum lumenének Ca\(^{2+}\) koncentrációját is folyamatos kontroll alatt tartják, mivel az endoplazmatikus retikulumban történő fehérje érés, a poszttranszlációs módosulások, fehérje folding, oligomerizáció folyamata mind magas Ca\(^{2+}\) koncentrációt igényel [20]. A három fő izoformát – SERCA1, SERCA2 és SERCA3 – az ATP2A1, ATP2A2 és ATP2A3 génék kódolják, alternatív splicing következtében pedig összesen több mint tízféle variáns létezik, melyek szövetspecifikus expressziót mutatnak [21]. A SERCA1 a gyors típusú vázizomrostok szarkoplazmatikus retikulumában alapvető szerepet tölt be az izomkontrakció szabályozásában. Az első P-típusú ATPáz, amit sikeresen kristályosítottak, és meghatározták a fehérje harmadlagos szerkezetét. Ez alapján a SERCA fehérjék egy tíz transzmembrán hélixből álló membrán (M) doménból, és három citoplazmatikus doménből állnak: a katalitikus ciklus során az ATP a nukleotid-kötő (N) doménhez köt, a fehérje a P doménen foszforilálódik, az aktuátor (A) domén pedig a fehérje mozgását szabályozza a transzport során [22]. A SERCA2 a legáltalánosabban expressziós fehérje, a legáltalánosabban expressziós fehérje, a housekeeping izoforma. A szívizom és a lassú típusú vázizomrostok Ca\(^{2+}\) homeosztázisának fontos regulátora, de simaizomban, neuronokban is előfordul. A SERCA3 variánsai változatos szövetsmakzát expressziót mutatnak, azonban mindig a SERCA2b variánsok együtt fejeződnek ki. A SERCA3 fehérjéket sok sejttípusban differenciációs markerként azonosították. A másik két SERCA izoformától jóval alacsonyabb Ca\(^{2+}\) affinitásuk is megkülönbözteti a SERCA3 fehérjéket [20].

1.2. A plazmamembrán Ca\(^{2+}\) ATPázok

A plazmamembrán Ca\(^{2+}\) ATPázok (PMCA) a P-típusú ATPáz fehérjecsáladába tartozó nagy affinitású, de kis kapacitású Ca\(^{2+}\) pumpa fehérjék. Aktív transzport során egy Ca\(^{2+}\) iont juttatnak a citoszólból az extracelluláris térbe egy ATP hidrolízisének terhére, így biztosítják a sejtek alacsony nyugvó intracelluláris Ca\(^{2+}\) koncentrációját. A négy ismert PMCA izoformát emlősökben külön kromoszómákon elhelyezkedő gének kódolják, a humán ATP2B1 (PMCA1) a 12q21–23 lókuszon, az ATP2B2 (PMCA2) a 3p25.3 lókuszon, az ATP2B3 (PMCA3) a Xq28 lókuszon és az ATP2B4 (PMCA4) a 1q25–q32 lókuszon található. Alternatív RNS splicing révén
összesen több mint húszféle PMCA variáns ismerünk, melyek sejt- és szövetspecifikus expresziót mutatnak, valamint sejten belüli lokalizációjuk és aktivitásuk is eltér [23, 24].

1.2.1. A PMCA fehérjék szerkezet

A PMCA-k ~1200 aminosavból álló, 125-140 kDa-os membránfehérjék. Elsődleges valamint becsült másodlagos szerkezetük alapján a SERCA pumpákhoz hasonlóan tíz transzmembrán hélixszel és két intracelluláris hurokkal rendelkeznek, valamint N- és C-terminálisuk is intracellulárisan helyezkedik el. Az egyes PMCA variánsok közötti lokalizációs illetve funkcionális különbségek alapja az első intracelluláris hurkon és a C-terminálison elhelyezkedő A illetve C splice helyeken végbemenő RNS splicing (2. ábra). A fehérje kristályosításának nehézségei miatt a PMCA harmadlagos szerkezetét a SERCA alapján készült homológia modellből ismerjük [23, 24].

Az A splice hely az első intracelluláris hurkon, a foszfolipid-kötő régió mellett található. Ez a citoplazmatikus hurok a SERCA alapján készült homológia modell szerint a fehérje aktuátor (A) doménjének része, így fontos szerepet játszik a reakcióciklus során bekövetkező fehérjemozzgások szabályozásában. Ennek ellenére az A splice variánsok – melyeket w, x, y és
A PMCA harmadlagos szerkezetét tekintve a P doménen található a második citoplazmatikus hurkon elhelyezkedő foszforilációs régió, ahol a fehérje katalitikus ciklusa során foszforilálódó aszparaginsav található. A harmadlagos szerkezet N doménjét pedig az ugyanezen hurkon található ATP-kötő régiót alkotja. A második intracelluláris hurok ezen kívül számos fehérje-fehérje kapcsolat kialakításában is részt vesz [25, 26].

1.2.2. A PMCA enzimciklusa és a fehérje szabályozása

A PMCA fehérjék a P-típusú ATPázok családjába tartoznak, azaz a reakcióciklusuk során ATP hidrolízisének terhére nagy energiájú foszforilált intermedier állapotba kerülnek. A PMCA Ca$^{2+}$ pumpa aktivitása során két konformációs állapotot (E1 illetve E2) képes felvenni. E1 állapotban a fehérje nagy affinitású Ca$^{2+}$-kötő régiója a plazmamembrán intracelluláris oldalán exponálódik. A P doménen bekövetkező foszforiláció a fehérje konformációs változását indukálja, és a PMCA E1-P állapotból E2-P állapotba kerül. E2 állapotban a fehérje által kötött Ca$^{2+}$ a plazmamembrán extracelluláris oldalára kerül, és a csökkent Ca$^{2+}$ affinitás következtében felszabadul. A Ca$^{2+}$ felszabadulás után a PMCA E2-P állapotból visszatér E1 állapotba. Lényeges különbség a SERCA és a PMCA pumpák között, hogy míg a SERCA két Ca$^{2+}$-ot, addig a PMCA csak egy Ca$^{2+}$-ot transzportál egy ATP molekula hidrolízisének terhére [26].

A PMCA elsődleges aktivátora a kalmodulin. Alacsony intracelluláris Ca$^{2+}$ koncentráció mellett, Ca$^{2+}$-kalmodulin komplex hiányában a PMCA kalmodulin-kötő régiója két ponton köt a fehérje katalitikus doménjéhez, ezzel egy zárt, inaktív konformációt alakít ki. A kalmodulin-kötő régió variábilisabb, C-terminális része az első intracelluláris hurokhoz köt, az A splice hely
mellett, míg a konzerváltabb N-terminális rész a második intracelluláris hurokhoz köt a foszforilációs hely és az ATP-kötő régió között. Az intracelluláris Ca\(^{2+}\) koncentráció emelkedésével kialakuló Ca\(^{2+}\)-kalmodulin komplex köt a PMCA kalmodulin-kötő régiójához, így a fehérje katalitikus doménje felszabadul a gátlás alól, és a PMCA aktiválódik [23, 26].

Mivel a C-terminális régiónak kiemelt szerepe van a PMCA aktivitásának szabályozásában, így a C splice helyen történő alternatív splicing jelentősen befolyásolja az egyes variánsok aktivitását. A PMCA fehérjék egyik alapvető jellemzője az alap aktivitásuk, melyet az aktiváló Ca\(^{2+}\)-kalmodulin komplex hiányában mérhetünk. Ez leginkább a C-terminális és a katalitikus régió kapcsolatának erősségétől függ [25]. Általánosságban elmondható, hogy az „a” inszertet hordozó PMCA variánsok alacsonyabb Ca\(^{2+}\)-kalmodulin affinitással, de magasabb alap aktivitással jellemezhetőek, mint a „b” variánsok. A PMCA4 izoforma variánsai pedig alacsonyabb alap aktivitással rendelkeznek, mint a PMCA2 vagy PMCA3 fehérjék [25, 28, 29]. Az egyes PMCA izoformák és splice variánsok aktivációs kinetikájában is jelentős eltéréseket találunk. A lassú pumpaként jellemezhető PMCA4b lassan köti a Ca\(^{2+}\)-kalmodulin komplexet, és a kapcsolat percekig fennmarad. A PMCA4a gyorsan köti a Ca\(^{2+}\)-kalmodulint, de az gyorsan diszsoziál is, emiatt összességében a PMCA4a alacsony Ca\(^{2+}\)-kalmodulin affinitást mutat a gyors aktiváció ellenére. A PMCA2 és PMCA3 izoformák gyorsan aktiválódnak, és hosszabb ideig aktívak is maradnak, emiatt gyors pumpáknak nevezzük ezeket a fehérjéket [25, 29].

A PMCA enzimaktivitását a kalmodulin mellett egyéb regulátorok is szabályozzák. Régióta ismert, hogy egyes foszfolipidek, pl. a PIP\(_2\), képesek aktiválni a PMCA-t az első intracelluláris hurokhoz vagy a C-terminálishoz kötve [30-32]. A PIP\(_2\) a Ca\(^{2+}\)-függő jelátviteli utak szabályozásában alapvető szerepet játszik, mivel a PLC általi hidrolízise során DAG és IP\(_3\) keletkezik, ami a belső raktahróból történő Ca\(^{2+}\) felszabadulást indukál [33, 34].

A PMCA aktivitását kinázok általi foszforiláció is befolyásolja. A C-terminális kalmodulin-kötő régió környékén több szerin/treonin vagy tirozin aminosav oldalláncot leírtak, ahol a protein kináz A, protein kináz C vagy az Src kináz foszforilálni képes az egyes PMCA izoformákat [26, 35, 36].

1.2.3. A PMCA fehérjék interakciós partnerei

A PMCA szabályozásának egy további lehetősége a különböző állványfehérjékkel vagy jelátviteli molekulákkal kialakított fehérje-fehérje kapcsolatokon alapul. Ezek a fehérje interakciók képesek például az egyes PMCA izoformákat multiprotein szignalizációs komplexekbe tömöríteni, vagy a sejt különböző területeire irányítani [25].

A PMCA fehérjék Ca\(^{2+}\) csatornák köré horgonyzása lokális Ca\(^{2+}\) koncentrációit szabályozó szignalizációs mikrodómének létrejöttét eredményezi. A membránreceptorokat és ioncsatornákat is kötő képes MAGUK (membrán-asszociált-guanilát-kináz) állványfehérjék például a PMCA „b” splice variánsokat kötik a C-terminálison található PDZ (PSD-95/Dlg/ZO-1)-kötő motívumon keresztül. A különböző PMCA izoformák eltérő PDZ fehérjék képesek kötni, így szabályozva, hogy milyen multiprotein komplexekben vesznek részt [28].

A PDZ-kötő motívumnak fontos szerepe van a PMCA sejten belüli targetálásában is. A PMCA2wb-t például a NHERF2 (Na\(^{+}/\)H\(^{+}\) cserélő regulátor faktor 2) az aktin citoszkeletonhoz horgonyozza, így stabilizálja a fehérje apikális lokalizációját polarizált sejtekben [40].

Részletesen vizsgált fehérje-fehérje kölcsönhatás a PMCA4b-nNOS (neurális nitrogén-monoxid szintáz) interakció a kardiovaszkuláris rendszer működésének szabályozásában. A PMCA4b a PDZ-kötő motívumon keresztül köti az nNOS-t, és speciális membrán mikrodóménekbe szervezi, így gátolja aktivitását. Mindez jelentős hatással van a szívizomsejtek β-adrenerg-függő kontraktilitására [41, 42]. Az endoteliális nitrogén-monoxid szintázt (eNOS) szintén gátolja a PMCA. Endotél sejtekben a PMCA a második intracelluláris hurkon köti az eNOS-t, és csökkenti a nitrogén-monoxid képződését [41, 43].

A második intracelluláris hurkon keresztül egyéb fehérjékkel is képes kapcsolatot létesíteni a PMCA [26]. A PMCA4b RASSF1 (Ras-associated factor 1) fehérjével létesített interakciója révén képes beleszólni a Ras jelátviteli útvonal működésébe, mivel gátolja a Ras epidermális növekedési faktor-függő aktivációját [44]. A PMCA-nak szintén ehhez a régiójához köt az α1-szintrofin is, és az α1-szintrofin-PMCA-nNOS komplex létrejötte tovább fokozza a PMCA nNOS aktivitást gátló hatását szívizomsejtekben [45].

Egy további széleskörben kutatott terület a PMCA interakciós hálózatában a kalcineurin/NFAT (nuclear factor of activated T-cell) jelátviteli útvonal [25]. A PMCA2 és PMCA4 izoforma is képes kötni a második intracelluláris hurkon keresztül a Ca\(^{2+}\)-kalmodulin-
függő foszfatáz kalcineurint, ezzel végeredményben csökkentve az NFAT aktivitását [46, 47]. Oszteoklasztok differenciációja során szintén leírtak egy szabályozási hurkot a PMCA1 és 4 izoformák valamint az NFATc1 között. Eszerint az NFATc1 a PMCA promotoréhez kötve fokozza annak expresszióját, miközben a PMCA a citoplazmatikus Ca\(^{2+}\) oscilláció szabályozásán keresztül csökkenti az NFATc1 aktivitását [48]. Endotél és neuroendokrin sejtekben szintén bizonyítást nyert a PMCA NFAT aktivitást gátló hatása [49, 50].

T-sejtek aktivációja során a PMCA interakcióba lép az endoplazmatikus retikulumban található POST (partner of STIM) fehérjével, ami a STIM1-et is kötve egy multiprotein komplexet hoz létre. A PMCA-hoz kötve a POST csökkenti a pumpa aktivitását, ezzel elősegíti a T-sejt aktiváció során szükséges magas intracelluláris Ca\(^{2+}\) koncentráció fenntartását [51].

A PMCA N-terminális régióján a 14-3-3 fehérjét írták le mint a PMCA1, 3 és 4 izoformák aktivitását gátló interakciós partner [26].

1.2.4. Az egyes PMCA izoformák expressziója és funkciója

Az összesen több mint húszféle PMCA izoformának nem csak az aktivitása, szabályozása, sejten belüli lokalizációja tér el, de sejt- és szövetspecifikus expressziós mintázatot is mutatnak (1. táblázat).

A PMCA1 úgynevezett housekeeping izoforma, ami minden sejttípusban univerzálisan előfordul. Általában egy másik PMCA izoformával együtt expresszálódik. Egér knockout kísérletek alapján az ATP2B1 gén homozigóta deléciója embrionális letalitást okoz [52]. Heterozigóta knockout vizsgálatokkal többféle sejttípusban is bizonyították, hogy a PMCA1 csendesítése az intracelluláris Ca\(^{2+}\) homeosztázis felborulását okozza. Emellett több kutatás támasztja alá a PMCA1 transzcítoplazmás Ca\(^{2+}\) transzportban betöltött szerepét is főként intesztinális sejtekben [24, 25, 28].

A gyors PMCA2 és PMCA3 pumpák főként ingerelhető, neurális eredetű sejtekben illetve vázizomban fejeződnek ki [24, 28]. Egyes variánsaik azonban nagyon specifikus szöveti expressziót mutatnak. A PMCA2w/a a belső fül szőrsejtjeinek apikális membránjában fejeződik ki [53, 54]. A PMCA2w/b pedig a laktáló emlő epitel sejtekben expresszálódik, ahol a tej Ca\(^{2+}\) tartalmának biztosításában tölt be alapvető szerepet [55-57]. Mindezt alátámasztják a homozigóta ATP2B2 knockout kísérletek is, mivel ezekben az egerekben sükséget,
egyensúlyzavarokat, a tej Ca\(^{2+}\) tartalmának csökkenését illetve a motoros neuronok számának csökkenését okozta a PMCA2 variánoks hiánya [58, 59].

A PMCA4x/b univerzálisan expresszálódik, míg egyéb PMCA4 variánkok specifikusabb szöveti eloszlást mutatnak, főként a szív- és simaizomban, agyban fejeződnek ki [24, 28]. Annnak ellenére, hogy a PMCA4x/b minden sejttípusban megtalálható, az ATP2B4 homozigóta formában csendesítve nem bizonyult letálisnak, ezeknél az egereknél a hímek meddősége mutatkozott meg fenotípusosan a spermiumok mozgásának defektusa miatt [52].

1. táblázat. A PMCA izoformák és splice variánkok szervezeten belüli előfordulása, valamint hiánynak következményei knock out egér vizsgálatok alapján ([24, 28] alapján).

<table>
<thead>
<tr>
<th>Izóforma</th>
<th>Splice variánz</th>
<th>Szöveti előfordulás</th>
<th>Az izóforma hiányának következményei (egér KO vizsgálatok)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCA1</td>
<td>x/a</td>
<td>agy</td>
<td>embriónlás lelaltás (homozigóta formában), simaizom Ca(^{2+}) szabályozásának felborulása (heterozigóta formában)</td>
</tr>
<tr>
<td></td>
<td>x/b</td>
<td>univerzális; tüdő, vékonybél, vese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x/c</td>
<td>vázizom, szív</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x/d</td>
<td>vázizom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x/e</td>
<td>agy</td>
<td></td>
</tr>
<tr>
<td>PMCA2</td>
<td>w/a</td>
<td>agy, cochleáris szőrsejtek</td>
<td>Süktés, egyensúlyzavarok, a tej Ca(^{2+}) tartalmának csökkenése, gerincvelői motoros neuronok számának csökkenése (homozigóta formában)</td>
</tr>
<tr>
<td></td>
<td>x/a</td>
<td>agy, hippokampális preszinaaptikus végződések</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z/a</td>
<td>agy, ingerelhető szövetek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>w/b</td>
<td>agy, laktáló emlő epitél sejtek, hasnyálmirigy β-sejtjei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x/b</td>
<td>agy, kisagy Purkinje sejtjei, gerincvelő</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z/b</td>
<td>agy, ingerelhető szövetek</td>
<td></td>
</tr>
<tr>
<td>PMCA3</td>
<td>x/a</td>
<td>agy, gerincvelő</td>
<td>nem vizsgáltak</td>
</tr>
<tr>
<td></td>
<td>z/a</td>
<td>agy, hasnyálmirigy β-sejtjei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x/b</td>
<td>agy, mellévese, vázizom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z/b</td>
<td>agy</td>
<td></td>
</tr>
<tr>
<td>PMCA4</td>
<td>x/a</td>
<td>simaizom, húgyhólyag, méh, szív</td>
<td>Hím meddőség a spermiumok mozgékonyanak (homozigóta formában) defektusa miatt</td>
</tr>
<tr>
<td></td>
<td>z/a</td>
<td>simaizom, szív</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x/b</td>
<td>univerzális, szív, vese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z/b</td>
<td>szív</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x/d</td>
<td>szív</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z/d</td>
<td>szív</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x/e</td>
<td>agy, húgyhólyag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z/e</td>
<td>agy, húgyhólyag</td>
<td></td>
</tr>
</tbody>
</table>

1.3. A Ca\(^{2+}\) homeosztázs felborulása tumorokban

Az intracelluláris Ca\(^{2+}\) homeosztázs felborulása a tumor progresszióban jelentős szerepet tölt be, mivel a Ca\(^{2+}\) jelátvitél közvetve vagy közvetlenül részt vesz számos
rákképződéshez/terjedéshez szükséges folyamatban, mint pl. a sejtosztódás, túlélés szabályozása vagy a sejtmozgás, invázió [1, 2]. Tumorosejtvekben az egyes Ca²⁺ csatorna illetve pumpa fehéřék, cseretransporterek expressziójában bekövetkező változások a Ca²⁺ szignál mintázatát nagy mértékben befolyásolhatják, így számos kapcsolódó jelátviteli útvonalra hatással lehetnek [1, 2].

1.3.1. A Ca⁺⁺ jelátvitel szerepe a tumorosejtok proliferációjában

A sejtcelk és sejtosztódás során természetes az intracelluláris Ca²⁺ koncentráció változása. Ca²⁺ szignál-függők a sejtciklus egyes kulcslépései, mint pl. a G1 fázisba való lépés, vagy a G1/S és G2/M fázisátlépéseket [60]. A Ca²⁺ szenzitív folyamatok közül legfontosabbak a FOS, JUN, MYC gének indukciója, az RB1 foszforilációja, a Ca²⁺-kalmodulin-függő protein kinákok illetve a Ca²⁺-függő transzkripciós faktorok (NFAT, CREB, NFκB) aktivációja [1]. A tumorosejtvek fokozott proliferációs rátája sok esetben összefügg a Ca²⁺ jelátviteli eszközökről tagjainak megváltozott expressziójával vagy aktivitásával. Számos rákos sejttípusban leírták a SERCA, SPCA vagy PMCA pumpák, az IP₃R vagy RyR receptorok, a STIM és Orai fehéřékek, a SOC csatornák, T-típusú VOC csatornák illetve különböző TRP csatornák érintettségét [61]. Ezekben az esetekben a Ca²⁺ szignalizációs fehéřékre akár terápiás célpontként is tekinthetünk. Prosztata rák sejtekben például kimutatták, hogy a TRPC6 és TRPV6 csatornák is kiemelt szerepet játszanak a konstitutív Ca²⁺ beáramlás által indukált NFAT aktivációban, ami a sejt magas proliferációs rátáját okozza [62, 63]. MCF-7 emlőtumor sejtekben a G1 fázison való áthaladás és a G1/S fázisátmenet nagy mértékben függ a raktár-függő Ca²⁺ belépésben (SOCE) szerepet játszó Orai3 csatornától. A Orai3 a c-myc szabályozásán keresztül serkenti a ciklin D1 és E, a ciklin-dependens kináz 2 és 4 expresszióját, valamint gátolja a p53-t és a p21 ciklin-dependens kináz inhibitort [64, 65].

1.3.2. A Ca⁺⁺ jelátvitel szerepe a tumorosejtök túlélésében

A Ca²⁺ jelátvitel fontos szerepet játszik a sejthalálhoz vezető útvonalak szabályozásában, és az egyes csatornák és pumpák expressziójának változása segítheti a tumorosejtveket a sejthalál elkerülésében [1]. Régóta ismert, hogy a fenntartott, nagy mértékű intracelluláris Ca²⁺ koncentráció emelkedés nekrotikus sejthalálhoz vezet. Ennek köszönhetően a tumorosejtvekben nagy mennyiségben kifejeződő Ca²⁺ csatornák aktivációja vagy direkt Ca²⁺ elektroporáció hatására a sejtek nekrotizálnak [66-68]. Az apoptózis folyamatának pedig
alapvető lépése a Ca²⁺ felhalmozódása a mitokondriumban. A különböző stimulusok vagy stressz hatására bekövetkező Ca²⁺ koncentráció emelkedés a mitokondriális mátrixban szerepet játszik az átmeneti permeabilitási póruskomplex kialakulásában, ami a mitokondriumban membrán integritásának elvesztéséhez, és a proapoptotikus faktorok felszabadulásához vezet [69]. Továbbá jól szabályozott kapcsolat van a mitokondrium, az apoptózist szabályozó Bcl-2 fehérjéje és a mitokondriális mátrixban szerepet játszó Ca²⁺ szabályozásán keresztül képes csökkenteni a mitokondriumban felhalmozódó Ca²⁺ mennyiségét, így végeredményben elősegíti a tumorszervek túlélését [72]. A tumorsuppresszor BRCA1 az IP₃R aktivitás fokozásával elősegíti az endoplasztikus retikulumból történő Ca²⁺ felszabadulást apoptózis során, így hiánya szintén hozzájárul a rákos sejtek túléléséhez [73].

1.3.3. A Ca²⁺ jelátvitel szerepe a tumorosejtek migrációjában és inváziójában

A tumorszervek migrációjának és inváziójának csaknem minden lépése függ valamilyen mértékben a Ca²⁺ szignalizációtól, kezdve a migráció kiváltó stimulusoktól, a mozgás sebességének és irányának szabályozásán át, az extracelluláris mátrixot bontó enzimek termeléséig. A sejtmozgás során kiemelten fontos a lokális Ca²⁺ jelek összehangolt szabályozása. Isem, hogy a polarizált, migráló sejtben nagy és jól szabályozott különbségek mutatkoznak meg a vezető vég és a hátsó vég Ca²⁺ koncentrációja között [1]. A sejtmozgás irányának kijelöléséhez tranziens, magas Ca²⁺ jelek kialakulás szükséges lokálisan a sejt vezető végén [74]. A migrációban szerepet játszó citoskeletális és kontraktilis fehérjék aktivációja szintén Ca²⁺-függő, valamint a fokális és perifériális adhéziós molekulák turnovere is Ca²⁺-függő foszforilációs és enzim hasítási lépéseken keresztül szabályozódik [75]. MDA-MB-231 emlőtumor sejtekben például a SOCE-ban szerepet játszó STIM1 és Orai1 fehérjék csendesítése vagy farmakológiai gátlása, a fokális adhézió turnoverének befolyásolásával, csökkenti a sejtek migrációját és invázióját [76]. A tumorosejtek inváziójához szükséges extracelluláris mátrix bontó enzimek expressziója szintén Ca²⁺-függő folyamatok szabályozása alatt áll, mint ahogy azt prosztata rák sejtekben is bizonyították egyes mátrix metalloproteázok illetve a katepszin B esetén [77]. Melanóma sejtek invadopodium formálásában az Orai1-függő Ca²⁺ oszcilláció szerepet igazolták [78]. Fontos megjegyezni, hogy az epiteliális-mezenchimális átalakulás vizsgálata során arra is fény derült, hogy az epiteliális illetve mezenchimális
fenotípust mutató sejtekben jelentősen eltér az intracelluláris Ca^{2+} homeosztázis, mind a SOCE- mind az ATP-függő Ca^{2+} koncentráció változások tekintetében [1].

A fenti példák alapján látszik, hogy a Ca^{2+} homeosztázis felborulása számos ponton bekövetkezhet, és jelentős előnyteljesül fel a rákos sejteket, így végeredményben hozzájárul a tumor progressziójához.

1.3.4. A plazmamembrán Ca^{2+} ATPázok tumorokban

A PMCA a nem ingerelhető sejtek Ca^{2+} homeosztázisának egyik fő regulátora, így a tumorigenezisben szerepet játszó számos folyamatban ugyanúgy érintett mint a különböző Ca^{2+} csatornák [1, 3]. Számos megbetegedés kapcsán bizonyított a PMCA szerepe, mint pl. a magas vérnyomás és más kardiovaszkuláris megbetegedések, autizmus, sükség, kisagyi ataxia vagy familiáris spasticus paraplegia [3]. Emellett többféle tumorban is leírták egyes PMCA izofor munkájának megváltozott kifejeződését, azonban még mindig kevés adat áll rendelkezésünkre a PMCA rákképződésben betöltött szerepéről.

A PMCA1 izofor a lóhadály sejtekekben talált primer szájüregi laphámok szövetmintaiban és orális premalignus lelőhelyekben is megfigyelték [1, 3]. Számos megbetegedés során az ATP2B1 gen promoter régiójának fokozott metilációt és más sejtvonalakban [3]. Emellett in vitro vizsgálatok során az ATP2B1 és ATP2B4 expresszió mérték a kiindulási, parentális sejtekben [80].

SV40 vírussal transzformált bőr és tüdő fibroblaszt sejtekben szintén alacsonyabb ATP2B1 és ATP2B4 expressziót mérték mint a kiindulás, parentális sejtekben [80].

Vastagbél rák szövetmintaiban bőr és tüdő fibroblaszt sejtekben szintén alacsonyabb ATP2B1 és ATP2B4 expressziót mérték a kiindulás, parentális sejtekben [80].

Vastagbél rák szövetmintaiban a PMCA4 fehérje mennyiségének szignifikáns csökkenését írták le a progresszió korai szakaszában, a tumor differenciáltsági fokának csökkenésével párhuzamosan [81, 82]. Az ATP2B4 mRNS expressziójában azonban nem tapasztaltak szignifikáns változást a tumoros mintákban a normál szövetminta kohéziós képest, így valószínűsíthető, hogy a csökkent PMCA4 expresszió poszttranszkripciós szabályozási folyamatok eredménye [82]. Vastagbél tumor sejtvonalak spontán illetve hiszton-deacetiláz (HDAC) inhibitorok által indukált differenciációja során viszont jelentősen fokozódik a PMCA4 kifejeződése [81, 83].

Neuroblasztoma sejtek differenciációja során szintén fokozódik a PMCA 2, 3 és 4 izofor munkájának, ami fokozott Ca^{2+} effluxot eredményez [84].
Kutatócsoportunk a közelmúltban igazolta, hogy BRAF mutáns melanóma sejtvonalakban a mutáns B-Raf fehérje specifikus gátlása szelektíven fokozza a PMCA4b izoforma kifejeződését. Továbbá az emelkedett PMCA4b expresszió (akár drog kezeléssel, akár transzfekcióval érjük el) csökkent migrációs és metasztázsképző potenciállal jár együtt a BRAF mutáns melanóma sejtek esetén, míg a sejtek proliferációs rátája nem változik [85]. Különböző HDAC inhibitor kezelések mind a PMCA4b, mind a PMCA1 izoforma szintjét megemelik, és gátolják a migrációs aktivitást melanóma sejtekben BRAF státusztól függetlenül [86].

Több emlőtumor sejtvonál in vitro vizsgálata során az ATP2B1 és ATP2B2 mRNA expressziójának fokozódását, viszont az ATP2B4 mRNA expressziójának csökkenését találták a nem tumoros emlő epitél sejtekhez képest [87, 88]. További tanulmányok a fokozott ATP2B2 expressziót meghatározott emlőtumor szubtípusokkal hozzák összefüggésbe, azonban a klinikai kimenetel és túlélés szempontjából ellentmondásosak az eddigi eredmények a PMCA2 izoformát illetően [89, 90]. Emellett a HER2 (humán epidermális növekedési faktor receptor 2) jelátviteli útvonal szabályozásában is szerepet tulajdonítanak a PMCA2 izoformának HER2 pozitív emlőtumor sejt lehetsége és progressziójában [91].

A fenti megfigyelések mind alátámasztják a PMCA további vizsgálatának jelentőségét a különböző tumor típusok kialakulásában és progressziójában.

1.4. Emlőtumorok

Az emlőtumor a második leggyakoribb ráktípus világszerte, nők körében pedig a legfőbb halált okozó rákos megbetegedés a GLOBOCAN 2012 tanulmány alapján [92]. Mivel egy nagyon komplex és heterogén betegségcsoportról van szó, a különböző emlőtumoros eseteket nem lehet egy betegségként kezelni. Az egyes emlőtumoroknak nem csak klinikai paramétereik, hisztológiai grade-ük, méretük, nyirokcsomó érintettségük és expresszált biomarkereik különbözik, de molekuláris biológia hátterük is nagyon diverz. Minél többet tudunk meg az emlőtumorok genetikai hátteréről, jelátviteli útvonalaik működéséről, annál több lehetőség nyílik az új terápiás szerek fejlesztésére, melyekkel az átlagtól különböző esetek is kezelhetővé válnak. Illette annál több biomarkert azonosíthatunk, melyekkel prediktálhatóvá válik a terápiák kimenete [93, 94].
1.4.1. Az emlőtumorok molekuláris szubtípusai

Hagyományosan az egyes emlőtumorok génexpressziós mintázatuk és immunhisztokémiai markereik alapján molekuláris szubtípusokba sorolhatóak. Ezek a szubtípusok eltérő klinikai kimenetellel, terápiás válasszal és metasztázisképző potenciállal jellemezhetőek [93, 95].

Az emlőrákok 50-60%-a a luminális A szubtípusba tartozik. Ezek jól differenciált, alacsony hisztológiai grade-ű tumorok, melyek a Ki67 expresszió alapján alacsony proliferációs rátával jellemezhetőek. Az immunhisztokémiai markerek közül ösztrogén receptor alfát (ER-α) és progeszteron receptort (PR) fejeznek ki, humán epidermális növekedési faktor receptor 2-t (HER2) nem expresszálnak [93]. Jó prognózisú tumoroknak tekinthetők, a 27,8%-os relapszus arány a többi szubtípushoz képest szignifikánsan alacsonyabb, illetve a relapszus utáni túlélés is hosszabb (átlagosan 2,2 év) [96]. Áttétet általában a csont, központi idegrendszer, máj vagy tüdő területén adnak. Elsődleges terápiás lehetőségeik az aromatáz inhibitorok, illetve a szelektív ösztrogén receptor modulátor (selective estrogen receptor modulator; SERM) vegyületek, mint a tamoxifen és a szelektív ER-α antagonista fulvestrant [97].

A luminális B szubtípusba az emlőtumorok 10-20%-a tartozik. A luminális A szubtípushoz képest agresszívabb fenotípus, magasabb grade, magasabb proliferációs index és rosszabb prognózis jellemzi ezeket a rákokat [93]. A relapszus utáni túlélési idő is alacsonyabb (1,6 év átlagosan). A csontáttétek mellett leginkább a májban jelennek meg a metasztázisok [96]. ER-α-t expresszálnak, és sok esetben HER2-t is, így az aromatáz inhibitor és tamoxifen kezelés ennél a szubtípusnál is alkalmazható. Emellett a neoadjuváns kemoterápiára sokszor jobban reagálnak a luminális A tumoroknál. Összességében azonban a terápiás válasz mégsem mondható jónak ennél a szubtípusnál [93].

Az emlőtumorok 15-20%-a sorolható a HER2 pozitív szubtípusba, mivel túltermelik a humán epidermális növekedési faktor receptor 2-t (HER2), illetve egyéb HER2 alatti jelátviteli útvonalakhoz kapcsolódó fehérjéket. Magas proliferációs rátájú, magas grade-ű tumorok tartoznak ebbe a csoportba. Hormonreceptorokat nem expresszálnak, de több mint 40%-uk p53 mutációt hordoz [93]. Rossz prognózisú tumorok, de célzott anti-HER2 terápiával jól kezelhetőek [98], valamint kemoterápiára is jól reagálnak [99].
A bazális szubtípusba tartozik az emlőrákok 10-20%-a. Az elnevezés a normál emlő mioepitél (bazális) sejtkez hasonló génekexpressziós mintázatból ered. Tripla negatív (ER-, PR-, HER2-), agresszív, kevésbé differenciált tumorok, melyek sokszor korai életkorban jelennek meg. Nagy tumor méret, magas grade, magas mitotikus index jellemző őket, és sokszor hordoznak p53 mutációt [93]. A BRCA1 csiravonal-mutációt hordozó emlőrákok mind ebbe a szubtípusba tartoznak [100]. Gyakori a nyirokcsomó, tüdő vagy központi idegrendszeri áttét esetükben [96]. Annak ellenére, hogy jól reagálnak a kemoterápiára [101], rossz prognózisú tumoroknak tekinthetőek és a relapszus aránya magas [102].

Az újabb molekuláris klasszifikációk alapján a bazális szubtípustól elkülöníti a „claudin-low” szubtípust. Ez a csoport sok tekintetben hasonló karakterisztikákval bír, mint a bazális tumorok, de a különböző sejtkapcsoló fehérjék (claudinok, ocludin, E-cadherin) alacsony expressziója jellemez. Sok esetben fejeznek ki az epiteliális-mezenchimális átalakulásban szerepet játszó géneket. Rossz prognózisú tumorok, de alacsonyabb proliferációs rátával bírnak. Kemoterápiára adott válaszuk alapján a luminális és bazális tumorok között helyezkednek el [93].

1.4.2. Az emlőtumorokban szerepet játszó főbb jelátviteli útvonalak

Az emlőtumorok kutatása során, új terápiás célpontok azonosításához elengedhetetlen a tumorprogresszióban szerepet játszó jelátviteli útvonalak részletes megismerése.

1.4.2.1. Az ER-α jelátviteli útvonal

Az ösztrogének fontos szerepet játszanak mind az egyedfejlődés során, mind a reproduktív, kardiovaszkuláris, csont-, immun- és központi idegrendszer fenntartásában. A fő humán ösztrogén hormon a 17β-össtradiol (E2). Az ösztrogén receptorok (ER) a nukleáris hormon receptor családba tartozó fehérjék. Humán sejtekben két izoforma expresszálódik, az ER-α (ESR1) és ER-β (ESR2). A két izoforma a sejtek nagy részében normál körülmények között átfedő expressziós mintázatot és funkciót mutat, azonban pl. tumorsejtekben a proliferációt szabályozó génekre ellentétes hatással is lehetnek [94].

Az ER jelátvitel két fő útvonalon mehet végbe (3. ábra). A klasszikus, genomi útvonal során az ER aktivációja vagy az E2 ligand kötése által történik, vagy ligandfüggetlen módon, különböző kinázok általi foszforiláció hatására. Az aktivált receptor a sejtmagba transzlokálódik, ahol az általa szabályozandó génök promoter régiónához köt. Ez történhet
direkt módon, a DNS úgynevezett ösztrogén válasz elemeihez (estrogen response element; ERE) kötve, illetve indirekt módon, különböző transzkripciós faktorokhoz kapcsolódva. Az E2-ER komplex egyéb koreregulációs molekulákat, pl. hiszton-dezacetiláza (HDAC) vagy hiszton-aciltranszferázokat (HAT) toboroz a szabályozandó génszakaszhoz, ami befolyásolja a hiszton acetiláció mértékét és a kromatin átrendeződését. A keletkező komplextől, a sejttípustól, ligandtól függően a végeredmény lehet a transzkripció aktivációja vagy gátlása is. A genomi ER jelátvitel általában órák alatt zajlik le [103].

Az extranukleáris, citoplazmatikus ER jelátviteli útvonal jóval gyorsabban, másodpercek, percek alatt vált ki hatást. Ez esetben az ER a plazmamembránban, vagy plazmamembrán receptorokhoz kapcsoltan különböző kinázok hatására aktiválódik, és a PI3K/Akt/mTOR vagy
receptor tirozin kináz útvonalak aktivációját válta ki [103]. A folyamatban részt vehet az ER-α, ER-β vagy a G-fehérje kapcsolt ösztrogén receptor 1 (G protein-coupled estrogen receptor 1; GPER/GPR30) is. A GPER/GPR30 a plazmamembránban vagy az endoplazmatikus retikulum membránjában lokalizálódó ER, ami intracelluláris Ca\(^{2+}\) mobilizációt illetve cAMP, ERK1/2 és PI3K aktivációt képes kiváltani [104, 105].

A fent említett szignálútvonalak aktivációja jelentős mértékben hozzájárul a rákos sejtek proliferációjának, túlélésének, adhéziójának és migrációjának szabályozásához az ER-α pozitív, luminális emlőtumor sejtekben.

1.4.2.2. A PI3K jelátviteli útvonal

![4. ábra. A PI3K jelátviteli útvonal. A tirozin kináz receptorok (RTK) aktivációja következtében a PI3K a PIP\(_2\)-t PIP\(_3\)-má foszforilálja, ami az Akt, és azon keresztül számos transzkripciós faktor aktivációjához vezet. A PTEN negatív regulátorként a PIP\(_3\)-at PIP\(_2\)-vé defoszforilálja. Emlőtumor sejtekben gyakori az útvonal egyes tagjainak mutációja [94].

A foszfatidilinositol 3 kináz (PI3K) szignálútvonal szintén számos alapvető sejtélettani folyamat szabályozásában szerepet játszik. Különböző növekedési faktorok hatására az aktív PI3K a foszfatidilinositol-4,5-biszfoszfátot (PIP\(_2\)) foszfatidilinositol-3,4,5-triszfoszfáltá (PIP\(_3\)), az Akt aktivátorává alakítja. A PI3K útvonal egyik legfontosabb végső effektora az mTOR, ami a proliferáció, differenciáció és autofágián kívül a fehérjeszintézis és anyagcsere
szabályozásában is részt vesz. A szignálútvonal negatív regulátora a tumorszuppresszor PTEN (phosphatase and tensin homolog) fehérje, ami a PIP₃-at PIP₂-vé defoszforilálja (4. ábra) [33, 34].

A PI3K p110α katalitikus alegységét kódoló PIK3CA gén mutációja az egyik leggyakoribb elváltozás a rákos sejtek genomjában, az emlőtumorok 25%-ában megtalálható, és a fehérje konstans aktivációját okozza. Az útvonalat érintő, szintén gyakori mutáció a PTEN funkcióvesztését okozza. Ez bazális típusú emlőtumorok 67%-ában, HER2 pozitív tumorok 22%-ában előfordul. Továbbá luminális emlőtumorok esetében viszonylag gyakori meg az Akt mutációja is [94]. Az Akt izoformái specifikus szerepet képesek betölteni az emlőtumor progresszió különböző fázisainban, mivel az Akt1 és Akt2 eltérő módon képesek szabályozni a tumorosejtek mozgását. Az Akt2 az F-aktin és a vimentin indukcióján keresztül fokozza a sejtek migrációját és invázióját. Mindeközben az Akt1 gátolja a folyamatot a β₁ integrin és a FAK expressziójának csökkentésével, így inkább a lokális tumor növekedésnek kedvez [106].

1.4.2.3. A MAPK jelátviteli útvonal

A mitogén aktivált protein kináz (MAPK) szignalizációknak kulcsfontosságú szerepe van az embriogenezis, differenciáció, proliferáció, migráció, apoptózis szabályozásában valamint a sejteket érő kémia és fizikai stresszhez való adaptációban. Az útvonalat az extracelluláris térből érkező mitogén szignálok aktiválják. Az aktivált tirozin kináz receptorok adaptor fehérjék közreműködésével kis GTPáz fehérjéket (Ras, Rac, Rho, CDC42) aktiválnak, melyek iniciálják a MAPK kaszkád (pl. Raf-MEK-ERK/JNK/p38) foszforilációját. A folyamat eredményeként számos eltérő sejtválasz létrejöhet [107].

Rákos sejtekben számos ponton történhetnek olyan változások, melyek az útvonal konstitutív aktivációját, és így fokozott proliferációt, inváziót, metasztázis képzést, angiogenezist vagy az apoptotikus szignálok elkerülését okozzák. A RAS és RAF mutációját, vagy a tirozin kináz receptorok expressziójának emelkedését számos tumorban leírták [107]. Emlőrákokban a MAPK útvonalnak komplex szerepe van, mivel általában kapcsolatban áll más jelátviteli utakkal. Emlőtumorokban az E2 általában olyan növekedési faktorokat aktivál, melyek fokozzák a MAPK útvonal aktivitását. Az aktivált MAPK pedig foszforilálni képes az ER-α-t. ER-α pozitív emlőtumorokban a fokozott MAPK aktivitás általában jó prognózissal és hosszabb túléléssel társul, feltehetőleg a fokozott apoptotikus aktivitás miatt [108].
1.4.3. Az emlőtumorok gyógyszeres kezelésének lehetőségei

Emlőrákok esetén a kemoterápia alkalmazás a tripla negatív, bazális szubtípusnál, a HER2 pozitív tumoroknál, és a magas rizikójú, HER2 negatív, luminális tumoroknál ajánlott. A kemoterápia abszolút előnye az ER-α negatív tumorok esetén a kifejezettebb. A leggyakrabban használt kemoterápiás szerek emlőtumorban az antraciklinek és/vagy taxánok [109].

A luminális szubtípusba tartozó emlőtumorok elsődleges kezelési lehetősége az ER-α-t célzó endokrin terápia. Az ER-α-t expresszáló emlőtumorok kétharmada jól reagál az anti-ösztrogén tamoxifenre, azonban hosszan tartó kezelés során az esetek 50%-ában alakul ki tamoxifen rezisztencia és relapszus. Alternatívákat rendelkezésre állnak más szelektív ösztrogén receptor modulátor (SERM) vegyületek is, mint a raloxifen vagy arzoxifen. Postmenopauzális esetek elsővonalbeli kezelési lehetősége az E2 szintézisét gátló aromatáz inhibitorok alkalmazása, mint pl. az anastrozol vagy letrozol. Egy további széleskörben használt ER-α antagonista, a fulvestrant szelektíven célozza és degradálja az ER-α-t [103]. Újabbabb több kutatás célja, hogy különböző DNS metiltranszferáz inhibitorként és/vagy HDAC inhibitorként fontos szerepet játszik az epitopolitézis a tumorokban. A tumorokban HDAC inhibitorokkal történő kombinációja is gyakori az onkológiában.

A HER2 pozitív tumorok a HER2 ellenes célzott terápiák fejlődésével jól kezelhetővé váltak, az átlagos túlélés megkétszereződött ennek köszönhetően. Az első elfogadott célzott HER2 ellenes szer a trastuzumab volt, ami ma is kulcsfontosságú ennek az emlőtumor szubtípusnak a kezelésében. A trastuzumab egy monoklonális ellenanyag, ami az extracellulár is a HER2 heterodimereket, és a receptor internalizációját és lizoszomális degradációját indukálja. A HER2 jelátvitel gátlása mellett ezenkívül immunológiai reaktiválást eredményez. Egy másik monoklonális anti-HER2 ellenanyag, a pertuzumab, a HER2-HER3 heterodimerek kialakulását gátolja. A lapatinib egy kis molekulasúlyú tirozin-kináz inhibitor, ami a HER2 és EGFR receptorok intracelluláris doménjeit célozza. A trastuzumab-emtansine egy olyan ellenanyag-drog konjugátum, ami lehetővé teszi a citotoxikus molekula tumorhoz való targetálását, ezzel növelve a hatékonyságot és csökkentve a toxicitást. A trastuzumabhoz kötve maytansint tartalmaz, ami az ellenanyag
sejfelszínhez kötése után internalizálódik, és gátolja a mikrotubulusok polimerizációját. A HER2 pozitív tumorok terápiájának gyors fejlődése ellenére a metasztatikus esetek jó része még mindig gyógyíthatatlan. Emiatt fontos olyan új terápiák fejlesztése, amivel megelőzhető vagy kezelhető a jelenleg használt szerek elleni rezisztencia. A klinikai kísérletek bíztatóak a PI3K vagy mTOR inhibítorok, a CDK4/6 inhibítorok és az immunterápia esetén is [113].

A bazális emlőtumorok egy nagyon komplex és agresszív szubtípus, ahol a hormon receptorok és a HER2 amplifikáció hiánya miatt nehéz célzott terápiás alternatívákat találni. Továbbá ez a szubtípus mutatja a legnagyobb metasztatikus potenciált és a legrosszabb túlélést az emlőtumorok között. Azonban az egyetlen gyógyszeres kezelési lehetőség esetükben még mindig a kemoterápia [114].

Mindezek alapján az emlőrák kutatások kiemelt célja új terápiás célpontok azonosítása, illetve olyan biomarkerek keresése, melyek segítenek megjósolni a terápiás választ vagy éppen a rezisztencia kialakulását. A folyamatban lévő vizsgálatok alapján bizalomkeltő terápiás lehetőség lehet a PI3K/Akt/mTOR, FGFR vagy IGFR útvonalak targetálása, a PARP inhibítorok, epigenetikai szerek vagy immunterápia alkalmazása [115-117].

1.5. Hiszton-dezacetiláz inhibitörök

A tumorprogresszió folyamatában a genetikai változások mellett az epigenetikai változásoknak is fontos szerep jut. A DNS metiláció/demetiláció, illetve hiszton acetiláció/dezacetiláció keresztül szabályozódik számos gén kifejeződésére, így ezek a mechanizmusok alapvető szerepet játszanak az embriogenezistől kezdve, a sejtciklus szabályozásán át, bizonyos betegségek, tumorok kialakulásáig. Az epigenetikai folyamatok dinamikus és reverzibilis tulajdonságai lehetővé teszik, hogy terápiás célpontként tekintsünk a résztvevő molekulákra [118].

A kromatin struktúra vázát alkotó hiszton fehérjék többféle módosuláson keresztül mehetnek, melyek az adott DNS szakasz transzkripcióját szabályozzák. A hiszton-aciltranszferázok (HAT) által végzett lizin acetiláció megakadályozza a hiszonok DNS-hez való kötődését, ezzel egy relaxált, nyitott kromatin konformációt hoz létre. A H3K9 és H4K16 acetiláció általában aktív transzkripciót jelöl az érintett szakason. A hiszton-dezacetilázok (HDAC) ezzel ellentétesen, az acetil csoport eltávolításával, zárt kromatin struktúrát hoznak
létre. A hiszon fehérjék további szabályozási lehetőségei a lizin és arginin oldalláncok metilációja, illetve a szerin/treonin foszforiláció [119].

A HDAC-oknak összesen 18-féle izoformáját ismerjük, melyeket szekvencia homológia alapján négy osztályba csoportosítunk. Tumorokban sokszor megváltozik az egyes HDAC izoformák expressziója, ami számos tumorigenezisben szerepet játszó gén abnormális epigenetikai csendesítését eredményezi. NémiHDAC akár potenciális biomarkerként is szolgálhat a rákos és nem rákos szövet megkülönböztetésére. Egyes tumorok esetén pedig a HDAC-ok fokozott expressziója korrelál a rossz prognózissal és a rövidebb túléléssel. A hiszonok mellett a különböző HDAC izoformák célpontjai lehetnek egyéb nukleáris fehérjék, transzkripciós faktorok (pl. a tumorsuppresszor p53 vagy a tumor promotor STAT és NFκB) vagy citoplazmatikus fehérjék is (pl. tubulin, Hsp90) [120, 121].

5. ábra. A HDAC-ok célpontjai és a HDAC gátlás tumorellenes hatása. A különböző HDAC izoformák eltérő szubsztrát specifikitással bírnak, hiszon és nem hiszon fehérjék is szerepelnek célpontjaik között. Az egyes HDAC-ok gátlása számos különféle biológiai hatással bír. A pan-HDAC inhibitorok alkalmazása, melyek a HDAC-ok számos izoformáját gátolják, széles spektrumú antitumor választ indukál ([121] alapján).

A HDAC inhibitorok összetett hatásmechanizmusa számos ponton a tumorok progressziója ellen hat, így egyes vegyületeiket már alkalmazzák a klinikai gyakorlatban, illetve
több tumortípus esetén is folynak a klinikai kutatások [116, 119, 122]. Antitumor hatásukat számos különböző útvonalon keresztül fejtik ki (5. ábra). Befolyásolják a génexpressziót a kromatin struktúra átrendezésével, promoter régiók acetilációjának fokozásával és korepresszorok gátlásával. Ennek eredményeként aktiválhatják tumorszupresszor gének átírását, vagy gátolhatják onkogének transzkripcióját. Sejttípustól illetve a használt HDAC inhibitortól függően a gének kb. 10%-át modulálják. A tumorokban sokszor csendesített sejtciklus inhibitor p21 ciklin-dependens kináz inhibitor expressziójának fokozása révén leállítják a sejtciklust. Az apoptózis indukcióját több útvonalon keresztül is serkentik. Fokozzák a proapoptotikus gének, halál receptorok expresszióját, mint pl. Fas, TRAIL, TNF-R1, BIM vagy a p53 acetilációján keresztül a BMF. Illetve gátolják az anti-apoptotikus gének átírását, pl. az SP1 és C/EBPα transzkripciós faktorok gátlásán keresztül csökkentik a BCL2 kifejeződését.

A tumorokban sokszor csendesített sejtciklus inhibitor p21 ciklin-dependens kináz inhibitor expressziójának fokozása révén leállítják a sejtciklust. Az apoptózis indukcióját több útvonalon keresztül is serkentik. Fokozzák a proapoptotikus gének, halál receptorok expresszióját, mint pl. Fas, TRAIL, TNF-R1, BIM vagy a p53 acetilációján keresztül a BMF. Illetve gátolják az anti-apoptotikus gének átírását, pl. az SP1 és C/EBPα transzkripciós faktorok gátlásán keresztül csökkentik a BCL2 kifejeződését. Továbbá indukálják a DNS sérülését, és gátolják a DNS repair folyamatokat, valamint ROS felhalmozódást okoznak. A chaperon fehérjék (pl. Hsp90) működését szintén gátolják az acetiláció szabályozásán keresztül, és ezzel a Hsp90 által stabilizált onkoproteinek proteoszomális degradációját váltják ki. Emellett még a HDAC inhibitorok endoplazmatikus retikulum stressst is okoznak, gátolják az angiogenezist, csökkentik a tumoros sejtek inváziós/metasztatikus képességét, növelik az antitumor immunválaszt, illetve fokozzák a sugár- és kemoterápiára adott választ. Sok esetben a tumoros sejtek érzékenyebbek a HDAC inhibitorokra, mint az egészséges sejtek [121, 123].

A HDAC inhibitorok kutatásában két fő irány mutatkozik, egyik a szélesspektrumú pan-HDAC inhibitorok fejlesztését célozza, a másik pedig az egyes HDAC osztályokat célzó specifikus inhibitorok fejlesztése (pl. a romidepsin az I. osztályt gátolja). A suberoil anilid hidroxámsav (SAHA; Vorinostat) a hidroxámsavak közé tartozó pan-HDAC inhibitor, mint a trichostatin A vagy a panobinostat is. Az I., II. és IV. HDAC osztályokat gátolja. Az első FDA által elfogadott HDAC inhibitor, amit először kután T-sejtes limfóma terápiájában kezdtek alkalmazni. A klinikai kutatások többféle hematológiai illetve szolid tumor esetén is folyamatban vannak, mint pl. agytumor, gasztrointesztinális rákok, melanóma vagy emlőtumor [111, 124, 125].

A rövid szénláncú zsírsavak (butirát, fenilbutirát, valerát, valproát) az I. és II.a HDAC osztályokat gátolják, de hatásuk általában gyengébb, mint a hidroxámsavaknak. A valproátot eredetileg kedélyjavítóként illetve antiepileptikumként vezették be a klinikai gyakorlatba,
azonban bizonyított tumorellenes hatása miatt mára már számos klinikai fázisú kísérletbe bevonták. Önmagában alkalmazva idegrendszeri tumorokban vizsgálják, az anti-angiogén bevacizumabbal kombinálva többféle szolid tumorban (kolorektális, prosztata és emlőtumor, melanóma) tesztelik, decitabinnal kombinálva pedig nem-kissejtes tüdőrákban vizsgálják [124-126]. A fenilbutirátot is tesztelik, főként azacitidinnel kombinálva nem-kissejtes tüdőrákban, prosztatarákban és akut mieloid leukémiában [125]. Ugyan az eredmények bizalomkeltőek, különösen a kombinációs terápiák esetén, de a HDAC inhibitorok hatásmechanizmusát még nem ismerjük minden részletre kiterjedően, így kutatásuk kiemelt jelentőségű az új terápiás célpontok fejlesztése érdekében.
2. Célkitűzések

A Ca\(^{2+}\) ATPázok/Ca\(^{2+}\) pumpák jelentőségét egyre több betegség kapcsán felismerték az utóbbi években, és már több különböző tumor típusban leírták az egyes Ca\(^{2+}\) pumpa fehérjék megváltozott expresszióját. Kutatócsoportunk is bizonyította, hogy fontos szerepet játszanak bizonyos tumorsejtek migrációjában és a metasztázis képzésében. Azonban még mindig keveset tudunk arról, hogyan vesznek részt ezen fehérjék a tumorprogresszió folyamatában. Így jelen munka során általános célunk a Ca\(^{2+}\) pumpák, azon belül is a plazmamembrán Ca\(^{2+}\) ATPázok emlőtumorban betöltött szerepének megismerése volt. Ennek érdekében az alábbi célokat fogalmaztuk meg:

- Összehasonlítsuk az egyes PMCA izoformák expresszióját egészséges és tumoros emlőszövetben nyilvános adatbázisokban elérhető génexpressziós adatok alapján.
- Meghatározzuk az egyes PMCA és SERCA típusú Ca\(^{2+}\) pumpák expressziós szintjét több, különböző szubtípusba tartozó emlőtumor sejtvonalban.
- Részletesen vizsgáljuk az egyes Ca\(^{2+}\) pumpa fehérjék kifejezódését, lokalizációját és funkcióját MCF-7 emlőtumor sejtvonalon HDAC inhibitorokkal és PMA-val történő kezelések során.
- A HDAC inhibitorokkal végzett vizsgálatainkat kiterjeszthetjük több, különböző szubtípusba tartozó emlőtumor sejtvonalra.
- Vizsgáljuk az ER-\(\alpha\) jelpálya szerepét a Ca\(^{2+}\) pumpák expressziójának és funkciójának szabályozásában különböző emlőtumor sejtekben.
- Tanulmányozzuk a több jelentős szignálút vonal kiindulópontjaként szolgáló PIP\(_2\) és a PMCA kapcsolatát HeLa modell sejtekben.
3. Anyagok és módszerek

3.1. Immunhisztokémia

3.2. Plazmid konstrukciók

A kísérletekhez az alábbi korábban létrehozott plazmid konstrukciókat használtuk: mCherry-PMCA4x/b [127], pEGFP-PMCA2wb [27], pEGFP-PMCA4b-L_{1167–1169}A [127]. Az SB100x transzpozáz plazmidot és az SB-CAG-GCaMP2-CAG-Puro transzpozon konstrukciót [128] Orbán Tamástól (MTA TTK Enzimológiai Intézet) kaptuk. A pH_{PLCδ1}-RFP konstrukciót [129] Várnai Pétertől (Semmelweis Egyetem, Élettani Intézet) kaptuk. A pN1-GCaMP2 plazmid konstrukciót [130] Junichi Nakaitól (RIKEN Brain Science Institute, Saitama, Japán) kaptuk. A mCherry-PMCA2wb konstrukcióhoz a pEGFP-PMCA2wb plazmid EGFP fragmentjét a pmCherry-C1 vektorból (Clontech) származó mCherry-re cseréltük az Agel-KpnI restrikciós helyeken történő enzimhasítással. Az mCherry-PMCA4b-L_{1167–1169}A konstrukció esetén site-directed mutagenezisszel hoztuk létre a tripla L_{1167–1169}A mutációt az mCherry-PMCA4b plazmidban a QuikChange II Site-Directed Mutagenesis Kit (Stratagene) segítségével az alábbi primer párral: forward 5’-CAAGTTTGGGACTAGGTTGGCAGCGGGATGGTGAGGTCACTCCATATGCC-3’; reverse 5’-
GGCATATGGAGTGACCTCACCATCCGCCGCTGCCACCCTAGTCCCAAACTTAG-3’. A pEGFP-PMCA4b-D⁶⁷²E-L^{1167–1169}A és az mCherry-PMCA4b-D⁶⁷²E-L^{1167–1169}A konstrukcióknál a D⁶⁷²E pontmutációt site-directed mutagenezissel hoztuk létre a megfelelő PMCA4b-LA plazmidokban a QuikChange II Site-Directed Mutagenesis Kit (Stratagene) segítségével az alábbi primerekkel: forward, 5’-GGTGGGACCTGAGCCTGTGCGCCCAGAG-3’; reverse 5’-CTCTGGGCGACAGGCTCCTCAATGCCCACC-3’.

3.3. Sejtvonalak és tenyésztési körülményeik

2. táblázat. A vizsgálatokhoz használt sejtvonalak és tenyésztő médiumok.

<table>
<thead>
<tr>
<th>Sejtvonal</th>
<th>Szöveti eredet</th>
<th>Forrás</th>
<th>Tenyésztő médium</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-10A</td>
<td>nem tumoros emlő epitél</td>
<td></td>
<td>MEGM (az ATCC utasításai alapján)</td>
</tr>
<tr>
<td>MCF-7</td>
<td>invazív duktális emlőkarcinóma</td>
<td>American Type Culture Collection (ATCC)</td>
<td>DMEM + 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamin</td>
</tr>
<tr>
<td>SK-BR-3</td>
<td>metasztatikus emlő adenokarcinóma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs578T</td>
<td>invazív duktális emlőkarcinóma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeLa</td>
<td>méhnyak adenokarcinóma</td>
<td>European Collection of Authenticated Cell Cultures (ECACC)</td>
<td>RPMI 1640 + 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamin</td>
</tr>
<tr>
<td>ZR-75-1</td>
<td>invazív duktális emlőkarcinóma</td>
<td>American Type Culture Collection (ATCC)</td>
<td></td>
</tr>
<tr>
<td>BT-474</td>
<td>invazív duktális emlőkarcinóma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU-565</td>
<td>metasztatikus emlő adenokarcinóma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-47D</td>
<td>invazív duktális emlőkarcinóma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB-468</td>
<td>metasztatikus emlő adenokarcinóma</td>
<td>NCI Development Therapeutics Program (DCTD Tumor Repository, National Cancer Institute at Frederick, MD)</td>
<td></td>
</tr>
<tr>
<td>BT-549</td>
<td>invazív duktális emlőkarcinóma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>metasztatikus emlő adenokarcinóma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Munkánk során minden esetben alacsony passzázsszámú, *Mycoplasma* fertőzéstől mentes tenyészeteket használtunk. A sejteket 37°C-os, 5% CO₂ koncentrációjú termosztátban tartottuk.

3.4. A stabil GCaMP2-t expresszáló sejtvonalak alapítása

A GCaMP2-MCF-7 és GCaMP2-MDA-MB-231 sejtvonalakat, melyek stabilan expresszálják a genetikailag kódolt GCaMP2 Ca²⁺ szenzort, a Sleeping Beauty transzpozon rendszer segítségével hoztuk létre [131, 132]. A sejteket FuGENE HD Transfection Reagent (Roche Applied Science) segítségével 1:10 arányban kotranszfektáltuk az SB100x transzpozáz plazmiddal és az SB-CAG-GCaMP2-CAG-Puro transzpozon konstrukcióval, ami egy puromycin rezisztencia gént hordoz. A transzfekció után két nappal a tenyészőmédiát 1 μg/ml puromycin dihidrokloridot (Santa Cruz Biotechnology) tartalmazó szelektív médiumra cseréltük, majd a szelektiót addig folytattuk, míg a nem transzfektálódott sejtek elpusztultak. Ez idő alatt kétnaponta frissre cseréltük a szelektív médiumot, és fluoreszcens mikroszkóppal monitoroztuk a túlélő sejtek GCaMP2 fluoreszcenciáját. A szelektív periódus után kapott poliklonális GCaMP2-MCF-7 és GCaMP2-MDA-MB-231 sejtvonalakat használtuk a Ca²⁺ szignál mérésekhöz.

3.5. Az sh-HeLa sejtvonal alapítása

A PMCA4-csendesített sh-HeLa sejtvonalat PMCA4 shRNS plazmid konstrukció (Santa Cruz Biotechnology, sc-42602-SH) segítségével hoztuk létre. A HeLa sejteket transzfektáltuk a PMCA4 shRNS plazmiddal vagy a kontroll shRNS plazmid-A-val (sc-108060) plazmid transzfekciós reagenssel (sc-108061) plazmid transzfekciós médiumban (sc-108062) a gyártó utasításai szerint. A transzfekció után két nappal a tenyésztőmédiát 2 μg/ml puromycin dihidrokloridot (Santa Cruz Biotechnology) tartalmazó szelektív DMEM-re cseréltük, majd a szelektiót két hétig folytattuk, közben kétnaponta frissre cseréltük a szelektív médiumot. A szelektió után klónozó gyűrű használatával szeparáltuk az egy sejtből származó klónokat, és Western blot analízissel ellenőriztük a klónok PMCA4b expresszióját. A leghatékonyabbnak bizonyuló klónt felszaporítva hoztuk létre az sh-HeLa sejtvonalat.
3.6. Reagensek és kezelések

A kezelésekhez használt butirát, fenilbutirát és valerát törzsoldatokat a rövid szénláncú zsírsavak (vajsav, fenilvajsav és valeriánsav; Sigma-Aldrich) megfelelő koncentrációjú nátrium-bikarbonát oldatban történő oldásával készítettük, majd sterilre szúrtük 0.2 μm pórusátmérőjű szűrővel, és -20°C-on tároltuk. A nátrium-valproágot (VPA; Sigma-Aldrich) steril desztilált vízben oldottuk, majd sterilre szűrtük 0.2 μm pórusátmérőjű szűrővel, majd -20°C-on tároltuk. A suberoil anilid hidroxámsav (SAHA; Sigma-Aldrich), a forbol 12-mirisztát 13-cetát (PMA; Sigma-Aldrich), a GF 109203X hidroklorid (Sigma-Aldrich), a 17β-ösztradiol (E2; Sigma-Aldrich) és a fulvestrant (ICI 182,780; Sigma-Aldrich) törzsoldatokat DMSO-val készítettük, majd sterilre szűrtük 0.2 μm pórusátmérőjű szűrővel, majd -20°C-on tároltuk. A végső DMSO koncentrációt a sejtek tenyésztő médiumában egyik esetben sem haladta meg a 0.01%-ot. Továbbá a kontroll sejteket megfelelő koncentrációjú DMSO-val kezeltük, hogy kizárjuk az oldószer jelenlétnének torzító hatását.

A HDAC inhibitor kezelések során az exponenciális növekedési fázisban lévő sejteket Western blot analízishez és real-time PCR-hez 6-lyukú tenyésztőedényre szélesztettük, proliferáció vizsgálathoz és olajvörös festéshez 24-lyukú tenyésztőedényre, immuncitokémiai festéshez és Ca²⁺ szignál méréshez pedig 8-lyukú kamrára (Imaging Chamber CG 8 Well, PAA vagy Nunc Lab-Tek II chambered coverglass, Thermo Scientific). A sejteket három napig inkubáltuk, míg a kultúra kb. 80%-os konfluenciát ért el. Ezután a tenyésztőmédiument frissre cserélve kezeltük a sejteket a megfelelő koncentrációjú HDAC inhibitorokkal. A SAHA kezelések alatt naponta médiument cseréltük a sejteken. Az ábrákon jelzett időtartamú kezelések után vizsgáltuk a sejtek fehérje expresszióját Western blottal vagy immuncitokémiai festéssel, mRNS expresszióját real-time PCR-rel vagy Ca²⁺ szignál mérést végeztük.

Az E2 kezelések esetén a sejteket E2-mentes médiumban inkubáltuk, ami fenolvörösmentes DMEM vagy fenolvörösmentes RPMI 1640 volt kiegészítve 10% aktív szén-szűrt FBS-sel, 100 U/ml penicillinnel, 100 μg/ml streptomycinnel és 2 mM glutaminnal. Western blot analízishez 6-lyukú tenyésztőedényre, Ca²⁺ szignál méréshez 8-lyukú kamrára (Nunc Lab-Tek II chambered coverglass, Thermo Scientific) szélesztettük a sejteket normál tenyésztőmédiumban, amit egy nap múlva E2-mentes médiumra cserélünk, és további két napig inkubáltuk a sejteket, míg a kultúra kb. 80%-os konfluenciát ért el. Ezután az E2-mentes médiumot frissre cserélve kezeltük a sejteket 1 nM E2-vel és/vagy 100 nM fulvestrantlyal illetve
a jelzett koncentrációjú HDAC inhibitorokkal. Négy nap kezelés után vizsgáltuk a sejtek fehérje expresszióját Western blottal vagy Ca²⁺ szignál mérést végeztük.

3.7. Tranziens transzfekció

A tranziens transzfekciókat a FuGENE HD Transfection Reagent (Roche Applied Science) segítségével végeztük a gyártó által javasolt protokoll szerint. Az MCF-7 sejteket két nappal a transzfekció után vizsgáltuk, a HeLa sejteket egy nappal a transzfekció után.

3.8. Proliferáció vizsgálat

A sejtek proliferációjának vizsgálatához azonos kiindulási sejtszámmal kezeltük a sejteket az ábrán jelzett vegyületekkel négy napig. A kezeléseken a sejteket kétszer mostuk PBS-sel, és tripszinnel eltávolítottuk a tenyésztőedényről. Az élő sejtek számát tripánkék kizárás módszerrel automata sejtszámolóval (Bio-Rad) határoztuk meg.

3.9. Olajvörös festés

A kezelt sejteket mostuk kétszer PBS-sel, és fixáltuk 4%-os paraformaldehid oldattal 37°C-on 15 percig. Két desztillált vizes mosás után a sejteket 60%-os izopropanolban inkubáltuk 2 percig, majd 60%-os izopropanolban oldott 1,8 mg/ml-es olajvörössel (Sigma-Aldrich) festettük 10 percig, végül csapvizese mosással távolítottuk el a felesleges festéket. Olympus CKX41 mikroszkóppal, 40× objektívvel fáziskontraszt és fluoreszcens felvételeket készítettünk. A sejtek számát és a pozitívan festődő lipidcseppek összterületét ImageJ v1.42q szoftverrel határoztuk meg.

3.10. Western blot analízis

A teljes sejtlizátumok nyeréséhez a kezelt sejteket kicsaptuk 6%-os triklórecetsavval (TCA), majd a precipitátumot feloldottuk gélelektroforézis mintapufferben (62,5 mM Tris-HCl pH 6,8, 5 mM EDTA, 2% SDS, 10% glicerol, 100 mM DTT, 125 mg/ml urea, brómfenolkék). A sejtlizátumok fehérje koncentrációját módosított Lowry módszerrel mértük BSA standard sor
mellett. Egyenlő fehérjetartalmú mintákat futtattunk 7,5, 10 vagy 15%-os SDS-poliakrilamid gélen Laemmli módszer szerint, majd a mintákat PVDF membránra elektroblottoltuk. A membránokat 5% sovány tej tartalmazó TBS-Tween oldatban (25 mM Tris, 0,16 M NaCl, 0,1% Tween 20, pH 7,4) blokkoltuk, majd a 3. táblázatban felsorolt elsődleges ellenanyagokkal immunfestettük a gyártó javaslatainak megfelelően. A másodlagos ellenanyagként használt HRP-konjugált anti-egér vagy anti-nyúl ellenanyagok (Jackson ImmunoResearch) jelét Pierce ECL Western Blotting Substrate (Thermo Scientific) használatával detektáltuk CL-Xposure Film (Thermo Scientific) vagy Amersham Hyperfilm ECL (GE Healthcare) filmekre történő előhívással. A Western blottok denzitometriás analízisét ImageJ v1.51j8 szoftverrel végeztük, és az adatokat Prism 4 v4.01 (GraphPad Software) szoftverrel dolgoztuk fel.

3. táblázat. A Western blot analízishez használt elsődleges ellenanyagok.

<table>
<thead>
<tr>
<th>Ellenanyag</th>
<th>Specificitás</th>
<th>Tipus</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>5F10</td>
<td>összes PMCA izoforma</td>
<td>egér monoklonális</td>
<td>[133, 134]</td>
</tr>
<tr>
<td>anti-PMCA1 (PA1-914)</td>
<td>PMCA1</td>
<td>nyúl poliklonális</td>
<td>Affinity BioReagents</td>
</tr>
<tr>
<td>NR1</td>
<td>PMCA1</td>
<td>nyúl poliklonális</td>
<td>[134]</td>
</tr>
<tr>
<td>NR2</td>
<td>PMCA2</td>
<td>nyúl poliklonális</td>
<td>[134]</td>
</tr>
<tr>
<td>NR3</td>
<td>PMCA3</td>
<td>nyúl poliklonális</td>
<td>[134]</td>
</tr>
<tr>
<td>JA9</td>
<td>PMCA4</td>
<td>egér monoklonális</td>
<td>[133, 134]</td>
</tr>
<tr>
<td>JA3</td>
<td>PMCA4b</td>
<td>egér monoklonális</td>
<td>[133]</td>
</tr>
<tr>
<td>IID8</td>
<td>SERCA2</td>
<td>egér monoklonális</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>PL/IM430</td>
<td>SERCA3</td>
<td>egér monoklonális</td>
<td>[83]</td>
</tr>
<tr>
<td>anti-Na/K ATPáz</td>
<td>Na/K ATPáz</td>
<td>egér monoklonális</td>
<td>Enzo Life Sciences</td>
</tr>
<tr>
<td>anti-β-aktin (AC-15)</td>
<td>β-aktin</td>
<td>egér monoklonális</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>anti-β-tubulin</td>
<td>β-tubulin</td>
<td>nyúl poliklonális</td>
<td>Abcam</td>
</tr>
<tr>
<td>anti-ER-α (6F11)</td>
<td>ER-α</td>
<td>egér monoklonális</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>anti-ER-β</td>
<td>ER-β</td>
<td>nyúl poliklonális</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>anti-acetil-hiszton H3</td>
<td>acetil-hiszton H3 (Lys9/Lys14)</td>
<td>nyúl poliklonális</td>
<td>Cell Signaling</td>
</tr>
</tbody>
</table>
3.11. Immunprecipitáció

A kezelt sejtekben expresszálódó PMCA fehérjéket immunprecipitációval dúsítottuk teljes sejtizátumokból anti-pan PMCA ellenanyaggal (5F10) [133, 134] a Pierce Co-Immunoprecipitation Kit (Thermo Scientific) segítségével. A folyamat során a gyártó utasításait követtük, kivéve, hogy a gélelektroforézis mintapuffer 0,1 M DTT-t, 0,8 M ureát és 5 mM EDTA-Na-ot pH 6,8 is tartalmazott, valamint kihagytuk a minta forralását.

3.12. Real-time PCR

A kezelt sejtekből RNS-t izoláltunk peqGOLD TriFast (Peqlab Biotechnologie) reagenssel, majd átirtuk cDNS-sé Reverse Transcription System (Promega) használatával a gyártó utasításai alapján. Az amplifikációt StepOnePlus Real-Time PCR System (Applied Biosystems) segítségével végeztük TaqMan Gene Expression Master Mix használatával az alábbi TaqMan Gene Expression próbaképek: Hs00155949_m1 az ATP2B1 detektálásához, Hs01090453_m1 az ATP2B2 és Hs00608066_m1 az ATP2B4 detektálásához (Applied Biosystems). A reakciókat a gyártó által javasolt standard reakció ciklusokkal végeztük. Az mRNS szintek kvantitatív analízisét a StepOne v2.1 (Applied Biosystems) szoftverrel végeztük ΔCT módszerrel. A kapott értékeket az RPLP0 (Hs99999902_m1) és POLR2A (Hs00172187_m1) belső kontrollokra normalizáltuk.

3.13. Immuncitokémia

Az kezelt sejteket kétszer mostuk 37°C-os HBSS-sel, majd 4%-os paraformaldehid oldattal fixáltuk 37°C-on 15 percig. Őt PBS-es mosás után permeabilizáltuk a sejteket jéghideg metanolllal 5 percig, és ismételten mostuk ötször PBS-sel. A sejteket 1 órán át inkubáltuk szobahőmérsékleten blokkoló oldatban (2 mg/ml BSA-t, 1% halzselatint, 0,1% Triton-X 100-at és 5% kecske szérumot tartalmazó PBS), majd 1 óráig szobahőmérsékleten immunfestettük az alábbi, blokkoló oldatban oldott elsődleges ellenanyagokkal: egér monoklonális anti-PMCA4b (JA3) [133], egér monoklonális anti-PMCA4 (JA9) [133, 134] vagy csirke poliklonális anti-Na/K ATPáz (Abcam). Három PBS-es mosás után 1 órán át inkubáltuk a sejteket blokkoló oldatban oldott, Alexa Fluor-konjugált anti-egér és anti-csirke másodlagos ellenanyagokkal (Invitrogen).
A felvételeket Olympus IX-81 konfokális lézer pásztázó mikroszkóppal, Fluoview FV500 v4.1 szoftverrel, Olympus PLAPO 60× (1.4) olaj-immerziós objektívvel készítettük vagy Zeiss LSM710 konfokális lézer pásztázó mikroszkóppal, Plan-Apochromat 63x/1.40 olaj-immerziós objektívvel és Zeiss ZEN szoftverrel. Egy-egy sejtvonal kontroll és kezelt mintáiról azonos mikroszkóp beállításokkal készítettünk felvételeket.

3.14. Ca²⁺ szignál mérések az emlőtumor sejtekben

A GCaMP2-MCF-7 és GCaMP2-MDA-MB-231 sejteket az ábraaláírásokban részletezett módon kezeltük vagy transzfektáltuk a szignál mérések előtt. A SOCE mérése előtt a sejtek tenyésztőmédiáját Ca²⁺-mentes HBSS-re cseréltük (HBSS kiegészítve 0,9 mM MgCl₂-dal, 100 μM EGTA-val, 100 μM CaCl₂-dal és 20 mM HEPES-sel pH 7,4). Az intracelluláris Ca²⁺ raktárakat üritettük 2 μM thapsigargin (Tg), majd 100 μM ATP hozzáadásával. Őt perc elteltével a külső közeg Ca²⁺ tartalmát CaCl₂-dal visszaállítottuk 2 mM-ra, és a raktár-függő Ca²⁺ belépés utáni Ca²⁺ jelet további tíz percig nyomon követtük. Az A23187 Ca²⁺ ionofórral kiváltott Ca²⁺ szignál mérése előtt a tenyésztőmédiáját 2 mM Ca²⁺ tartalmú HBSS-re cseréltük (HBSS kiegészítve 0,9 mM MgCl₂-dal, 2 mM CaCl₂-dal és 20 mM HEPES-sel pH 7,4). Az intracelluláris Ca²⁺ jelet 2 μM A23187-tel (Sigma-Aldrich) váltottuk ki, majd tíz percig követtük nyomon. A GCaMP2 Ca²⁺ szenzor fluoreszcens jelének nyomon követéséhez 0,3 másodpercenként készítettük felvételeket Olympus IX-81 konfokális lézer pásztázó mikroszkóppal, Fluoview FV500 v4.1 szoftverrel, Olympus PLAPO 60× (1.4) olaj-immerziós objektívvel vagy Zeiss LSM710 konfokális lézer pásztázó mikroszkóppal, Plan-Apochromat 63x/1.40 olaj-immerziós objektívvel és Zeiss ZEN szoftverrel. A nyers adatokból ImageJ v1.51j8 és Prism 4 v4.01 (GraphPad Software) szoftverrel számoltuk a relatív fluoreszcens intenzitás értékeket (F/F₀, ahol F₀ az átlagos kiindulási fluoreszcencia értéke).

3.15. PIP₂ transzlokáció és Ca²⁺ szignál mérések HeLa sejtekben

A HeLa és sh-HeLa sejteket 8-lyukú kamrára (Nunc Lab-Tek II chambered coverglass, (Nalgene Nunc Int.) szélesztettük, majd transzfektáltuk PHPLCS₁-RFP-vel és GFP-vel jelölt PMCA konstrukciókkal a PIP₂ transzlokációs kíséreletekhez, vagy GCaMP2-vel és mCherry-vel jelölt PMCA konstrukciókkal a Ca²⁺ szignál mérésekhez. Az ionomycines mérések előtt a
tenyésztőmédiájukat 2 mM Ca²⁺ tartalmú HBSS-re cseréltük (HBSS kiegészítve 0,9 mM MgCl₂-dal, 2 mM CaCl₂-dal és 20 mM HEPES-sel pH 7,4), majd kezeltük a sejteket 2 μM, 5 μM és 10 μM ionomycin csonkolt receptorokon keresztüli aktivációjának mérésekor a sejtek tenyésztőmédiáját először Ca²⁺-mentes HBSS-re cseréltük (HBSS kiegészítve 0,9 mM MgCl₂-dal, 100 μM EGTA-val, 100 μM CaCl₂-dal és 20 mM HEPES-sel pH 7,4). A sejteket ezután stimuláltuk 100 μM ATP, majd 2 perc után 100 μM hisztamin hozzáadásával Ca²⁺-mentes közegben. Öt perc elteltével a külső közeg Ca²⁺ tartalmát CaCl₂-dal visszaállítottuk 2 mM-ra, és a raktár-függő Ca²⁺ belépés utáni Ca²⁺ jelet további öt percig nyomon követtük. Végül 10 μM ionomycin hozzáadásával megmérhettük a maximális Ca²⁺ jelet. A fluoreszcens jelek nyomon követéséhez 0,3-1,2 másodpercenként készítettük felvételeket Olympus IX-81 konfokális lézer pásztázó mikroszkóppal, Fluoview FV500 v4.1 szoftverrel, Olympus PLAPO 60× (1.4) olaj-immerziós objektívvel. A nyers adatokból ImageJ v1.51j8 és Prism 4 v4.01 (GraphPad Software) szoftverrel számoltuk a relatív fluoreszcens intenzitás értékeket (F/F₀, ahol F₀ az átlagos kiindulási fluorescencia értéke).

3.16. Nyilvánosan elérhető ChIP-Seq adatok analízise

A ChIP-Seq adatok analízisét a Cistrome Data Browser [135, 136] segítségével végeztük. A nyers adatok a Gene Expression Omnibus-ból (GEO) [137, 138] származnak: GSM798428 (ER-α ChIP-Seq adatok a T-47D sejtvonalból, a GEO GSE32222 sorozatból [139]), GSM798424 (ER-α ChIP-Seq adatok az MCF-7 sejtvonalból, a GEO GSE32222 sorozatból [139]), GSM986089 (ER-α ChIP-Seq adatok a ZR-75-1 sejtvonalból, a GEO GSE40129 sorozatból [140]), GSM986063 (ER-α ChIP-Seq adatok az MCF-7 sejtvonalból, a GEO GSE40129 sorozatból [140]), GSM2040043 (ER-α ChIP-Seq adatok az MCF-7 sejtvonalból [Dzida et al., nem közölt]). A ChIP-Seq adatok vizualizálását a UCSC Genome Browser (Human Dec. 2013 GRCh38/hg38 Assembly) [142, 143] használatával végeztük.

3.17. Statisztikai analízis

Az adatok statisztikai analízisét Prism 4 v4.01 (GraphPad Software) szoftverrel végeztük, és adott kísérletek során használt statisztikai próbákat az ábraaláírásokban jelöltük.
4. Eredmények

4.1. A plazmamembrán Ca^{2+} ATPázok expressziója emlőtumorban

4.1.1. A PMCA4 fehérjét kódoló ATP2B4 gén expressziója szignifikánsan alacsonyabb
emlőkarcinómákban, mint normál emlőszövetben

Irodalmi adatok alapján a PMCA izoformák kifejeződése illetve aránya változik különböző
 tumorokban [1, 3]. Munkánk során összehasonlítottuk az egyes PMCA izoformákat kifejező
 gének expresszióját normál és rákos emlőszövetekben az Oncomine tumor microarray
 adatbázisban [144] elérhető adatok alapján. Korábbi tanulmányok a PMCA1, PMCA2 és
 PMCA4 izoformák kifejeződését bizonyították emlőtumor sejtvonalakban [55, 87, 88], így az

A housekeeping izoformákat ismert ATP2B1 gén egyes szájüregi laphámrákokban
epigenetikailag csendesítve van [79], több emlőtumor sejtvonalban viszont a normálhoz
képest magasabb ATP2B1 expressziót találtak [87]. Az általunk vizsgált három emlőtumor
adathalmazban az ATP2B1 expressziós szintje közel azonos volt a normál és a rákos mintákban
is, nem tapasztaltunk szignifikáns eltérést (6. ábra).

6. ábra. Az ATP2B1 gén (PMCA1) expressziója nem változik emlőkarcinómákban a normál emlőszövethez képest. Az
összehasonlítást az Oncomine adatbázis [144] használatával végeztük három különböző vizsgálatból származó
adatok alapján. A: Normál (n=4) és invazív emlőkarcinóma (n=154) szövetminták relativ génexpressziója a „Gluck
breast” tanulmányból [145]. A génkifejeződés változása: 1,069; P-érték: 0,358; t-tetsz: 0,396. B: Normál (n=61)
és invazív duktális emlőkarcinóma (n=389) szövetminták relativ génexpressziója a „TCGA breast” tanulmányból
(2011). A génkifejeződés változása: -1,093; P-érték: 0,096; t-tetsz: -1,314. C: Normál (n=144) és invazív duktális
emlőkarcinóma (n=1556) szövetminták relativ génexpressziója a „Curtis breast” tanulmányból [146]. A génkifejeződés
változása: -1,013; P-érték: 0,158; t-tetsz: -1,006.

A PMCA2 izoformának a normál emlő epitől fiziológiás működésében kitüntetett szerepe
van, mivel laktáció során a transzcelluláris Ca^{2+} transzport egyik alapvető résztvevője [55-57,

7. ábra. Az ATP2B2 gén (PMCA2) expressziója nem változik emlőkarcinómákban a normál emlőszövethez képest. Az összehasonlítást az Oncomine adatbázis [144] használatával végeztük három különböző vizsgálatból származó adatok alapján. A: Normál (n=4) és invazív emlőkarcinóma (n=154) szövetminták relatív génexpressziója a „Gluck breast” tanulmányból [145]. A génkifejeződés változása: 1,919; P-érték: 0,155; t-teszt: 1,215. B: Normál (n=61) és invazív ductális emlőkarcinóma (n=389) szövetminták relatív génexpressziója a „TCGA breast” tanulmányból (2011). A génkifejeződés változása: 1,095; P-value: 0,067; t-test: 1,513. C: Normál (n=144) és invazív ductális emlőkarcinóma (n=1556) szövetminták relatív génexpressziója a „Curtis breast” tanulmányból [146]. A génkifejeződés változása: 1,029; P-value: 0,001; t-test: 3,040.

Korábbi in vitro vizsgálatok szerint az ATP2B4 mRNS alacsonyabb mértékben expresszálódik emlőtumor sejtvonalakban a nem tumoros sejtkez képest [10, 11]. Az Oncomine adatbázisban [144] elérhető három különböző vizsgálatból származó tumor

4.1.2. A PMCA4 fehérje kifejeződik normál emlőszövetben

Megvizsgáltuk a PMCA4 fehérje kifejeződését normál, egészséges emlőszövetben. Az immunhisztokémiai analízis a PMCA4 jelentős mértékű kifejeződését mutatta a duktális epitél sejtek plazmamembránjában (9. ábra). Mindebből arra következtethetünk, hogy a PMCA4 izoforma fontos szerepet játszhat az egészséges emlő epitél Ca²⁺ homeosztázisának fenntartásában.

4.1.3. A különböző szubtípusba tartozó emlőtumor sejtvonalak eltérő mértékben fejezik ki az egyes Ca²⁺ pumpa fehérjéket

További kísérleteinket egy nem tumoros emlő epitél sejtvonalon (MCF-10A) és kilenc különböző genetikai hátterű emlőtumor sejtvonalon végeztük, melyek jól reprezentálják az egyes molekuláris szubtípusokat: luminális A (MCF-7, T-47D, ZR-75-1), luminális B (BT-474),

4. táblázat. A kísérletekhez használt sejtvonalak és jellemzésük [93, 95, 148, 149].

<table>
<thead>
<tr>
<th>Sejtvonal</th>
<th>Szubtípus</th>
<th>IHC markerek</th>
<th>Szövettani grade</th>
<th>Prognózis</th>
<th>Egyéb jellemzők</th>
<th>Mutációk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ER PR HER2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF-10A</td>
<td>nem tumoros emlő epitél</td>
<td>- - -</td>
<td></td>
<td></td>
<td></td>
<td>CDKN2A, CDKN2B</td>
</tr>
<tr>
<td>MCF-7</td>
<td></td>
<td>+ + -</td>
<td>alacsony grade (jó differenciált)</td>
<td>kedvező</td>
<td>alacsony Ki67; endokrin reszponzív, gyakran kemoterápiás reszponzív</td>
<td></td>
</tr>
<tr>
<td>T-47D</td>
<td>luminális A</td>
<td>+ + -</td>
<td></td>
<td></td>
<td></td>
<td>PIK3CA, TP53</td>
</tr>
<tr>
<td>ZR-75-1</td>
<td></td>
<td>+ +/ -</td>
<td>közepes grade (közepesen differenciált)</td>
<td>közepes/rossz</td>
<td>magas Ki67; általában endokrin reszponzív, kemoterápiára változóan reagál</td>
<td></td>
</tr>
<tr>
<td>BT-474</td>
<td>luminális B</td>
<td>+/- +</td>
<td>közepes grade (közepesen differenciált)</td>
<td>közepes/rossz</td>
<td>magas Ki67; HER2 ellenes célzott terápiára és kemoterápiára általában jó reagál</td>
<td></td>
</tr>
<tr>
<td>AU-565</td>
<td>HER2 pozitív</td>
<td>- - +</td>
<td>magas grade (rosszul differenciált)</td>
<td>rossz</td>
<td>magas Ki67; EGFR és/vagy citokeratin 5/6 pozitív; gyakran kemoterápiás reszponzív</td>
<td></td>
</tr>
<tr>
<td>SK-BR-3</td>
<td></td>
<td>- - +</td>
<td></td>
<td></td>
<td></td>
<td>TP53</td>
</tr>
<tr>
<td>MDA-MB-468</td>
<td>bazális</td>
<td>- - -</td>
<td>magas grade (rosszul differenciált)</td>
<td>rossz</td>
<td></td>
<td>PTEN, RB1, SMAD4, TP53</td>
</tr>
<tr>
<td>BT-549</td>
<td></td>
<td>- - -</td>
<td></td>
<td></td>
<td></td>
<td>PTEN, RB1, TP53</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>bazális/ claudin-low</td>
<td>- - -</td>
<td>magas grade (rosszul differenciált)</td>
<td>rossz</td>
<td>alacsony Ki67; alacsony E-cadherin, claudin-3, -4 és -7; kemoterápiára változóan reagál</td>
<td></td>
</tr>
<tr>
<td>Hs578T</td>
<td></td>
<td>- - -</td>
<td></td>
<td></td>
<td></td>
<td>HRAS, CDKN2A, TP53</td>
</tr>
</tbody>
</table>

Vizsgáltuk az egyes PMCA és SERCA fehérjék kifejeződését a 4. táblázatban jellemzett sejtvonalakban Western blot analízissel, izoforma specifikus ellenanyagokkal (10. ábra).
10. ábra. A különböző emlőtumor sejtvonalak eltérő mértékben fejezik ki az egyes PMCA és SERCA izoformákat. A PMCA és SERCA fehérjék alap expresszióját Western blot analízissel vizsgáltuk a különböző emlőtumor sejtvonalakban. A: Konfluens sejtkultúrákból származó teljes fehérjelizátumokból sejtenként azonos mennyiséget (30 μg) immunfestettük izoforma specifikus ellenanyagokkal: anti-pan-PMCA (5F10), anti-PMCA1 (NR1), anti-PMCA2 (NR2), anti-PMCA3 (NR3), anti-PMCA4 (JA9), anti-PMCA4b (JA3), anti-SERCA2 (IIID8) és anti-SERCA3 (PL/IM 430). Mintafelviteli kontrollként β-aktint alkalmaztunk. Izoforma specifikus pozitív kontrollként COS-7 sejtkeből izolált mikroszómás membrán preparátumokat használtunk: PMCA1: 1 μg membránfehérje nem transzfektált sejtkeből; PMCA2: 0,1-0,1 μg membránfehérjéből kevert minta PMCA2a, PMCA2b és PMCA2wb konstrukciókkal transzfektált sejtkeből; PMCA3: 0,2-0,2 μg membránfehérjéből kevert minta PMCA3a és PMCA3b konstrukciókkal transzfektált sejtkeből; PMCA4: 0,2-0,2 μg membránfehérjéből kevert minta PMCA4a és PMCA4xb konstrukciókkal transzfektált sejtkeből. B: A PMCA1, PMCA4, SERCA2 és SERCA3 izoformák relatív fehérje expresszióját a denzitometrálta értékeket normalizáltuk β-aktinra, és a nem tumors MCF-10A sejtvonalhoz viszonyítva ábrázoltuk. Az oszlopop két független kísérlet átlagát (± SEM) jelölik.

A luminális szubtípusokba tartozó és a HER2 pozitív sejtkebken a PMCA4b izoforma csak kis mennyiségben volt jelen, míg az agresszívabb, tripla negatív, bazális típusú sejtek nagyobb
mértékben expresszálták a PMCA4b izoformát. A bazális sejtekben a housekeeping PMCA1 izoforma kifejezódése is magas, míg a PMCA2 specifikus festés az összes sejtvonalban nagyon alacsony volt, a PMCA3 izoformát pedig egyáltalán nem tudtuk detektálni. Megvizsgáltuk a SERCA család tagjai közül a nem-izom szövetekben kifejeződő SERCA2 és SERCA3 pumpa fehérjék expresszióját, és azt találtuk hogy a SERCA3 az összes luminális és HER2 pozitív sejtvonalban erős festődést mutatott, míg a tripla negatív sejtvonalakban (mind a bazális tumorsejtekben, mind a nem tumoros MCF-10A sejtvonalban) nem volt kimutatható. Megfigyelésünk összhangban van azokkal a korábbi adatokkal, melyek a rossz prognózisú tripla negatív, duktális emlőkarciinómák csökkent SERCA3 expresszióját igazolták [150]. A housekeeping SERCA2 izoforma mindegyik sejtvonalban viszonylag nagymértékben detektálható volt.

4.2. A HDAC inhibitorok és a forbol-észter PMA hatása a PMCA expressziójára és aktivitására az MCF-7 emlőtumor sejtvonalban

4.2.1. A rövid szénláncú zsírsavak és a PMA fokozzák a PMCA4b fehérje kifejezódését MCF-7 sejtekben

Ezután az ER-α pozitív emlőtumorok modelllezéséhez széleskörben alkalmazott MCF-7 sejtvonalban vizsgáltuk a PMCA fehérjék expressziós szintjének változásait különböző sejtnövekedést és differenciációkat szabályozó vegyületek hatására. Több tanulmány szerint a hiszton-dezacetiláz (HDAC) inhibitorok fokozzák a PMCA4b expresszióját tumorsejtekben. Vastagból rák sejtkeken rövid szénláncú zsírsavakkal (short chain fatty acid; SCFA) történő kezelések során a PMCA4b fehérje szintjének emelkedését tapasztaltak [83], melanóma sejtek esetén pedig suberoil anilid hidroxámsav (SAHA; Vorinostat) illetve valproát kezelésekkel jutott kutatócsoportunk hasonló eredményre [86]. A HDAC inhibitorok gátolják a tumorsejtek proliferációját, és apoptózist valamint differenciációt indukálnak [151]. Ezen tulajdonságai miatt egyes vegyületeiket már használják a klinikai gyakorlatban illetve klinikai vizsgálatokban [116, 119, 122]. A protein kináció C (PKC) aktivátor forbol 12-mirizsztát 13-acetátról (PMA) szintén leírták, hogy MCF-7 sejtek differenciációját váljat ki [152-154], valamint irodalmi adatok alapján fokozni képes a PMCA4 mRNS és fehérje expresszióját vaszkuláris endotél sejtekben [155].
11. ábra. A rövid szénláncú zsírsavak és a PMA fokozzák a PMCA4b kifejeződését MCF-7 sejtekben. A-D: A kezelések koncentrációfüggő hatása a PMCA fehérjékre. Az MCF-7 sejteket öt napig kezeltük butiráttal (A), fenilbutiráttal (B), valeráttal (C) és PMA-val (D) az ábrán jelzett koncentrációkban, majd Western blottal vizsgáltuk a PMCA fehérjék kifejeződését teljes sejtlizátumokból (20 μg mintánként) izoforma specifikus ellenanyagokkal: anti-pan PMCA (5F10), anti-PMCA1 (PA1-914) és anti-PMCA4b (JA3). Mintafelviteli kontrollként az anti-Na,K ATPáz ellenanyag szolgált. Izoforma specifikus pozitív kontrollként egy COS-7 sejtekből izolált mikroszómális membrán preparátumokból kevert mintát használtunk: 1 μg membránfehérje nem transzfektált COS-7 sejtekből jelöli a PMCA1 izoformát, és 0,05 μg membránfehérje PMCA4b konstrukcióval transzfektált sejtekből jelzi a PMCA4b izoforma magasságát. E-F: Az össz-PMCA (E) és a PMCA4b (F) fehérje expresszió denzitometriás analízise az öt napig tartó kezelések után. Az adatokat normalizáltuk a Na,K ATPáz expressziójára, és a kezeletlen kontroll sejtekhez viszonyítva ábrázoltuk. Az oszlopok három-öt független kísérlet átlagát (± SD) jelölik.

MCF-7 sejteket kezeltünk emelkedő dózisban rövid szénláncú zsírsavakkal (butirátt, fenilbutirátt, valerát) illetve forbol 12-mirisztát 13-acetáttal (PMA), és vizsgáltuk az egyes PMCA izoformák expressziójában bekövetkező változásokat Western blot analízissel (11. ábra). Az összes PMCA izoformát felismerő anti-pan PMCA ellenanyaggal, illetve PMCA1 és
PMCA4b izoformákra specifikus ellenanyagokkal végzett festések alapján az találtuk, hogy a kezeletlen MCF-7 sejtekben a PMCA1 a fő izoforma, azonban a kezelések során az expressziós mintázat jelentősen megváltozott. A SCFA és PMA kezelések hatására a PMCA4b mennyisége megnőtt, míg a PMCA1 fehérjeszintje változatlan maradt. A PMCA4b expresszió emelkedése a SCFA vegyületek esetében 3–5 mM koncentrációnál volt maximális, PMA esetén 10 nM-nál. A PMCA4b és az összes PMCA denzitometriás analízise alapján a PMCA4b emelkedés 50–90-szeres, és az össz-PMCA szint is jelentősen megnőtt (kb. 6-10-szeresére) mindkét kezelés hatására (SCFA vagy PMA).

Időben is megvizsgáltuk a kezelések PMCA4b expresszióra kifejtett hatását (12. ábra). Maximális hatást kiváltó dózisban alkalmazva a SCFA vegyületeket illetve a PMA-t, a PMCA4b expressziójának növekedése egy illetve két nappal a kezelés után kezdődött, majd a negyedik napra ért el telítést.

12. ábra. A PMCA4b expresszió változása időben a különböző kezelések alatt MCF-7 sejtekben. A jelzett vegyületekkel kezelt (5–5 mM butirát, fenilbutirát, valerát illetve 10 nM PMA) sejtekből öt napon keresztül naponta teljes sejtizátumot készítettünk, majd vizsgáltuk a PMCA4b expresszióját Western blottal izoforma specifikus ellenanyaggal (JA3). Mintafelvételi kontrollként anti-Na,K ATPáz ellenanyaggal végeztük immunfestést.

4.2.2. A rövid szénláncú zsírsavak és a forbol-észter PMA gátolják az MCF-7 sejtek proliferációját, és differenciációt indukálnak

Régóta ismert, hogy a SCFA vegyületek gátolják a tumorsejtek proliferációját és magas koncentrációban alkalmazva apoptózist indukálnak [156-161]. A PMA hatása azonban az egyes sejttípusok túlélésére és osztódására nem egyértelmű, függ az adott sejtben jelenlévő PKC

54
izoformától, a domináns jelpályáktól és a PMA kezelés hosszától [153, 162-166]. Így következő lépésként vizsgáltuk a négy napig tartó SCFA és PMA kezelések hatását az MCF-7 sejtek proliferációjára tripánkék kizárás módszerrel. A 13. ábra alapján elmondhatjuk, hogy a rövid szénláncú zsírsavak gátolták a sejtek osztódását, nagyobb koncentrációban (5 mM) alkalmazva pedig jelentősen csökkent az élő sejtek száma. A PMA kezelés szintén gátolta az MCF-7 sejtek proliferációját, azonban az élő sejtek száma nem csökkent számottevően a négy napig tartó kezelés alatt. Ez összhangban van azzal a korábbi tanulmánnyal, mely szerint a PMA gátolja a sejtek osztódását, de nem indukál sejthalált [163].

Az életképességi vizsgálat alapján azt is megállapítottuk, hogy a valerát proliferációt gátló hatása kevésbé volt kifejezett mint a butirát vagy a fenilbutirát hatása, különösen alacsony koncentrációban (2 mM) alkalmazva (13. ábra). Ezért a továbbiakban, a kombinációs kísérletek alkalmával valerátot használtunk, hogy elégséges számú élő sejt maradjon a vizsgálatokhoz a kezelések után.

A kezelések hatása a sejtek differenciáltsági fokára. A: A sejteket négy napig kezeltük a jelzett vegyületekkel, majd olajvörössel festettük az intracelluláris lipidcseppeket. Az olajvörös fluoreszcens jele alapján meghatároztuk a lipidcseppek sejtenkénti összterületét ImageJ program segítségével. Az oszlopok két független kísérletből származó nyolc-nyolc párhuzamos, reprezentatív kép átlagát (± SD) jelölik. A szignifikáns statisztikai eltérést *** (P<0,001) jelzi kétoldalas párosítatlan t-próba alapján. B: A sejtek differenciáltsági fokának változása az idő függvényében 2 mM valerát ± 10 nM PMA hatására. C: Reprezentatív fázikontraszt és fluoreszcens képek a 2 mM valeráttal ± 10 nM PMA-val kezelt sejtekről.

4.2.3. A valerát PMA-val való kombinációja tovább fokozza a PMCA4b expresszió növekedését MCF-7 sejtekben

Mivel a PMA fokozta az MCF-7 sejtek valerát által indukált differenciációját, következő lépésként vizsgáltuk, hogy a valerát és PMA kombinációja milyen hatással van a PMCA fehérje expresszióra. A 15. ábra alapján a kombinált kezelés a külön alkalmazott kezelésekkel közel tízszer magasabb PMCA4b expressziót eredményezett, ami már a második napon elérte a maximumot.

A valerát és/vagy PMA-kezelt MCF-7 sejtekben vizsgáltuk a Ca²⁺ homeosztázis további kulcsfaktorainak, a SERCA pumpáknak a kifejeződését is. A SERCA2 izoforma expressziója PMA kezelés hatására fokozódott, míg a SERCA3 mennyisége csak a valerát kezelés után emelkedett (15. ábra). A kapott eredmény összecseng azokkal a korábbi vizsgálatokkal, melyek az emlő
epitéliumban a tumorprogresszió előrehaladtával, a csökkenő differenciáltsági fokkal párhuzamosan csökkenő SERCA3 expressziót írtak le [150]. További vizsgálatok pedig SCFA kezelések hatására szintén fokozódó SERCA3 expressziót igazoltak tudós és vastagbél tumor sejtekben [170, 171].

Mivel néhány irodalmi adat arra utal, hogy a PMCA2 izoforma szerepet játszhat egyes emlőtumorok progressziójában [88-91, 172], ezért az MCF-7 sejtekben megvizsgáltuk, hogy a PMCA4b variáns mellett mely izoformák fejeződnek ki. Ehhez az izolált fehérjemintában immunprecipitációval felülvizsgáltuk a PMCA fehérjéket anti-pan PMCA ellenanyaggal (5F10), majd izoforma specifikus ellenanyagok segítségével vizsgáltuk az egyes PMCA fehérjéket (16. ábra). A PMCA4 izoformán belül az „a” és „b” splice variánsok egyértelmű meghatározásához immunfestezt végeztünk anti-PMCA4 ellenanyaggal (JA9), ami az „a” és „b” splice variánsokat is felismeri, illetve anti-PMCA4b ellenanyaggal (JA3), ami csak a „b” splice variánst detektálja (16. ábra). Pozitív kontrollként minden esetben a vizsgált izoformával transzfektált COS-7 sejtekből származó fehérjemintákat használtuk.

16. ábra. A valerát és/vagy PMA kezelések által kiváltott fehérje expresszió növekedés specifikus a PMCA4b izoformára. **A:** A kezelt MCF-7 sejtekben kifejeződő PMCA izoformák vizsgálata immunprecipitáció után. A sejteket kezeltük 2 mM valeráttal ± 10 nM PMA-val négy napig, majd lizáltuk, és a fehérjéket anti-pan PMCA ellenanyaggal (5F10) immunprecipitáltuk. Az egyes PMCA izoformák kifejeződését Western blottal detektáltuk. Egyenlő térfogatban futtatott input (7,5 μl) illetve immunprecipitált (15 μl) fehérjemintákat immunfestettünk az alábbi ellenanyagokkal: NR1, NR2, NR3 és JA3 a PMCA1, 2, 3 és 4b izoformák vizualizálására. Izoforma specifikus pozitív kontrollként COS-7 sejtekből izolált mikroszómális membrán preparátumokat használtunk: PMCA1: 1 μg membránfehérje nem transzfektált sejtekből; PMCA2: 0,5 μg membránfehérje PMCA2 konstrukcióval transzfektált sejtekből; PMCA3: 0,5 μg membránfehérje PMCA3 konstrukcióval transzfektált sejtekből; PMCA4b: 0,05 μg membránfehérje PMCA4b konstrukcióval transzfektált sejtekből. **B:** Valeráttal ± PMA-val kezelt MCF-7 sejtekből származó teljes sejtlizátum (10 μg fehérjeminta) vizsgálata Western blottal anti-PMCA4b (JA3) és anti-PMCA4 (JA9) ellenanyagokkal. Izoforma specifikus pozitív kontrollként egy COS-7 sejtekből izolált mikroszómális membrán preparátumokból kevert minta szolgált: 0,25 μg membránfehérje PMCA4a konstrukcióval transzfektált sejtekből és 0,05 μg membránfehérje PMCA4b konstrukcióval transzfektált sejtekből.
A kísérlet eredménye megerősítette a korábban tapasztaltakat (10. ábra, 11. ábra), azaz a kezeletlen MCF-7 sejtekben expresszálódó fő izoforma a PMCA1, melynek mennyisége nem nőtt a kezelések hatására. A kontroll sejtekben csak kis mennyiségben jelenlévő PMCA4b izoforma expressziója viszont nagymértékben megnőtt a kezelések során. Korábbi irodalomban leírt eredményekkel ellentétben [172] a PMCA2 izoforma fehérje szintű kifejeződését sem a kontroll, sem a kezelt MCF-7 sejtekben nem sikerült bizonyítanunk. A jellemzően ideg- és izomsejtekben kifejeződő PMCA3 szintén nem expresszálódott a vizsgált emlőtumor sejtekben.

A PMCA4b fehérje sejten belüli eloszlásának vizsgálatához immuncitokémiai festést végeztünk a valerát és/vagy PMA kezelt sejteken anti-PMCA4b (JA3) és anti-PMCA4 ellenanyaggal (JA9), és a fluoreszcens jeleket konfokális mikroszkóp segítségével detektáltuk (17. ábra). Míg a kezeletlen sejteknél a PMCA4b jelenléte alig volt detektálható a konfluens kultúrában, a valeráttal vagy PMA-val kezdett sejteken a PMCA4b fehérje fokozott expresszióját igazoltuk. A kombinált valerát és PMA kezelés esetén pedig még erősebb festődést kaptunk a korábban tapasztaltaknak megfelelően. A kontrollként alkalmazott anti-Na,K ATPáz ellenanyag jelentéken nem változott számottevően a kezelések során. A festések a PMCA4b fehérje funkciójának megfelelő, egyértelmű plazmamembrán lokalizációt mutattak mindkét ellenanyaggal. Ez alapján feltételezhetjük, hogy a fokozottan expresszálódó fehérje aktívan részt vesz a kezelt sejtek Ca^{2+} homeosztázisának szabályozásában.

A fehérjeszintű vizsgálatok mellett tanulmányoztuk a PMCA1, PMCA2 és PMCA4 izoformákat kódoló ATP2B1, ATP2B2 és ATP2B4 gének mRNS expresszióját a valerát és/vagy PMA kezelt MCF-7 sejtekben kvantitatív real-time PCR-rel (18. ábra). Kimutattuk, hogy az ATP2B1 és ATP2B2 mRNS expresszióját nem befolyásolják szignifikáns mértékben a kezelések, azonban az ATP2B4 mRNS expressziója markánsan nő a kezelések hatására. A valerát kezelésnél 6-7-szeres, a PMA esetén 5-6-szoros növekedést tapasztaltunk, míg a kettőt együtt alkalmazva több mint 30-szorosra nőtt az ATP2B4 mRNS szintje. Ezek az eredmények bizonyítják, hogy a fehérje expresszióban tapasztalt változások transzkripciós szintű szabályozásnak köszönhetőek.

![Diagram](image-url)

18. ábra. A valerát és/vagy PMA kezelés szignifikáns mértékben növeli az ATP2B4 (PMCA4) mRNS expressziót. 2 mM valeráttal ± 10 nM PMA-val kezdett MCF-7 sejtek relatív mRNS expressziói: ATP2B1 (PMCA1), ATP2B2 (PMCA2) és ATP2B4 (PMCA4). Az ábrázolt értékek a kezeletlen kontrolloz viszonyított változást fejezi ki az RPLP0 és POLR2A belső referencia génekre való normalizálás után. Az oszlopop három független kíséreltől származó három-három
technikai párhuzamos átlagát (± SD) ábrázolják. Kétoldalas páros t-próba alapján a kezeletlen és kezelt sejtek közötti szignifikáns statisztikai eltérést az alábbiak jelzik: ** (P<0,01), * (P<0,05) vagy n.sz. (nem szignifikáns).

Ismert, hogy a GF 109203X hidroklorid szelektíven képes gátolni a PKC-t, és ily módon a PKC által szabályozott jelátviteli útvonalakat [173]. Így következő lépésként megvizsgáltuk, hogy a PKC aktivitás gátlása hogyan befolyásolja a valerát és/vagy PMA kezeléseknél kifejtett hatását (19. ábra). Kimutattuk, hogy a PKC inhibitor szinte teljes mértékben (90%) gátolta a PMA által kiváltott PMCA4b expresszió növekedését, azonban a valeráttal kezelt sejtekben csak kis mértékben csökkentette a fehérje expresszióját (~30%). A kombinált valerát és PMA kezelések esetén a PKC inhibitor GF 109203X közel felére csökkentette a PMCA4b expressziót. Azonban feltehetően a valerát jelenléte miatt a teljes gátlás ez esetben nem valósult meg. Eredményeink alapján elmondhatjuk, hogy a rövid szénláncú zsírsavak és a PMA különböző útvonalakon keresztül befolyásolják a PMCA4b kifejeződését. A PKC jelátviteli útvonal nagy valószínűséggel nem játszik szerepet a SCFA vegyületek által indukált PMCA4b expresszió emelkedésébe.

19. ábra. A PKC inhibitor kezelés hatása a valerát és/vagy PMA által kiváltott PMCA4b expresszió növekedésre. Az MCF-7 sejtek egy órán keresztül előkezeltük 1 μM GF 109203X PKC inhibitorral, majd hozzáadtuk a valerátot ± PMA-t is, és négy napig inkubáltuk. A PMCA4b kifejeződését Western blottel vizsgáltuk teljes sejtüketből (10 μg/minta) JA3 ellenanyaggal. A PKC inhibitor hatásának láthatóvá tételehez a filmek előhívására során az egyes kezelések esetén különböző expozíciós időket alkalmaztunk. Az alacsony fehérje expressziójú kontroll mintaként hosszabban, a valerát + PMA kezelt mintákat pedig rövidebb ideig exponáltuk mint az egyszeres valerát vagy PMA kezeléseknél. A GF 109203X gátló hatását százalékosan alakítottuk. Az értékek két független kísérletből származó denzitometriás analízis átlagát (± SD) mutatják.

4.2.4. A fokozott PMCA4b expresszió megváltoztatja az intracelluláris Ca²⁺ jel lefutását MCF-7 sejtekben

A PMCA4b fehérje funkciójának vizsgálatára Sleeping Beauty transzpozon rendszerrel létrehoztunk egy genetikailag kódolt Ca²⁺ indikátort (GCaMP2) stabilan kifejező MCF-7
sejtvonalat (GCaMP2-MCF-7), és segítségével megfigyeltük a sejtek intracelluláris Ca^{2+} jeleinek változásait a fokozott PMCA4b expresszió hatására. A 20. ábra mutatja a poliklonális GCaMP2-MCF-7 sejtvonal alap GCaMP2 fluoreszcenciáját, valamint a PMCA4b fehérje expresszióját ezekben a sejtekben három napos valeráttal és/vagy PMA kezelés után. A Ca^{2+} szignál mérésekhez pozitív kontrollként mCherry-PMCA4x/b konstrukcióval transzienten transzfektált GCaMP2-MCF-7 sejteket használtunk. Mind a Western blot analízis, mind a Ca^{2+} szignál mérések utáni immuncitokémiai festés alapján jól látszik, hogy a kezelések hatására jelentősen megemelkedett endogén PMCA4b fehérje szint összehasonlítható az mCherry-vel jelölt transzienten expresszált PMCA4b mennyiségével, és a fehérje plazmamembrán lokalizációja is megfelelő volt (20. ábra).

A valeráttal és/vagy PMA-val kezelt valamint az mCherry-PMCA4x/b-vel transzfektált GCaMP2-MCF-7 sejteken Ca^{2+} szignál méréseket végeztünk fluoreszcencia alapú képalkotó
módszerrel, konfokális lézer-pásztázó mikroszkóp segítségével. Elsőként a raktár-függő Ca^{2+} belépés (store operated Ca^{2+} entry; SOCE) utáni intracelluláris Ca^{2+} jel lefutását vizsgáltuk (21. ábra). A mérés előtt a sejtek tenyésztő médiumát Ca^{2+}-mentes közegre cseréltük. A Ca^{2+}-mentes közegben üritettük az intracelluláris Ca^{2+} raktárakat a SERCA inhibitor thapsigargarinnal (Tg) és a purinerg receptor agonista ATP-vel. Majd a sejket körülvevő médium Ca^{2+} koncentrációját 2 mM-ra emeltük, és figyeltük a raktár-függő Ca^{2+} belépést valamint a Ca^{2+} jel lecsengését.

21. ábra. A több PMCA4b-t expresszáló MCF-7 sejtben gyorsabb a SOCE utáni Ca^{2+} jel lecsengése mint a kontroll sejtben. Ca^{2+} szignál mérése a valeráttal ± PMA-val kezelt (A) illetve az mCherry-PMCA4x/b-bel ranszfektált (B) GCaMP2-MCF-7 sejtben konfokális mikroszkóppal. A: A sejtek kezeltük 2 mM valeráttal önmagában vagy 10 nM PMA-val kombinálva három napig, majd a tenyésztő médiumot friss DMEM-re cseréltük, és a sejtek további egy napig inkubáltuk. A Ca^{2+} szignál mérés előtt a tenyésztő médiumot Ca^{2+}-mentes HBSS-re cseréltük. Az intracelluláris Ca^{2+} raktárakat kiürítettük 2 μM thapsigargin (Tg), majd 100 μM ATP hozzáadásával. Őt perc elteltével a külső közeg Ca^{2+} tartalmát visszaállítottuk 2 mM-ra, és a raktár-függő Ca^{2+} belépés utáni Ca^{2+} jelet további tíz percig nyomon követtük. A: A sejtek kezeltük 2 mM valeráttal önmagában vagy 10 nM PMA-val kombinálva három napig, majd a tenyésztő médiumot friss DMEM-re cseréltük, és a sejtek további egy napig inkubáltuk. A Ca^{2+} szignál mérés előtt a tenyésztő médiumot Ca^{2+}-mentes HBSS-re cseréltük. Az intracelluláris Ca^{2+} raktárakat kiürítettük 2 μM thapsigargin (Tg), majd 100 μM ATP hozzáadásával. Őt perc elteltével a külső közeg Ca^{2+} tartalmát visszaállítottuk 2 mM-ra, és a raktár-függő Ca^{2+} belépés utáni Ca^{2+} jelet további tíz percig nyomon követtük. B: A sejtek kezeltük az mCherry-PMCA4x/b konstrukcióval, majd 30 percig inkubáltuk. A Ca^{2+} szignál mérés előtt a tenyésztő médiumot Ca^{2+}-mentes HBSS-re cseréltük. Az intracelluláris Ca^{2+} raktárakat kiürítettük 2 μM thapsigargin (Tg), majd 100 μM ATP hozzáadásával. Őt perc elteltével a külső közeg Ca^{2+} tartalmát visszaállítottuk 2 mM-ra, és a raktár-függő Ca^{2+} belépés utáni Ca^{2+} jelet további tíz percig nyomon követtük. Az ábázolt görbék négy független kísérletből gyűjtött kb. 25-40 db sejt normalizált F/F₀ értékének átlagát (± 95% CI) jelzik.

Az átlagos relatív fluoreszcencia intenzitásokat ábrázolva láthatjuk, hogy a PMCA4b fokozott expressziója következtében az ATP által kiváltott Ca^{2+} jel valamint a SOCE-t követő megemelkedett intracelluláris Ca^{2+} koncentráció is gyorsabban csökkent a nyugalmi szintre, mint a kontroll sejtek esetén, ahol egy hosszabban fenntartott Ca^{2+} csúcsot kaptunk. Hasonló görbék kaptunk a valeráttal és/vagy PMA-val kezelt és a PMCA4b-bel tranziens transzfektált sejtek esetén is (21. ábra). A fehérje expresszióval párhuzamosan a PMCA4b aktivitását is tovább fokozta a kombinált valerát és PMA kezelés. Ennek következtében a
kettős kezelt sejtekben a Ca2+ csúcs alacsonyabb volt, és gyorsabban tért vissza az alapvonalra, mint a csak valeráttal kezelt sejtek esetén.

A SOCE utáni Ca2+ jel lecsengésének féléletidejét elemezve jól látszik, hogy mind a valeráttal és/vagy PMA-val kezelt sejtek esetén, mind az mCherry-PMCA4x/b-vel tranzienst transzfektált sejtekben szignifikánsan csökkent a Ca2+ jel lecsengésének féléletideje a PMCA4b-t csak kis mértékben expresszáló kontroll sejtekhez képest (22. ábra).

![Diagram](image)

22. ábra. A valeráttal és/vagy PMA-val kezelt MCF-7 sejtekben és az mCherry-PMCA4x/b fehérjét kifejező sejtekben hasonlóan gyors a Ca2+ jel lecsengése. A raktár-függő Ca2+ belépés (SOCE) utáni Ca2+ jel lecsengésének féléletideje a valeráttal ± PMA-val kezelt illetve az mCherry-PMCA4x/b-vel ranszefektált GCaMP2-MCF-7 sejtekben. Az oszlopok három-négy független kísérlet átlagát (± SD) jelölők. A szignifikáns statisztikai eltérést a kontroll és PMCA4b-t kifejező sejtek között * (P<0,05) jelzi kétoldalas párosítatlan t-próba alapján.

![Graph](image)

23. ábra Az emelkedett PMCA4b expresszió megváltoztatja az A23187 Ca2+ ionofórral kiváltott Ca2+ szignál lefutását MCF-7 sejtekben. Ca2+ szignál mérések a valeráttal ± PMA-val kezelt (A) illetve az mCherry-PMCA4x/b-vel ranszfektált (B) GCaMP2-MCF-7 sejtekben konfokális mikroszkóppal. A: A sejteket kezeltük 2 mM valeráttal önmagában vagy 10 nM PMA-val kombinálva három napig, majd a tenyésztő médiumot friss DMEM-re cseréltük, és a sejteket további egy napig inkubáltuk. A Ca2+ szignál mérés előtt a tenyésztő médiumot 2 mM Ca2+ tartalmú HBSS-re cseréltük. Az intracelluláris Ca2+ jelet 2 μM A23187 Ca2+ ionofórral változtuk ki, majd tíz percig követtük nyomon. Az abázolt görbék kb. 15-25 sejt normalizált F/F\textsubscript{0} értékének átlagát (± 95% CI) jelzik. B: A sejteket tranzienst transzfektáltuk az mCherry-PMCA4x/b konstrukcióval, majd két napig inkubáltuk. A Ca2+ szignál mérés előtt a tenyésztő médiumot 2 mM Ca2+ tartalmú HBSS-re cseréltük. Az intracelluláris Ca2+ jelet 2 μM A23187 Ca2+
ionofórral váltottuk ki, majd tíz percig követtük nyomon. Az ábázolt görbék kb. 10 sejt normalizált \(F/F_0 \) értékének átlagát (± 95% CI) jelzik.

Hogy kizárjuk a \(\text{Ca}^{2+} \) csatornák szerepét, a \(\text{Ca}^{2+} \) jelet megvizsgáltuk egy \(\text{Ca}^{2+} \) csatornáktól független kísérleti felállásban is, amikor a szignált A23187 \(\text{Ca}^{2+} \) ionofórral váltottuk ki (23. ábra). Ez esetben is magas, fenntartott jelet kaptunk a kontroll sejteknél, míg a PMCA4b-t tranzienzen expresszáló vagy a valerát kezelés miatt emelkedett PMCA4b szinttel rendelkező sejtekben alacsonyabb volt a \(\text{Ca}^{2+} \) jel, és gyorsabban visszatért az alapvonalra. Ezzel a módszerrel is azt tapasztaltuk, hogy a kombinált valerát és PMA kezelés tovább fokozta a PMCA4b fehérje aktivitását.

Eredményeinkből látszik, hogy a PMCA4b expressziója jelentősen befolyásolja a \(\text{Ca}^{2+} \) lefutását MCF-7 sejtekben, így feltételezhetően alapvető szerepet tölt be az emlőtumor sejtek \(\text{Ca}^{2+} \) homeosztázisának és \(\text{Ca}^{2+} \) jelátvitelének szabályozásában.

4.3. A HDAC inhibitorok hatása a PMCA-ra különböző emlőtumor sejtekben

4.3.1. A HDAC inhibitorok sejttípustól függően különböző módon befolyásolják a \(\text{Ca}^{2+} \) pumpák kifejeződését

Következő lépésként vizsgáltuk két FDA által jóváhagyott, emlőtumorok kezelésére klinikai kipróbálás alatt lévő HDAC inhibitor, a valproát (VPA) és a suberoil anilid hidroxámsav (SAHA; Vorinostat) [116, 119, 122] hatását a \(\text{Ca}^{2+} \) pumpák expressziójára. A nem tumoros emlő epitél MCF-10A-t és a 4. táblázatban bemutatott különböző genetikai hátterű emlőtumor sejtvonalakat kezeltük valproáttal és SAHA-val emelkedő koncentrációban négy napig, majd vizsgáltuk az egyes PMCA és SERCA izoformák kifejeződését (24. ábra, 25. ábra).

A különböző szubtípusba tartozó sejtvonalakban az egyes PMCA illetve SERCA izoformák változatos expresszióját tapasztaltuk (24. ábra). A jobb prognózisú luminális sejtekben (MCF-7, ZR-75-1, BT-474) és a HER2 pozitív SK-BR-3 esetén alacsony alap PMCA4b expressziót mértünk, és a fehérje mennyisége nagymértékben megnőtt a HDAC inhibitor kezelések hatására (25. ábra). Ezzel ellentétben a rosszabb prognózisú bazális típusú, tripla negatív sejtek (MDA-MB-468, BT-549, MDA-MB-231, Hs578T), a nem tumoros, szintén hormon receptor negatív MCF-10A sejtvonal és a HER2 pozitív AU-565 magas alap PMCA4b expressziót mutattak, és HDAC inhibitor kezelések hatására nem változott számtettevő mértékben a
A fehérje kifejeződése (25. ábra). A PMCA1 izoforma fehérje szintje csak a ZR-75-1 és a BT-549 sejtkekben nőtt, a PMCA2, SERCA2 és SERCA3 fehérjék viszont egyik sejtvonalban sem mutattak számottevő változást a HDAC inhibitor kezelések után (24. ábra).

25. ábra. A PMCA4b fehérje expresszió különböző módon szabályozódik az egyes emlőtumor sejtvonalakban HDAC inhibitor kezelések során. A valproát (VPA) és SAHA kezelések hatása a PMCA4b expressziójára. **A:** A sejteket négy napig kezeltük emelkedő koncentrációjú valproáttal (VPA) vagy SAHA-val az ábrán jelzett módon, majd teljes sejtlizátumokból (15 μg fehérje mintánként) Western blottal vizsgáltuk a PMCA4b kifejeződését JA3 ellenanyaggal. **B:** Relatív PMCA4b fehérje expresszió a négy napos VPA vagy SAHA kezelések után. A densitometrálta értékeket normalizáltuk a β-aktin expressziójára, és a kezeletlen kontroll sejtekhez viszonyítva ábrázoltuk. Az oszlopok kettőnégy független kísérlet átlagát (± SEM) jelölik.

Irodai adatok szerint a HDAC-ok az ER-α pozitív emlőtumorokban fokozott mértékben fejeződnek ki, valamint a HDAC1, HDAC3 és HDAC6 fehérjék expressziója pozitív korrelációt mutat az ER-α expressziójával [110, 174]. Ezért az általunk vizsgált sejtvonalakban
meghatároztuk a H3 hiszton acetilációjának mértékét a HDAC inhibitor kezelések után (26. ábra). Az ER-α pozitív sejtekben a kezelések hatására valóban fokozódott a H3 hiszton acetilációja, ami korrelált a fokozott PMCA4b expresszióval. Ez azt sugallja, hogy a PMCA4b expresszió szabályozásában a hiszton acetiláció mértéke fontos szerepet tölt be emlőtumor sejtekben. Azonban nem találtunk minden vizsgált sejtönt esetén szoros összefüggést a PMCA4b fehérje szint és a hiszton acetiláció mértéke között. A HER2 pozitív SK-BR-3 sejtvonalban a kezelések hatására a PMCA4b kifejeződése nagymértékben megnőtt, míg a H3 hiszton acetiláció nem változott számottevő mértékben. A bazális típusú BT-549 sejtekben viszont a H3 hiszton acetilációt fokozták jelentősen a HDAC inhibitorok, a PMCA4b szintjére ellenben nem voltak hatással.

4.3.2. A különböző szubtípusba tartozó emlőtumor sejtvonalakban a PMCA4b eltérő sejten belüli lokalizációt mutat

Kutatócsoportunk HeLa sejteken végzett korábbi kísérletei alapján a PMCA4b fehérje csak teljesen konfluens sejtkultúrában éri el a funkciójának megfelelő maximális plazmamembrán lokalizációt [127]. Ezért megvizsgáltuk az egyes emlőtumor sejtekben a kultúra morfológiáját és a PMCA4b lokalizációját (27. ábra). A luminális szubtípusba tartozó (MCF-7, ZR-75-1, BT-474) és a HER2 pozitív (AU-565, SK-BR-3) emlőtumor sejtek egyértelmű, epitél sejtkekre jellemző morfológiát és ép sejt-sejt kapcsolatokat mutattak. Ezekben a sejtekben a HeLa-hoz hasonlóan a PMCA4b egyértelmű plazmamembrán lokalizációt mutatott. Ezzel ellentétben a rosszabb prognózisú bazális szubtípusba tartozó sejtekben (MDA-MB-468, BT-549, MDA-MB-231, Hs578T) a fehérje plazmamembrán lokalizációja kevésbé volt kifejezett (27. ábra).

Tovább elemeztük az MCF-7 és MDA-MB-231 sejtek sejtkultúra morfológiáját, és ezzel párhuzamosan a PMCA4b lokalizációját. A 28. ábra képein jól látszik, hogy a luminális típusú MCF-7 sejtkultúra az epitél sejttípusra jellemző szorosan kapcsolódó sejtekből álló szigeteket
alkot, és a PMCA4b egyértelműen a plazmamembránban lokalizálódik. A bazális MDA-MB-231 sejtvonalban azonban elnyült, magas sejtszám esetén is csak lazán kapcsolódó sejteket találtunk, melyekben a PMCA4b fehérje jelentős része intracelluláris kompartmentekben található a kezelést követően is.

4.3.3. A PMCA4b nem megfelelő intracelluláris lokalizációja miatt sérül a fehérje funkciója a tripla negatív MDA-MB-231 sejtekben

Következő lépésként vizsgáltuk, hogy a PMCA4b sejtvonalaként eltérő lokalizációja hogyan befolyásolja a fehérje funkcióját. Ehhez valproáttal kezelt GCaMP2-MCF-7 és GCaMP2-MDA-MB-231 sejteken végeztünk Ca^2+ szignál méréseket (29. ábra). MCF-7 sejtekben a valproáttal megemelt PMCA4b expresszió a fehérje aktivitásának növekedésével járt, az A23187-tel indukált Ca^2+ jel amplitúdója és hossza is egyöntetűen csökkent a kezelt sejtek esetén. A valproáttal kezelt MDA-MB-231 sejtek esetén a fehérje expressziója nem változott jelentősen, illetve sejten belüli lokalizációja sem felelt meg a fehérje plazmamembránban
betöltött funkciójának. Ennek megfelelően a sejtekben kevésbé volt kifejezett a Ca$^{2+}$ jel változása, valamint az egyes sejtek által produkált Ca$^{2+}$ csúcsokban is nagy diverzitást tapasztaltunk (29. ábra), mely feltehetően a sejtek közötti kapcsolat hiányára vezethető vissza.

29. ábra. A PMCA4b fehérje aktivitása alacsonyabb a bazális szubtípusba tartozó MDA-MB-231 sejtekben, mint a luminális MCF-7 sejtekben. A: Ca$^{2+}$ szignál mérések valproáttal (VPA) kezelt GCaMP2-MCF-7 és GCaMP2-MDA-MB-231 sejteken. A sejteket négy napig kezeltük 4 mM VPA-val, majd a Ca$^{2+}$ szignál mérés előtt a tenyésztő médiumot 2 mM Ca$^{2+}$ tartalmú HBSS-re cseréltük. Az intracelluláris Ca$^{2+}$ jelét 2 μM A23187 Ca$^{2+}$ ionofór hozzáadásával váltottuk ki, és konfokális mikroszkóppal nyomon követtük a GCaMP2 Ca$^{2+}$ szenzor fluoreszcencia intenzitásának változását. Az ábázolt görbék egy reprezentatív kísérletből származó 14-32 sejt egyedi F/F$_0$ értékeket ábrázolják. B: Az A23187-tel kiváltott Ca$^{2+}$ jelek görbe alatti területének kiértékelése. Az oszlopop 14-32 sejt átlagát (± SEM) jelölik. A szignifikáns statisztikai eltérést a kontroll és a VPA-val kezelt sejtek között *** (P<0.001) jelzi kétoldalas párosítatlan t-próba alapján.

Ezek az eredmények arra utalnak, hogy a bazális típusú emlőtumor sejtekben expresszálódó nagy mennyiségű PMCA4b fehérje jelentős része intracelluláris kompartmentekben rekedve képtelen betölni funkcióját.
4.4. Az ER-α jelpálya szerepe a PMCA expressziójának és aktivitásának szabályozásában különböző emlőtumor sejtekben

4.4.1. A 17β-össtradiol fokozza a PMCA4b fehérje kifejeződését MCF-7 sejtekben

Korábbi megfigyelések alapján normál elmlő epitél sejtekre jellemző a PMCA izoforma válta terhesség és laktáció során. A terhesség során jelentősen megne az ösztrogén szint [175] valamint az emlőszövet PMCA4 expressziója is [56], ami azt sugallja, hogy a PMCA fehérjék kifejeződése hormonális szabályozás alatt áll ezekben a sejtekben [3, 56, 176]. Ezért következő lépésként tanulmányoztuk, hogy az östrogén receptor alfa (ER-α) jelpálya szerepet játszik-e a PMCA expresszió szabályozásában a hormon receptor pozitív, luminális emlőtumor sejtekben.

Először MCF-7 sejteket kezeltünk 17β-össtradiollal (E2), és vizsgáltuk a Ca\(^ {2+}\) pumpa fehérjék expresszióját (30. ábra). A sejtek normál, komplett tenyésző médiuma tartalmaz ösztrogén, illetve fenolvörös tartalma miatt is képes aktiválni az ER-α-t [177]. Emiatt a sejtek aktív szénnel szűrt FBS-sel kiegészített fenolvörösmentes DMEM-ben (a továbbiakban E2-mentes DMEM) tenyészettük a kezeléseknél előtt és alatt. A hormonmentes médiumban tartott MCF-7 sejtekben jóval alacsonyabb volt a PMCA4b expressziója, mint a normál DMEM-ben. E2 kezelés hatására azonban markánsan megnőtt a fehérje szintje. Emellett a sejtek kezeltük az ER-α antagonista fulvestranttal (ICI 182,780) is, ami teljes mértékben gátolta az E2 által kiváltott PMCA4b expresszió növekedést bizonyítva az E2 specifikus hatását. A PMCA1 és SERCA3 expressziója kis mértékben csökkent az E2 kezelés hatására, ami az intracelluláris Ca\(^ {2+}\) homeosztázist fenntartó Ca\(^ {2+}\) pumpák bizonyos fokú kompenzációjára enged következtetni (30. ábra).
A 17β-ösztadiol fokozza a PMCA4b fehérje kifejeződését MCF-7 sejtekben. Az egyes Ca^{2+} pumpák 17β-ösztadiol (E2) függése. **A:** Az MCF-7 sejteket normál DMEM-ben vagy E2-mentes DMEM-ben tenyészettük, majd négy napig kezeltük 1 nM E2-vel ± 100 nM fulvestranttal az ábrán jelölt felállásban. Egyforma mennyiségű sejtlizátumokat (30 μg fehérje mintánként) vizsgáltunk Western blottal izoforma specifikus ellananyagokkal: anti-PMCA1 (NR1), anti-PMCA4b (JA3), anti-SERCA2 (IID8) és anti-SERCA3 (PL/IM 430). Mintafelvételi kontrollként anti-β-aktint alkalmaztunk. **B:** A PMCA1, PMCA4b, SERCA2 és SERCA3 fehérjék relatív kifejeződése. A denzitometrálta felhője expressziós értékeket normalizáltuk a β-aktint mintafelvételi kontrollra, és a kezeletlen, DMEM-ben tenyészett kontroll sejtekhez viszonyítva ábrázoltuk. Az oszlopok három független kísérlet átlagát (± SEM) jelölik.

A továbbiakban vizsgáltuk, hogy az E2 által okozott változások a Ca^{2+} pumpák kifejeződésében hogyan befolyásolják a Ca^{2+} szignálokat MCF-7 sejtekben. A GCaMP2-MCF-7
sejteket E2-mentes médiumban tenyészettük, majd kezeltük E2-vel, és konfokális mikroszkóppal mértük az A23187 Ca\(^{2+}\) ionofórral kiváltott Ca\(^{2+}\) jeleket (31. ábra). Az E2-vel kezelt sejtekben a Ca\(^{2+}\) csúcs szignifikánsan alacsonyabb volt, és az intracelluláris Ca\(^{2+}\) koncentráció szignifikánsan gyorsabban tért vissza az alapvonalra, mint a kontroll sejtek esetén. Tehát az ER-\(\alpha\) jelpálya aktiválása a PMCA expresszió növelésén keresztül fokozza az MCF-7 sejtek Ca\(^{2+}\) eltávolító kapacitását.

31. ábra. A 17\(\beta\)-ősztradiol fokozza a PMCA4b fehérje aktivitását MCF-7 sejtekben. A PMCA4b aktivitásának változása 17\(\beta\)-ősztradiol (E2) kezelés után. A: Ca\(^{2+}\) szignál mérések E2-vel kezelt GCaMP2-MCF-7 sejteken. A sejteket E2-mentes DMEM-ben tenyészettük, majd négy napig kezeltük 1 nM E2-vel. A Ca\(^{2+}\) szignál mérés előtt a tenyésztő médiumot 2 mM Ca\(^{2+}\) tartalmú HBSS-re cseréltük. Az intracelluláris Ca\(^{2+}\) jelet 2 \(\mu\)M A23187 Ca\(^{2+}\) ionofór hozzáadásával változtattuk ki, és konfokális mikroszkóppal nyomon követtük a GCaMP2 Ca\(^{2+}\) szenzor fluoreszcencia intenzitásának változását. Az ábázolt görbék három független kísérletből gyűjtött 41 kontroll és 59 E2-vel kezelt sejt átlagát (± 95% CI) jelzik. B: A Ca\(^{2+}\) jelek görbe alatti területének kiértékelése. Az oszlopok a három kísérletből származó 41 illetve 59 sejt átlagát (± S\(\text{EM}\)) jelölik. A szignifikáns statisztikai eltérést a kontroll és az E2-vel kezelt sejtek között *** (P<0,001) jelzi kétoldalas párosítatlan t-próba alapján. C: A Ca\(^{2+}\) jel lecsengésének feléletideje. Az oszlopok a három kísérletből származó 41 illetve 59 sejt átlagát (± S\(\text{EM}\)) jelölik. A szignifikáns statisztikai eltérést a kontroll és az E2-vel kezelt sejtek között *** (P<0,001) jelzi kétoldalas párosítatlan t-próba alapján.
4.4.2. A HDAC inhibitor kezelések tovább fokozzák az ER-α által kiváltott PMCA4b fehérje szint emelkedést MCF-7 sejtekben

A.

B.

Ezután kombinált kezeléseket végeztünk E2-vel és HDAC inhibitorokkal. E2-mentes tenyésztőmédiumban tartott MCF-7 sejteket kezeltünk E2-vel és/vagy valproáttal illetve SAHA-val, és vizsgáltuk a PMCA4b illetve az ösztrogén receptorok (ER-α és ER-β) kifejeződését. A 32. ábra alapján a kombinált kezeléseknek jóval nagyobb hatása volt a PMCA4b expressziójára, mint az egyes vegyületek külön-külön. Azonban ebből a kísérletből az is kiderül, hogy a HDAC inhibitorok önmagukban, E2 jelenlété nélkül is képesek megemelni a fehérje szintjét. Az ER-α antagonista fulvestrant teljes mértékben gátolta az E2 specifikus hatást, de a HDAC inhibitorok ösztrogén független hatását nem befolyásolta. Következésképp a HDAC inhibitorok az ER-α jelátviteltől függetlenül, más mechanizmusoknak következtében is képesek kifejteni hatásukat.

4.4.3. Az ER-α specifikusan MCF-7 sejtekben szabályozza a PMCA4b expresszióját

Az E2 PMCA4b expresszióra kifejtett hatását célzó vizsgálatainkat kiterjesztettük más ER-α pozitív (ZR-75-1, T-47D; 32. ábra) és ER-α negatív (MDA-MB-231; 33. ábra) sejtvonalakra. A sejteket a korábbi metódus alapján kezeltük E2-vel és/vagy valproáttal illetve SAHA-val, és vizsgáltuk a PMCA4b valamint az ösztrogén receptorok expresszióját. Az E2 kezelés ezekben a sejtvonalakban nem változtatta meg a PMCA4b fehérje szintjét (32. ábra, 33. ábra). Az ER-α azonban mindhárom ER-α pozitív sejtvonalban (MCF-7, ZR-75-1, T-47D) számottevő mértékben expresszálódott, és a fulvestrant valamint HDAC inhibitor kezelések hatására
jelentősen csökkent a fehérje kifejeződése, ami megfelel a korábbi irodalmi eredményeknek [110]. Mindebből arra következtethetünk, hogy a PMCA4b kifejeződésének ER-α jelpálya általi szabályozása az MCF-7 sejtekre specifikus folyamat. Mivel az MCF-7 egy széleskörben használt modell sejtvonal az ER-α pozitív emlőtumorokat célzó kutatásokban, úgy gondoljuk, hogy az általunk kapott eredményt fontos figyelembe venni a jövőbeli vizsgálatok során.

A PMCA4b expresszió ER-α általi szabályozásának további vizsgálatát nyilvánosan elérhető kromatin immunprecipitációt követő szekvenálás (ChIP-Seq) adatok elemzésével végeztük. Az ER-α kötését analizáltuk az ATP2B4 lókuszán ER-α pozitív emlőtumor sejtvonalak esetén (34. ábra). A Cistrome Data Browser [135, 136] segítségével azonosítottuk az ER-α kötőhelyeket, és összevetettük a különböző ChIP-Seq könyvtárakból származó adatokat. Az MCF-7 sejtvonal analíziséből származó négy független ChIP-Seq eredmény is mutatott ER-α kötőhelyet az ATP2B4 gén 1. intronjában. Az érintett génszakasz számos hiszon módosulás (H3K4Me1, H3K4Me3 metilációk és H3K27Ac acetiláció) transzkripciós szabályozásban érintett helyként jelöli. Az így azonosított kötőhelyet más ER-α pozitív sejtvonalak esetén is megvizsgáltuk. Azonos kísérletsorozatból származó MCF-7 – T-47D illetve MCF-7 – ZR-75-1 párokat analizálva azt tapasztaltuk, hogy az MCF-7-ben kimutatott ER-α kötőhely az ATP2B4 gén a másik két sejtvonalban nem volt jelen. Ez megerősíti saját kísérleti eredményeinket, miszerint a vizsgált ER-α pozitív sejtvonalak közül egyedül az MCF-7-ben volt hatással az ER-α jelpálya a PMCA4b expressziójára.

34. ábra. Az ATP2B4 gén 1. intronjában található egy ER-α kötőhely MCF-7 sejtekben. A humán ATP2B4 lókusz (1. kromoszóma, 1q32.1) az UCSC Genome Browser-ből (Human Dec. 2013 (GRCh38/hg38) Assembly) [142, 143]. Az ATP2B4 referencia szekvencia mutatja a nem transzlálódó 1. exont és a 22 fehérjekódoló exont. A nyilak a hiszon metilációs és acetilációs mintázat alapján meghatározott, transzkripciós szabályozásban kiemelt helyeket jelölik. Az ER-α kötőhelyét piros négyzet jelöli. A ChIP-Seq adatok a Cistrome adatbázisból származnak [135, 136]: GSM2467223 [Dzida et al., nem publikált]; GSM2040043 [141]; GSM986063 és GSM986089 a GSE40129 sorozatból [140]; GSM798424 és GSM798428 a GSE32222 sorozatból [139].
4.5. A PMCA expresszió változásának hatása a plazmamembránban elérhető foszfatidilinozitol-4,5-biszfoszfát szintjére

4.5.1. A PMCA és a PIP₂ kölcsönhatása

A továbbiakban vizsgáltuk, hogy a megváltozott PMCA expresszió azon túl, hogy a felesleges Ca²⁺-ot eltávolítja a sejtkeből, milyen szerepet játszik a foszfatidilinozitol-4,5-biszfoszfát (PIP₂) által szabályozott folyamatokban. A PIP₂ számos sejtélettani funkciót szabályoz, mivel több jelátviteli út másodlagos hírvivőinek forrása. Egyrészt a foszfatidilinozitol 3 kináz (PI3K) fő szubstrátja, a keletkező foszfatidilinozitol-3,4,5-triszfoszfát (PIP₃) aktiválja az emlőtumorokban is kimelt szerepet játszó PI3K/Akt/mTOR útvonalat. Másrészt a PIP₂ szubstrátja a foszfolipáz C-nek, amely azt diacilglicerollá (DAG) és inozitol-1,4,5-triszfoszfáttá (IP₃) hasítja. Az így keletkező DAG és IP₃ a PKC- és az IP₃R-on keresztül a Ca²⁺-függő jelátviteli utak aktiválásában játszanak szerepet [33, 34]. A PIP₂ különböző fehérjékként való kölcsönhatása következtében gyakran speciális membrán mikromókúdakban dúsul fel, mellyel nem csak időben, de térben is befolyásolhatja a jelátviteli folyamatokat [178].

Klasszikus biokémiai kísérletekből régóta ismert, hogy a PIP₂ már kis koncentrációban is aktiválni képes a PMCA-t, illetve a PMCA kötő PIP₂ molekulák kötésére [30-32]. A kötésben két régiót azonosítottak, egyiket az első intracelluláris hurkon, másikat a C-terminális regulátor régióban. Újabban kutatócsoportunk munkatársai a PMCA homológia modell elemzése során egy pozitív töltésű aminosav oldallánccokból álló régiót azonosítottak a membrán domén és a citoplazmatikus domén határán, ami hozzájárulhat a PMCA-PIP₂ kölcsönhatás megerősítéséhez. Ezen a régió belül molekuladinamika szimulációs módszerrel négy PIP₂-kötő zsebet találtak [179].

4.5.2. A PMCA védi a PIP₂ molekulákat a Ca²⁺ ionofórral kiváltott hidrolízissel szemben

A HeLa, humán méhnyakrák epitél sejtvonval segítségével felállítottunk egy in vitro modellrendszeret, hogy részletesen megfigyeljük a PMCA és a PIP₂ molekulák kölcsönhatását élő sejtkeben. Ehhez ötféle kísérleti felállást használtunk, ahol az egyes sejtek jól reprezentálják a PMCA fehérjék expressziós szintjei közötti eltéréseket (5. táblázat).
A vad típusú HeLa sejtekben alapállapotban kis mennyiségben fejeződik ki a PMCA1 és a PMCA4 izoforma. Ezekben a sejtekben shRNS segítségével csendesítettük a PMCA4 expresszióját, és létrehoztunk egy stabil sh-HeLa sejtvonalat, amiben a lehető legalacsonyabb volt a PMCA fehérjék szintje. Az sh-HeLa sejtekben trimensi kifejeztette a főként ingerelhető sejtekben előforduló PMCA2wb izoformát, vizsgáltuk a gyors pumpa PIP₂-re kifejtett hatásait [29]. Vad típusú HeLa sejtek a PMCA4bLA lokalizációs mutánssal transzfektáltva, olyan sejteket kaptunk, melyben a PMCA4b variáns konfluenciától függetlenül a plazmamembránban expresszálódik [127]. A vad típusú HeLa sejtekben kifejeztettük az általunk létrehozott dPMCA4b-LA inaktiv mutáns is, amely szintén a plazmamembránban expresszálódik konfluenciától független módon, de a D⁶⁷²E aminosavcsere következtében funkcionálisan inaktiv. Ez lehetőséget teremtett arra, hogy a vizsgálatok során szétválasszuk a pumpa aktivitásának illetve PIP₂-kötő képességének köszönhető hatásokat (35. ábra). A fluoreszcens fehérjékkel (a kísérleti felállástól függően GFP-vel vagy mCherry-vel) jelölt PMCA konstrukciók mellett az intracelluláris Ca²⁺ koncentráció nyomon követésére a genetikailag kódolt GCaMP2 Ca²⁺ szenzort [130] használtuk. PIP₂ szenzorként pedig a PH_{PLCδ1}-RFP konstrukciót alkalmaztuk, ami a PLCδ1 pleksztrin homológ (PH) doménje RFP-vel jelölte, így a PIP₂ valamint az IP₃ jelölésére alkalmas. PIP₂ hidrolízis során a szenzor a plazmamembránból a citoszólba transzlokálódik, ami egyrészt

<table>
<thead>
<tr>
<th></th>
<th>PMCA4 shRNS-sel csendesített HeLa sejtvonal</th>
<th>minimális PMCA expresszió</th>
</tr>
</thead>
<tbody>
<tr>
<td>sh-HeLa</td>
<td>sh-HeLa sejtek transzfektálva a PMCA2wb konstrukcióval</td>
<td>PMCA2wb expresszió (gyors pumpa)</td>
</tr>
<tr>
<td>PMCA2wb</td>
<td>sh-HeLa sejtek transzfektálva a PMCA2wb konstrukcióval</td>
<td>PMCA2wb expresszió (gyors pumpa)</td>
</tr>
<tr>
<td>HeLa</td>
<td>vad típusú HeLa</td>
<td>alacsony PMCA1 és PMCA4 expresszió</td>
</tr>
<tr>
<td>PMCA4b-LA</td>
<td>vad típusú HeLa sejtek transzfektálva a PMCA4b-LA lokalizációs mutánssal</td>
<td>PMCA4b expresszió (lassú pumpa) fokozott plazmamembrán lokalizációval</td>
</tr>
<tr>
<td>dPMCA4b-LA</td>
<td>vad típusú HeLa sejtek transzfektálva a PMCA4b-DE-LA inaktív mutánssal</td>
<td>inaktív PMCA4b expresszió fokozott plazmamembrán lokalizációval</td>
</tr>
</tbody>
</table>
a membrán PIP₂ szint csökkenését, másrésztt a citoszólikus IP₃ koncentráció növekedését reflektálja [129, 180].

35. ábra. A PMCA fehérje expressziója a kísérletekhez használt sejtekben. A: A PMCA4b csendesítése HeLa sejtekben. A vad típusú HeLa, sh-kontroll-HeLa és sh-PMCA4A-HeLa (később sh-HeLa) sejtek teljes sejtizátumának Western blot analízise (40 μg fehérje) anti-pan-PMCA (5F10) és anti-PMCA4b (JA3) ellenanyagokkal. B: A PMCA fehérjék expressziója az ötfej vizsgált sejt modellben. Western blottal vizsgáltuk a PMCA fehérjék kifejeződését teljes sejtizátumokból anti-pan-PMCA (5F10) ellenanyaggal. Mintafelviteli kontrollként az anti-Na,K ATPáz ellenanyag szolgált. Az endogén (134 kDa molekulatömegű) és transzienz kifejezett fehérjék összehasonlíthatósága érdekében különböző mennyiségű mintákat vizsgáltunk: az sh-HeLa és HeLa sejtekből 40 μg fehérjét, a GFP-PMCA2wb-t kifejező sh-HeLa, a GFP–PMCA4b-LA és GFP-dPMCA4b-LA konstrukciókkal transzfektált HeLa sejtekből 4 μg fehérjét. A PMCA konstrukciók expressziós szintje kb. százszorosa volt az endogén fehérjének.

Elsőként megfigyeltük a PIP₂ szenzor sejten belüli lokalizációját PMCA expresszió hiányában illetve különböző PMCA izoformák jelenlétében ionomycin Ca²⁺ ionofórral kiváltott Ca²⁺ szignál előtt és után (36. ábra). Nyugvó sejtekben a PIP₂ szorzor a sejtek plazmamembránjánál lokalizálódott, akár önmagában, akár a PMCA2wb vagy PMCA4b-LA konstrukciókkal együtt fejeztük ki. Az ionomycin-tel kiváltott intracelluláris Ca²⁺ koncentráció növekedés a foszfolipáz C (PLC) aktivációjához vezet, ami a PIP₂ hidrolízisét eredményezi. Ilyenkor a plazmamembránban csökkenő PIP₂ szint, illetve a citoplazmában emelkedő IP₃ szint következtében a PIP₂ szenzornak a plazmamembrántól citoszólba történő transzlokációját tapasztalhatjuk [180, 181]. A PMCA-t minimális mértékben expresszáló sh-HeLa sejtekben azt tapasztaltuk, hogy ionomycin kezelés hatására a PIP₂ szenzor teljes mértékben a plazmamembrántól a citoplazmába transzlokálódott. Ezzel szemben a PMCA2wb-t vagy PMCA4b-LA-t expresszáló sejtekben az ionomycin kezelés során nem változott a PIP₂ szenzor plazmamembrán lokalizációja (36. ábra).
A PMCA fehérjék kivédik a PIP₂ szenzor transzlokációját ionomycin kezelés során. A PH_{PLCδ1-RFP} PIP₂ szenzort kifejtettük a GFP-PMCA2wb konstrukcióval együtt sh-HeLa sejtekben, vagy a GFP-PMCA4b-LA konstrukcióval együtt HeLa sejtekben. Egy nappal a transzfekció után vizsgáltuk a PIP₂ szenzor és a PMCA konstrukciók fluoreszcenciáját konfokális mikroszkóppal ionomycin kezelés előtt (A) és után (B). A grafikonok a PIP₂ szenzor (piros) és a PMCA (zöld) fluoroeszcencia intenzitását ábrázolják a képeken jelölt egyenesek mentén.

A: A a PIP₂ szenzor és a PMCA sejten belüli eloszlása nyugvó sejtekben. B: A a PIP₂ szenzor és a PMCA sejten belüli eloszlása 10 nM ionomycin kezelés után két perccel. Lépték: 10 μm.
Következő lépésként időben vizsgáltuk a PIP$_2$ szenzor sejten belüli elhelyezkedését különböző PMCA expressziójú sejtekben emelkedő dózisú, 2, 5 és 10 µM-os ionomycin kezeléseket hatására (37. ábra, 38. ábra).

A. sh-HeLa

HeLa

HeLa, PMCA4b-LA

B. A PH$_{PLC\gamma}$-RFP PIP$_2$ szenzor citoszólikus fluoreszcencia intenzitása

![Diagram](image_url)

37. ábra. Az egyes PMCA konstrukciók hatása az inomycinnel indukált PIP$_2$ szenzor transzlokációra. A: A PH$_{PLC\gamma}$-RFP PIP$_2$ szenzorral transzfektált sh-HeLa sejtek (felső sor), a PH$_{PLC\gamma}$-RFP-vel transzfektált HeLa sejtek (középső sor) és a PH$_{PLC\gamma}$-RFP-vel valamint GFP-PMCA4b-LA-vel kotranszfektált HeLa sejtek (alsó sor) konfokális mikroszkópos analízise. A sejtek kezeltük 2 µM, 5 µM illetve 10 µM ionomycin (iono) a 0., 6. és 12. percben. A felvételek a PIP$_2$ szenzor fluoreszcens jelét mutatják a kezelések előtt valamint öt perccel a jelzett koncentrációjú ionomycin kezelés után. A citoszólikus RFP fluoreszcenciájának növekedése a PIP$_2$ szenzor transzlokációját jelzi. Lépték: 10 µm.

B: A grafikonok a PH$_{PLC\gamma}$-RFP PIP$_2$ szenzor citoszólikus fluoreszcencia intenzitásának változását (F/F$_0$) ábrázolják az ionomycin kezeléseket alatt az idő függvényében különböző PMCA konstrukciókat kifejező sejtekben. A nyílak jelzik az ionomycin kezelések időpontját: 2 µM, 5 µM és 10 µM ionomycin a 0., 6. és 12. percben. A szürke görbék jelzik a PMCA-t nem expresszáló sh-HeLa sejtvonalat, ahol a sejteket három csoportra osztottuk az ionomycin kezelésre adott reakciójuktól függően. A piros görbe jelzi a GFP-PMCA2wb gyors pumpát expresszáló sh-HeLa sejteket. A jobb oldali panel kék görbéje a GFP-PMCA4b-LA lassú pumpát kifejező, zöld görbéje pedig a GFP-dPMCA4b-LA inaktív pumpát kifejező HeLa sejteket ábrázolja.

38. ábra. A 37. ábra alapján elmondhatjuk, hogy a PMCA-t csak kis mennyiségben kifejező sejtekben (sh-HeLa és HeLa) az egymás utáni, emelkedő koncentrációjú ionomycin kezelés egyre nagyobb számú sejtben okozta a PIP$_2$ szenzor plazmamembrán-citoplazma transzlokációját. A PMCA4 csendesített sh-HeLa sejteken belül három csoportot azonosítottunk az alapján, hogy milyen dózisú ionomycinre válaszoltak. A 38. ábra az egyes
ionomycin koncentrációkra teljes \(\text{PIP}_2 \) szenzor transzlokációval reagáló sejtek százalékos arányát ábrázolja. Láthatjuk, hogy az sh-HeLa sejtek 18%-ában már 2 \(\mu \text{M} \) ionomycin hatására a citoplazmába került a szenzor. A sejtek 24%-a 5 \(\mu \text{M} \) ionomycinre reagált, 10 \(\mu \text{M} \) ionomycin után pedig már az összes sejt esetén citoszólikus lokalizációt tapasztaltunk. Ezzel ellentétben a PMCA2wb konstrukció jelenléte szinte teljes mértékben kivédezte a \(\text{PIP}_2 \) szenzor transzlokációját, az a kezelések során végig a plazmamembránban maradt. A vad típusú HeLa és a PMCA4b-LA-t illetve az inaktív dPMCA4b-LA-t kifejező sejtek összehasonlításakor szintén azt kaptuk, hogy az alacsony PMCA expressziójú HeLa sejtek 27%-a válaszolt 5 \(\mu \text{M} \) ionomycinre, 10 \(\mu \text{M} \) ionomycin után minden sejtben komplett transzlokációt látunk. 2 \(\mu \text{M} \) ionomycin ezeknél a sejteknél nem változt ki hatást, amiből arra következtethetünk, hogy az alacsony endogén PMCA expresszió is elegendő volt bizonyos védelemre a PLC-vel szemben. A PMCA4b-LA konstrukció expressziója ezzel szemben a \(\text{PIP}_2 \) hidrolízisét teljesen gátolta, a szenzor végig plazmamembrán lokalizációt mutatott. Az inaktív dPMCA4b-LA-t kifejező sejtekben az ionomycin csak magas koncentrációban (10 \(\mu \text{M} \)) tudta kiváltani a \(\text{PIP}_2 \) szenzor transzlokációját, ami arra enged következtetni, hogy a PMCA aktivitástól függetlenül is képes védőhatást kifejteni (37. ábra, 38. ábra).

![A teljes \(\text{PH}_{\text{PLC}\delta_1}\)-RFP transzlokációt mutató sejtek gyakorisága különböző koncentrációjú ionomycin kezelése után](image)

38. ábra. Az ionomycin kezelésre \(\text{PH}_{\text{PLC}\delta_1}\)-RFP \(\text{PIP}_2 \) szenzor transzlokációval reagáló sejtek gyakorisága a különböző PMCA konstrukciók mellett. Az ionomycin kezelésre nem válaszoló sejteket nem ábrázoltuk. Az adatok három független kísérlet eredményét jelzik (n=30-60 sejt). A szignifikáns statisztikai eltérést a PMCA-t nem expresszáló illetve különböző izoformákat kifejező sejtek között * (P<0,05) és *** (P<0,001) jelzi \(\chi^2 \) teszt alapján.

Ezzel párhuzamosan ellenőriztük az ionomycin hatékonyságát rendszerünkben, azaz megvizsgáltuk az emelkedő dózisú ionomycin kezelések hatását az intracelluláris \(\text{Ca}^{2+} \) szignátra.
a GCaMP2 Ca$^{2+}$ szenzor segítségével az előző kísérleti felállással azonos módon (39. ábra). Az sh-HeLa sejtekben az ionomycin kezelések hosszantartó Ca$^{2+}$ jeleket váltottak ki, magas végző Ca$^{2+}$ koncentrációt eredményezve. Ezzel szemben a gyors PMCA2wb pumpát kifejező sejtekben csak alacsony és rövid Ca$^{2+}$ jeleket tudott az ionomycin indukálni. A lassú PMCA4b-LA pumpa esetén a Ca$^{2+}$ jelek ennél valamivel magasabbak és hosszabb lefutásúak voltak, de az sh-HeLa-ban tapasztalathoz képest jóval kisebb intracelluláris Ca$^{2+}$ koncentrációt emelkedést tapasztaltunk. Az inaktiv dPMCA4b-LA expressziója, a vártnak megfelelően, az aktív pumpánál magasabb Ca$^{2+}$ jeleket eredményezett.

39. ábra. Az ionomycinrel kiváltott Ca$^{2+}$ szignál lefutása a különböző PMCA konstrukciókat expresszáló sejtekben. A: A GCaMP2 Ca$^{2+}$ szenzorral transzfektált sh-HeLa sejtek (bal felső), a GCaMP2-vel és mCherry-PMCA2wb-vel kotranszfektált sh-HeLa sejtek (bal alsó), a GCaMP2-vel és mCherry-dPMCA4b-LA-vel kotranszfektált HeLa sejtek (jobb felső) valamint a GCaMP2-vel és mCherry-PMCA4b-LA-vel kotranszfektált HeLa sejtek (jobb alsó) konfokális mikroszkópos analízise. A sejtek kezeltük 2 µM, 5 µM illetve 10 µM ionomycinrel (iono) a 0., 6. és 12. percben. A felvételek a GCaMP2 Ca$^{2+}$ szenzor fluoreszcens jelét mutatják a kezelések előtt valamint 10 µM ionomycin kezelés után. Lépték: 10 µm. B: A grafikonok a GCaMP2 Ca$^{2+}$ szenzor citoszólikus fluoreszcencia intenzitásának változását (F/F₀) ábrázolják az ionomycin kezelések alatt az idő függvényében különböző PMCA konstrukciókat kifejező sejtekben. A nyilak jelzik az ionomycin kezelések időpontját: 2 µM, 5 µM és 10 µM ionomycin a 0., 6. és 12. percben. A fekete görbe jelzi a PMCA-t nem expresszáló sh-HeLa sejtvonalat. A piros görbe jelzi az mCherry-PMCA2wb gyors pumpát expresszáló sh-HeLa sejteket. A jobb oldali panel kék görbéje az mCherry-PMCA4b-LA lassú pumpát kifejező, zöld görbéje pedig az mCherry-dPMCA4b-LA inaktiv pumpát kifejező HeLa sejteket ábrázolja. Az ábázolt görbék két vagy három független kísérletből gyűjtött 15-30 sejt átlagát (± SEM) jelzik.
4.5.3. A PMCA csökkenti a receptor-mediált PIP₂ szinalizációt

Ezt követően a PIP₂ szenzor segítségével vizsgáltuk, hogyan befolyásolja a PMCA a PLC G-fehérje kapcsolt receptorokon keresztüli aktivációját, és ennek milyen hatása van a Ca²⁺ jelekre. Ebben az esetben a kezdeti PLC aktiváció a G-fehérjéken keresztül történik, függetlenül az intracelluláris Ca²⁺ koncentráció változástól. A PLC a PIP₂ hidrolízisével IP₃ felszabadulást indukál, ami végereedményben az intracelluláris Ca²⁺ raktárakból történő Ca²⁺ felszabaduláshoz vezet [14]. Kísérletünkben a különböző PMCA konstrukciókat kifejező sejteket először Ca²⁺-mentes közegben ATP-vel stimuláltuk, majd kis idő múlva egy másik receptor agonistával, hisztaminnal, és közben időben figyeltük az intracelluláris PIP₂ szenzor (40. ábra) és Ca²⁺ szignálok (41. ábra) változását. Őt perc elteltével – muttán az intracelluláris Ca²⁺ raktárak nagy része kiürült – Ca²⁺-ot adtunk a sejtek médiumához, és tovább követtük a raktár-függő Ca²⁺ belépés (SOCE) utáni jeleket (40. ábra, 41. ábra).

40. ábra. Az egyes PMCA konstrukciók hatása a PIP₂ szenzor intracelluláris jelére receptor mediált PLC aktiváció során. A: Az sh-HeLa sejteket transzfektáltuk a PH₃LC₁₁₁-RFP PIP₂ szenzorral önmagában (fekete görbe) vagy a GFP-PMCA₂wb konstrukcióval együtt (piros görbe). B: A HeLa sejteket transzfektáltuk a PH₃LC₁₁₁-RFP PIP₂ szenzorral önmagában (fekete görbe) vagy a GFP-PMCA₄b-LA (kék görbe) illetve az inaktív GFP-dPMCA₄b-LA konstrukcióval (zöld görbe) együtt. A-B: A sejteket Ca²⁺-mentes közegben stimuláltuk 100 µM ATP-vel, majd két perc múlva 100 µM hisztaminnál. Őt perc elteltével a külső közeget Ca²⁺ tartalmát visszaállítottuk 2 mM-ra, és a raktár-függő Ca²⁺ belépés (SOCE) utáni PIP₂ jelet további tíz percig nyomon követtük. Az ábázolt görbék két vagy három független kísérletből gyűjtött 10-30 sejt normalizált F/F₀ értékének átlagát (± SEM) jelzik.

Ca²⁺-mentes közegben mind az sh-HeLa, mind a vad típusú HeLa sejtekben ATP hatására a PIP₂ szenzor magas és fenntartott citoszólikus jelet adott az intracellulárisan felülsülő IP₃-nak köszönhetően (40. ábra). Hasonló körülmények között végzett párhuzamos kísérletekben azt tapasztaltuk, hogy a megemelkedett IP₃ koncentrációval párhuzamosan az intracelluláris Ca²⁺ raktárakból gyors Ca²⁺ felszabadulás történt, ami azután lassan visszaállt a kiindulási szintre (41. ábra). A következő hisztamin kezelés csak egy kisebb csúcsot eredményezett mind
a PIP₂, mind a Ca²⁺ szenzor jelében. ATP stimuláció hatására a Ca²⁺ szignál alakja és a görbe alatti területe hasonló volt az sh-HeLa és a HeLa sejtekben.

Ezzel szemben a PMCA₄b-LA-t kifejező sejtekben ATP hatására csak jóval rövidebb ideig tartó Ca²⁺ szignál alakult ki. A PIP₂ szenzor citoszólba történő transzlakciója is kevésbé volt kifejezett a PMCA₄b-LA-t expresszáló sejtekben, valamint az ATP és hisztamin kezelés után a jel vissza is tért az alappontra, ami a szenzor plazmamembránba történő visszakerülését jelzi (40. ábra). A Ca²⁺ szignál az ATP és hisztamin stimuláció alatt a PMCA₄b-LA-t és az inaktiv dPMCA₄b-LA-t kifejező sejtek esetén meglepő módon egyforma volt (41. ábra). A PIP₂ szenzor jele szintén hasonló volt a két konstrukció esetén (40. ábra). Mindezek alapján arra következtethetünk, hogy az agonistával történő stimuláció IP₃-függő szakaszán a lassan aktiválódó PMCA₄b variáns a PIP₂ direkt kötésén keresztül csökkenti a Ca²⁺ jel intenzitását, ehhez a Ca²⁺ pumpa aktivitása nem szükséges.

41. ábra. Az egyes PMCA konstrukciók hatása az intracelluláris Ca²⁺ szignálra receptor mediált PLC aktiváció során.

A: Az sh-HeLa sejteket transzfektáltuk a GCaMP2 Ca²⁺ szenzorral önmagában (fekete görbe) vagy az mCherry-PMCA₂wb konstrukcióval együtt (piros görbe). B: A HeLa sejteket transzfektáltuk a GCaMP2 Ca²⁺ szenzorral önmagában (fekete görbe) vagy az mCherry-PMCA₄b-LA (kék görbe) illetve az inaktiv mCherry-dPMCA₄b-LA konstrukcióval (zöld görbe) együtt. A-B: A sejteket Ca²⁺-mentes közegben stimuláltuk 100 μM ATP-vel, majd két perc múlva 100 μM hisztaminnal. Öt perc elteltével a külső közeg Ca²⁺ tartalmát visszaállítottuk 2 mM-ra, és a rakta-függő Ca²⁺ belépés (SOCE) utáni Ca²⁺ jelet további tíz percig nyomon kötettük. Az ábázolt görbék két vagy három független kísérletből gyűjtött 10-30 sejt normalizált F/F₀ értékének átlagát (± SEM) jelzik. C: A GCaMP2 Ca²⁺
jelek ATP csúcs alatti területének kiértékelése. D: A GCaMP2 Ca\(^{2+}\) jelek SOCE gőrze alatti területének kiértékelése.

C-D: Az oszlopop három független kísérletből származó 15-60 sejt átlagát (± SEM) jelölik. A szignifikáns statisztikai eltérést a jelzett értékek között ## (P<0,01) és ### (P<0,0001) jelzi Student-féle t-próba alapján.

A PIP\(_2\) szenзорjele a gyors PMCA2wb-t és a lassú PMCA4b-LA-t expresszáló sejtekben is hasonló volt, így mindkét izoforma PIP\(_2\)-kötő kapacitása hasonlónak tekinthető (40. ábra). Azonban a PMCA2wb-t kifejező sejtek esetén a rövidebb ideig tartó Ca\(^{2+}\) csúcs illetve a jel gyorsabb alapvonalra történő visszatérése arra enged következtetni, hogy a PMCA2wb esetén, a pumpa gyors aktiválódása következtében, a direkt PIP\(_2\) kötés mellett a pumpa aktivitása is szerepet játszik az IP\(_3\) által kiváltott Ca\(^{2+}\) jel szabályozásában (41. ábra).

A SOCE utáni jel elemzésével megállapíthatjuk, hogy az sh-HeLa illetve vad típusú HeLa sejtekhez képest mindkét aktív PMCA izoformát (PMCA2wb és PMCA4b-LA) kifejező sejtben jóval gyorsabban tért vissza az alapvonalra az intracelluláris Ca\(^{2+}\) koncentráció. Ezzel szemben az inaktív dPMCA4b-LA-t kifejező sejtekben a Ca\(^{2+}\) jel lefutása a kontrollhoz hasonlított, tehát a SOCE után megemelkedett Ca\(^{2+}\) koncentráció csökkentésehez – ahol az IP\(_3\) már nem játszik szerepet – egyértelműen szükség van a pumpa aktivitására (41. ábra).

Eredményeink alapján az aktív PMCA az ionomycinnel kiváltott magas intracelluláris Ca\(^{2+}\) koncentráció mellett is képes kivédeni a PLC általi PIP\(_2\) hidrolízist. Továbbá az inaktív PMCA is rendelkezik szignifikáns mértékű védő hatással. Összességében elmondhatjuk, hogy a PMCA a PIP\(_2\)-t megkötve csökkenti annak elérhetőségét a PLC számára, így aktivitásától függetlenül is beleszól a Ca\(^{2+}\) szignalizációba és ezen keresztül a Ca\(^{2+}\) jelátviteli utakba. Mindebből arra következtethetünk, hogy a PMCA expressziójának változása tumorokban az intracelluláris Ca\(^{2+}\) homeosztáziis szabályozásán kívül a PIP\(_2\) kötésén keresztül is beleszólhat minden olyan jelátviteli útvonalba, melyet a PIP\(_2\) szabályoz (pl. PI3K/Akt/mTOR).
5. Megbeszélés

5.1. A Ca$^{2+}$ pumpák kifejeződése emlőtumorban

A PMCA2 izoformának kitüntetett szerepe van az emlő epitélium normál fiziológiájában laktáció során [55-57, 147]. Újabb tanulmányok a PMCA2 szerepéért e mlőtumorban is vizsgálták [89-91]. Különböző emlőtumor sejtvonalak ATP2B2 expresszióját vizsgálva a bazális típusú sejtekben fokozott mértékű mRNS kifejeződést találtak, valamint az emelkedett ATP2B2 szint pozitívan korrelált a túléléssel [89]. Ezzel szemben mások a magas ATP2B2 expressziót a kedvezőtlen klinikai kimenetel mellett találták összefüggésben emlőrákokban [90]. Egy másik vizsgálatban MCF-7 sejtekben az ATP2B2 mRNS expressziója egyáltalán nem volt detektálható [183]. Továbbá az is bizonyított, hogy HER2 pozitív emlőtumor sejtvekben a PMCA2 szabályozni képes a HER2 jelátvitelt. A PMCA2 specifikus membrán doménekben köti a HER2-t, ahol alacsony lokális Ca$^{2+}$ koncentráció biztosításával serkenti a fenntartott HER2 szignalizációt és a tumor növekedését [91]. Saját in vitro kísérleteink során a PMCA2 fehérje expresszió az összes vizsgált emlőtumor sejtvonalban nagyon alacsony volt. A PMCA1-et és PMCA4b-t azonosítottuk domináns izoformaként, bár sejtenként eltérő expressziós szinteket mértünk mindkét fehérje esetén. Továbbá vizsgáltuk a SERCA fehérjék kifejeződését is, mivel ezek a
pumpák is szerepet játszhatnak egyes tumorok megváltozott Ca\(^{2+}\) homeosztázisában [1, 2]. A SERCA3 fehérje az összes vizsgált luminális és HER2 pozitív sejtvonalban nagy mennyiségben jelen volt, viszont a tripla negatív sejtvonalakban, azaz a bazális tumor sejtekben és a nem tumoros MCF-10A-ban nem tudtuk kimutatni. Eredményünk összhangban van azzal a korábbi tanulmánnal, mely szerint a tripla negatív emlőtumorokban csökkent a SERCA3 kifejeződése, és a fehérje elveszítése a tumorigenezis korai eseménye [150].

5.2. A HDAC inhibitorok sejttípustól függő hatása a PMCA expressziójára emlőtumorban

A tumorok kialakulásában fontos tényező a HDAC-ok expressziójának megváltozása, mivel ez a sejtek korlátlan proliferációját indukálja, és gátolja számos differenciációban és apoptózis szabályozásban szerepet játszó gén transzkripcióját [151]. A HDAC inhibitorok alkalmazásával lehetőség nyílik a tumorsejtek normál gênexpressziós mintázatának visszaállítására. Hatásukra helyreáll a sejtciklust szabályozó gének transzkripciója, fokozzák az antiproliferatív p21 expresszióját, szabályozzák a tumorszupresszor p53 aktivitását, és csökkentik az olyan proliferációt fokozó regulátorok kifejeződését, mint pl. a cyclin D1, c-myc vagy a c-Src [124, 184]. Ezen tulajdonságaikat kihasználva több HDAC inhibitort is használnak már a klinikai gyakorlatban tumorellenes szerként, vagy klinikai stádiumú kísérletekben alkalmazzák őket akár önmagukban, azonban hatásmechanizmusuknak még nem minden részlete ismert [116, 119, 122]. Esetünkben a HDAC inhibitorok jelentős mértékben fokozták a PMCA4b fehérje expresszióját az összes vizsgált ER-\(\alpha\) pozitív, luminális emlőtumor sejtvonalban, míg a tripla negatív sejtekben, ahol az alap PMCA expresszió jóval magasabb volt, a HDAC inhibitorok nem befolyásolták számtettevő mértékben a fehérje kifejeződését. A PMCA fehérjék alapvető szerepet játszanak a sejtek intracelluláris Ca\(^{2+}\) szintjének szabályozásában, így expressziójuk változása az egész Ca\(^{2+}\) homeosztázisra hatással van. Ezzel összhangban MCF-7 sejtek esetén azt tapasztaltunk, hogy a különböző HDAC inhibitorok hatására fokozódó PMCA4b expresszió a Ca\(^{2+}\) szignál lefutását szignifikáns mértékben gyorsította, így számos Ca\(^{2+}\)-fûggő sejtélettani folyamatot befolyásolhat.

A tripla negatív MDA-MB-231 sejtekben ugyan magas volt az alap PMCA4b szint, de számos sejtben a fehérje jelentős részét intracelluláris kompartmentekben találtuk, szemben
a luminális típusú sejtekkel, ahol egyértelmű plazmamembrán lokalizációt tapasztaltunk. Sérült lokalizációja következtében valószínűsítettük, hogy az MDA-MB-231 sejtkeben a PMCA4b képtelen a Ca\(^{2+}\) transzport funkcióját maradéktalanul betölteni a plazmamembránban, hasonlóan a korábban nem konfluens HeLa sejtkultúrákon tapasztaltakhoz [127]. Az MDA-MB-231 sejtkeken végzett Ca\(^{2+}\) szignál mérések mindezt igazolták, mivel ezek a sejtek változatos Ca\(^{2+}\) jeleket produkáltak a HDAC inhibitor kezeléstől függetlenül. Fontos megjegyezni, hogy a tumorfejlődéssel kapcsolatban számos esetben leírtak már különböző fehérjék, főként egyes tumorszupresszorok hibás lokalizációját [185]. Megfigyelésünket alátámasztja egy korábbi tanulmány is, ahol az egyes PMCA izoformák csendesítésével azt tapasztalták, hogy MDA-MB-231 sejtkeben a PMCA4 csendesítése nincs hatással a Ca\(^{2+}\) szignál mintázatra, viszont a PMCA1 csendesítése jelentősen megváltoztatta annak lefutását [186]. Így valószínűsíthető, hogy a PMCA4b-nek a magas expressziós szint ellenére nincs számottevő szerepe az MDA-MB-231 sejtek Ca\(^{2+}\) homeosztázisának szabályozásában.

Irodalmi adatok alapján az ER-α pozitív emlőtumorokban általában magasabb a HDAC fehérjék szintje [110, 174], és a HDAC inhibitorok antiproliferatív hatása jobban érvényesül az ER-α-t expresszáló sejtvonalakban [187]. Egy átfogó tanulmányban kb. 50 emlőtumor sejtvonalból álló panelen vizsgálva 77 tumorellenes szer sejtproliferációra kifejtett hatását, a drogok harmada szubtípus specifikus választ adott. Mind a luminális, mind a HER2 pozitív sejtek különösen érzékenyenek bizonyultak lapatinibre (HER2 és EGFR inhibitor) és a PI3K/mTOR inhibitor GSK2126458-ra. A docetaxel és cisplatin kemoterápiás szerek a bazális sejtekben mutattak nagyobb hatást a klinikai eredményeknek megfelelően. A HDAC inhibitor SAHA kezelésekre a luminális sejtek mutattak érzékenységet [188]. Így nem meglepő, hogy kísérleteink során a HDAC inhibitorok hatása a PMCA4b expressziójára kifejezetten volt a luminális típusú sejtekben. A PMCA4b szintjének emelkedése és a hiszton acetiláció mértéke a kezelések után a luminális sejtekben korrelált, azonban a HER2 pozitív és bazális sejtek esetén nem mutatott szoros összefüggést minden vizsgált sejtvonalban.

Az MCF-7 sejtvonalon kombinált kezeléseket is végeztünk, ahol HDAC inhibitorokat együttesen alkalmaztunk a PKC aktivátor PMA-val. Irodalmi adatok alapján a PMA a Raf/MEK/ERK1/2 jelátviteli útvonalon keresztül aktiválni képes a sejtciklust gátló p21-et, így végérvényben csökkenti a sejtek szaporodási rátaját [189]. Továbbá ismert, hogy a PMA
fokozni képes a PMCA4 expresszióját vaszkuláris endotélnál sejtekben [155]. Kísérleteinkben a PMA-val való kombinált kezelés tovább fokozta a HDAC inhibítorok által kiváltott PMCA expresszió és aktivitás növekedését MCF-7 sejtekben. További vizsgálatinkból arra következtetünk, hogy a HDAC inhibítorok és a PMA eltérő szabályozó útvonalakon keresztül befolyásolják a PMCA fehérjékét hasonlóan korábbi vastagbél tumor sejtvonalakon kapott eredményekhez [168]. Egy másik tanulmánya a HDAC inhibítorok és a PMA szinergisztikus hatását bizonyítja, ahol intesztinális epitél sejtekben a PMA jelentősen fokozta a SCFA vegyületek hatását az AP-1 transzkripciós faktorra, ami a proliferáció, differenciáció, migráció és apoptózis fontos regulátor. A vizsgálat további érdekessége, hogy a PMA az AP-1 aktivációját a PKC-n és a MEK1/2-n keresztül érte el, míg a SCFA vegyületek hatása csak a MEK1/2-n keresztül jutott érvényre [169].

Korábbi vizsgálatok szerint a SERCA3-at kódoló AP2A3 expressziós szintjét is emelni képesek a HDAC inhibítorok mind MCF-7 és MDA-MB-231 sejtekben [190], mind különböző tüdő [170] és vastagbél rákókban [171]. A mi kísérleteinkben a valérat kezelések ugyan fokozták a SERCA3 fehérje expresszióját MCF-7 sejtekben, de csak jóval kisebb mértékben, mint amit a PMCA4b esetén tapasztaltunk. Más vizsgált emlőtumor sejtvonalak azonban fehérje szinten nem mutattak jelentős változást a SERCA3 kifejeződésében a valproát illetve SAHA kezelések után.

Új tumorterápiás szerek fejlesztése érdekében számos tanulmány igyekszik felderíteni a HDAC inhibítorok hatásmechanizmusának részleteit. Emlőrákok esetén egyes kutatások arra az eredményre jutottak, hogy a HDAC inhibítorok képesek indukálni az ER-α expresszióját tripla negatív sejtvonalakban, illetve a tamoxifenre vagy aromatáz inhibítorokra rezisztens ER-α pozitív sejteket képesek újra érzékennyé tenni az antiösztrogén terápiákra azokban az esetekben, ahol az ER-α expressziója epigenetikai gátlás alatt áll [103, 110, 112]. Továbbá klinikai fázisban lévő kutatások is folynak HDAC inhibítorokkal önállóan vagy tamoxifenrel kombináltan alkalmazva [103, 111]. Az igéretes eredmények mellett számos ellentmondásos adat is napvilágot látott, a HDAC inhibítorok által indukált ER-α expressziót tripla negatív sejtekben nem tudta minden tanulmány igazolni [116, 191]. Saját kísérleti felállásunkban a valproát és SAHA kezelések szintén nem befolyásolták az ER-α kifejeződését MDA-MB-231 sejtekben.
Vizsgálatunk eredménye, mely szerint a HDAC inhibitorok a PMCA4b-n keresztül sejttípustól függően befolyásolják az intracelluláris Ca^{2+} homeosztázist emlőtumorokban, egy fontos lépés ahhoz, hogy részletes képet kapjunk ezeknek az inhibitorokban a hatásmechanizmusáról.

5.3. Az ER-α szerepe a PMCA szabályozásában

Munkánk során először mutattuk be, hogy az ER-α jelpálya aktiválása fokozta a PMCA4b fehérje kifejeződését MCF-7 sejtekben. Más vizsgált emlőtumor sejtvonalakban, a szintén ER-α pozitív ZR-75-1 és T-47D vagy az ER-α negatív MDA-MB-231 esetén azonban ez a szabályozó hatás nem érvényesült. A kísérletes eredményeket ChIP-Seq adatok elemzésével is megerősítettük, mivel MCF-7 sejtekre specifikus módon azonosítottunk egy ER-α kötőhelyet az ATP2B4 gén 1. intronjában. Továbbá MCF-7 sejtekben az E2 és a HDAC inhibitorok kombinált alkalmazása tovább fokozta a PMCA4b szintjének emelkedését.

Az ER-α jelátvitel szabályozása számos genombi és extranukleáris folyamat összehangolt működésének köszönhető [103, 148, 192]. A genomban ER-α szignalizáció során a ligand-aktivált ER-α receptor a target gén transzkripcióját pozitívan vagy negatívan is regulálhatja. A receptor hozzáköthet a DNS-hez direkt módon, az úgynevezett ösztrogén válasz elem (estrogen response element; ERE) szekvenciákhoz, vagy különböző transzkripciós faktorokon keresztül is, mint pl. az AP-1, Sp1 vagy NFκB. Továbbá számos koaktivátor és korepresszor is befolyásolhatja az ER-α által indukált transzkripciót, melyek a kromatin szerkezetének szabályozásáért felelősek: aciltranszferázok, dezacetilázok, metiltranszferázok, ubiquitin ligázok vagy ATPázok. A citoplazmatikus ER-α szignalizáció a PI3K/Akt/mTOR vagy a MAPK útvonal aktiválásán keresztül is hathat, ami a genomban ER-α jelátvitel működését szintén érintheti [103]. Az általunk kapott eredmények is alátámasztják, hogy az ER-α céljainak transzkripciója komplex szabályozás alatt áll. Egy korábbi microarray analízis kapcsán már leírták, hogy az E2 fokozta képes többek között az ATP2B4 gén kifejeződését is MCF-7 sejtekben. Érdekes módon, ugyanígy az ATP2B4 gén expressziójának emelkedését tapasztalták ER-α-t stabil kifejező MDA-MB-231 sejtek E2 kezelése esetén is [192]. Stender és munkatársai szerint az ER-α által szabályozott gén expressziójában mutatkozó eltérések a különböző sejtvonalakban nagymértékben függnek az egyes transzkripciós faktoroktól, az eltérő kromatin struktúráktól illetve különböző epigenetikai módosulásoktól. Ahogy a m
vizsgálatunkban az ER-α pozitív sejtvonalak közül egyedül az MCF-7 reagált az E2 kezelésre fokozott PMCA4b expresszióval, Hilborn és munkatársai hasonló jelenséget tapasztaltak a 17β-hidroxiszteroid-dehidrogenáz (HSD17B) 1 és 2 kapcsán. A HSD17B1 és HSD17B2 gének fehérjetermékei fontos szerepet játszanak az E2 aktivitásának regulációjában. Hét napig tartó E2 kezelés után azt tapasztalták, hogy HSD17B2 expressziója specifikusan megnőtt az MCF-7 sejtekben, míg a T-47D és ZR-75-1 sejtekben nem változott [193]. Az irodalomban tehát más tanulmányok is alátámasztják, hogy különböző ER-α pozitív emlőtumor sejtvonalakban az ER-α aktiváció hatására eltérő szabályozási útvonalak is működésbe léphetnek.

A G-fehérje kapcsolt ösztrogén receptor 1 (GPER/GPR30) fontos szerepet játszik a citoplazmatikus ER-α jelátvitelben [103], mivel aktiváló képes számos jelátviteli útvonalat, mint pl. a cAMP, ERK1/2 és PI3K, vagy indukálni az intracelluláris Ca²⁺ koncentráció emelkedését [105]. A GPER/GPR30 MCF-7 sejtekben a sejt-mátrix adhézió szabályozásán keresztül a metasztázis képzés folyamatában is bizonyítottan részt vesz [194]. Korábban igazolták, hogy a PMCA4 és GPER/GPR30 képesek fehérjekomplexet alkotni, ahol a GPER/GPR30 gátolja a PMCA4 aktivitását, valamint a PMCA4 is hat a GPER/GPR30 funkciójára [195]. A GPER/GPR30 fehérjét, mint E2-kötő receptor írták le, de később bebizonyosodott, hogy mind az E2, mind az ER-α antagonista fulvestrant képes aktiválni [105]. A mi kísérleti modellünkben a fulvestrant teljes mértékben kivédte az E2 által kiváltott PMCA4 expresszió növekedést, így arra következtethetünk, hogy a GPER/GPR30 az általunk vizsgált folyamatban nem játszik szerepet. Azonban ahhoz, hogy pontosan megismerjük, hogyan szabályozza az E2 a PMCA expresszióját, további vizsgálatok szükségesek.

Ahhoz, hogy eredményeink fiziológiai relevanciáját értékelni tudjuk, fontos megjegyezniünk, hogy az egyes PMCA izoformák kifejeződése az emlőszövetben szigorúan szabályozott, különösen a terhesség és laktáció során [55, 57, 147]. A fejlődő emlőszövetben a PMCA4b a domináns izoforma, terhesség során pedig tovább fokozódik az expressziója. Azonban szülés után hirtelen lecsökken a PMCA4b expresszió, és ezzel párhuzamosan drasztikusan megnő a PMCA2b izoforma kifejeződése, ami esszenciális szerepet játszik a laktáció során a tej Ca²⁺ tartalmának biztosításában (42. ábra) [56]. A PMCA4b expressziójának változása az emlőszövetben terhesség alatt és szülés után hasonlóképp alakul (42. ábra), mint a szérum E2 szint, ami a terhesség alatt szintén emelkedik, majd szülés előtt hirtelen drasztikusan lecsökken (43. ábra) [175].
42. ábra. A PMCA2 és PMCA4 expressziója nőstény patkányok emlőszövetében a vemhesség, szülés és laktáció idején. A: A PMCA2 fehérje expressziója Western blottal anti-PMCA2 ellenanyaggal meghatározva (fent), és relatív DNS expressziója a -10. nap százalékában kifejezve (lent). B: A PMCA4 fehérje expressziója Western blottal JA9 ellenanyaggal meghatározva (fent), és relatív DNS expressziója a -10. nap százalékában kifejezve (lent) ([56] alapján).

Egy további példa a Ca^{2+} szignalizációban szerepet játszó fehérjék hormonális szabályozására az a közelmúltban született tanulmány, ami a SERCA fehérjék progeszteron általi szabályozását bizonyítja emlőtumor sejtekben [196].

Az ER-α jelátvitel és a PMCA4b közvetlen szabályozásának bizonyításához további vizsgálatok szükségesek, azonban eredményeink felvetik a PMCA4b E2 általi érintettségét az emlő epitél normál fiziológiás működés során is.
5.4. A PMCA szerepe a PIP₂ jelátviteli útvonalak szabályozásában

Bizonyítottuk, hogy egyes emlőtumor sejtvonalakban jelentősen megváltozik a PMCA4b expressziója, ami az intracelluláris Ca²⁺ szignál lefolyását is nagymértékben befolyásolja. A PMCA fehérjék, azon kívül, hogy Ca²⁺ pumpa aktivitásukkal közvetlenül beleszólnak az intracelluláris Ca²⁺ koncentráció változásaiba, interakciós partnereiken keresztül számos sejtélettani folyamatban is szerepet játszhatnak [25]. Régóta ismert, hogy a PIP₂ a PMCA-hoz kötve serkenti a fehérje aktivitását [30-32]. Kutatócsoportunk munkatársai pedig nemrég azonosítottak egy újabb PIP₂-kötő régiót a PMCA membránközeli citoplazmatikus régiójában [179]. Jelen munka során vizsgáltuk, hogy a tumorsos eredetű sejtekben tapasztalt eltérő PMCA expresszióak milyen következménye lehet a PIP₂ szignalizációra. A PIP₂ alapvető szerepet játszik a sejtmozgás, adhézió és számos egyéb tumorprogresszióban is fontos sejtélettani folyamat szabályozásában. Nem csak a PI3K/Akt/mTOR, PKC és Ca²⁺ jelátvitel egyik fő komponense, de számos csatorna, pumpa és egyéb PIP₂-kötő fehérje funkcióját is befolyásolja [33, 34, 178, 197].

Különböző PMCA konstrukciókkal tranzienten transzfektált HeLa sejtek segítségével megállapítottuk, hogy a PMCA fehérjék kétféle módon is képesek csökkenteni a szabadon hozzáférhető PIP₂ mennyiségét (44. ábra). Egyrészt a PMCA aktivitásától függetlenül képes megkötni a PIP₂ molekulákat, így direkt szabályozza a PIP₂ elérhetőségét a PLC illetve a PI3K számára. Ehhez hasonló folyamatot írtak le korábban a mirisztolált alanin-gazdag C-kináz szubsztrát (MARCKS; myristoylated alanine-rich C-kinase substrate) fehérje esetén, ahol a MARCKS megköti a PIP₂-t a TRPC1 csatorna mellett, így szabályozva annak aktivitását [198]. Másrészt elképzelhető, hogy az aktív PMCA már alacsony expresszió mellett is képes befolyásolni a PIP₂ szignalizációt a lokális Ca²⁺ koncentráció csökkentésével. Továbbá azt is ki kell emelnünk, hogy a PIP₂ kötése a PMCA-hoz fokozza a fehérje aktivitását, így az intracelluláris Ca²⁺ koncentráció csökkenedése több oldalról is pozitívan támogatott ezekben a sejtekben.
44. ábra. A PMCA szabályozza a sejten belül elérhető PIP₂ mennyiségét. A PMCA az intracelluláris Ca²⁺ koncentráció direkt csökkentésén túl köti a PIP₂ molekulákat, és csökkenti azok elérhetőségét a PLC és a PI3K számára, így közvetetten számos jelátviteli útvonalat befolyásol ([25] alapján).

Vizsgálatainkból arra következtethetünk, hogy a tumorprogresszió során bekövetkező markáns változások a PMCA expressziójában, valamint a különböző terápiás szerek, melyek szintén befolyásolják a PMCA kifejeződését, alapvetően befolyásolják nem csak a sejt Ca²⁺ homeosztázisát, de egyéb fontos PIP₂ által szabályozott jelátviteli folyamatokat is.
6. Összefoglalás

Az intracelluláris Ca2+ homeosztázis felborulása a tumorprogresszió egy fontos lépése, mivel a Ca2+ jelátvitel olyan alapvető sejtélettani folyamatokat érint, mint a sejtosztódás, migráció, invázió vagy a sejthalál. A plazmamembrán Ca2+ ATPázok (ATP2B gének által kódolt PMCA fehérjék) is szerepet játszhatnak a tumorigenezis folyamatában, mivel több különböző tumortípusban leírtak már egyes izoformáik megváltozott expresszióját.

Munkánk során vizsgáltuk a PMCA-k kifejeződését nyilvános emlőtumor adatbázisokban és különböző szubtípusú emlőrák sejtvonalakon. Tanulmányoztuk a hisston-deacetililáz (HDAC) inhibitorok, a protein kináz C aktivátor forbol 12-mirisztát 13-acetát (PMA) és az ösztrogén receptor alfa (ER-\(\alpha\)) hatását a PMCA-k expressziójára és aktivitására MCF-7 és más emlőtumor sejtekben. Továbbá megfigyeltük, hogy a PMCA fehérjék expressziója hogyan befolyásolja egy fontos jelátviteli molekula, a foszfatidilinositol-4,5-biszfoszfát (PIP\(_2\)) szintjét.

Invazív emlőkarcinóma mintákban a normál emlőszövethez képest csökkent ATP2B4 mRNS eszpressziót találtunk génexpressziós adatok analízise során. Különböző emlőtumor sejtvonalak PMCA izoformáinak vizsgálata az ER-\(\alpha\) pozitív sejtvonalakban igazolta az alacsony PMCA4b expressziót, HDAC inhibitor kezelések hatására azonban jelentősen nőtt a fehérje kifejeződése. MCF-7 sejtekben a PMA kezelés vagy az ER-\(\alpha\) aktiválása szintén a PMCA4b szintjének emelkedését változtotta ki, amit a HDAC inhibitorok tovább fokoztak. A megemelkedett PMCA4b expresszió szignifikánsan fokozta a sejtek Ca2+ exportáló képességét, igazolva, hogy a fehérje aktív. Meglepõ módon az ER-\(\alpha\) hatása a PMCA4b expressziójára csak az MCF-7 sejtekben érvényesült, más vizsgált ER-\(\alpha\) pozitív sejtekben nem. Ezt támaszta alá a ChIP-Seq adatok alapján azonosított ER-\(\alpha\) kötőhely is az ATP2B4 génben, ami specifikusnak bizonyult az MCF-7 sejtvonalra. Bár a tripla negatív sejtvonalakban a PMCA4b eleve nagy mennyiségben expresszálódott, ennek számottevő része intracelluláris kompartmentekben lokalizálódott, ami jelentős funkcióvesztéssel jár. Továbbá HeLa sejteken igazoltuk, hogy a PMCA szabályozza a foszfolipáz C és más fehérjék számára hozzáférhető PIP\(_2\) mennyiségét, így a tumorsejtekben eltérő módon expresszálódó PMCA számos jelátviteli utat befolyásolhat.

Eredményeink alapján a PMCA fehérjék expressziója emlőtumorban sejttípustól függő módon szabályozódik, és egyes epigenetikai illetve hormonális különbségek nagymértékben befolyásolhatják a PMCA4b kifejeződését és funkcióját emlőrák progressziója során.
7. Summary

Remodeling of intracellular Ca$^{2+}$ homeostasis is an important step of cancer progression because Ca$^{2+}$ signaling contributes to essential cellular physiological processes including proliferation, migration, invasion or cell death. Expression of the plasma membrane Ca$^{2+}$ ATPase isoforms (PMCA proteins encoded by ATP2B genes) is altered in several types of cancer cells suggesting that they are also involved in tumorigenesis.

In this study we examined PMCAs in breast cancer datasets and in breast cancer cell lines representing different cancer subtypes. We investigated how histone deacetylase (HDAC) inhibitors, the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) and estrogen receptor alpha (ER-α) regulate the expression and activity of these proteins in MCF-7 or in other breast cancer cells. Moreover, we studied how phosphatidylinositol 4,5-bisphosphate (PIP$_2$), an important signaling molecule is affected by the expression of PMCA proteins.

Analysis of microarray datasets displayed significantly lower ATP2B4 mRNA expression in invasive breast cancer tissues compared to normal breast samples. Studying the protein expression of PMCA isoforms in a variety of breast cancer cell lines revealed low PMCA4b expression in the ER-α positive cells, and its marked upregulation upon HDAC inhibitor treatments. In MCF-7 cells PMCA4b expression was also positively regulated by PMA treatment or ER-α activation, and it was further augmented by HDAC inhibitors. Elevated PMCA4b expression led to enhanced Ca$^{2+}$ extrusion capacity of the cells suggesting that the protein was active. Surprisingly, activation of ER-α affected the PMCA4b expression only in MCF-7 cells and not in the other ER-α positive cells examined. This was further supported by an analysis of ChIP-Seq data that identified an ER-α binding site in the ATP2B4 gene that was specific to the MCF-7 cell line. Although in the triple negative cell lines the basal PMCA4b expression was relatively high, a fraction of the protein was trapped in intracellular compartments that interfered with its function. Moreover, we showed in HeLa cells that PMCA regulates the accessibility of PIP$_2$ for phospholipase C and other proteins, therefore altered expression of PMCA in tumor cells can further affect several downstream signaling pathways.

Our results suggest that PMCA expression is regulated in a cell type specific manner in breast cancer, and epigenetic modifications or hormonal imbalances could interfere with the expression and cellular function of PMCA4b in the course of breast cancer progression.
8. Saját publikációk jegyzéke

8.1. Az értekezés alapjául szolgáló közlemények

8.2. Az értekezés témájához kapcsolódó további közlemények

8.3. Az értekezés témájához nem kapcsolódó közlemények

9. Irodalomjegyzék

10. Köszönnetnyilvánítás

Először is köszönettel tartozom témavezetőmnek Enyedi Ágnesnek, aki kutatásaim során mindvégig szakértő módon, aprólékos, gondos figyelemmel irányította munkámat. Köszönöm, hogy megosztotta velem példaértékű tudását, tapasztalatát, és hogy megtanított talpon maradni a tudományos kutatómunka rögös útjain.

Köszönöm továbbá Papp Bélának a szakmai útmutatást és az értékes konzultációkat, melyek során rendkívül sokat tanultam tőle.

Köszönöm a Sarkadi Balázs vezette „Biomembrán kutatócsoport” minden munkatársának, hogy része lehettem ennek a kiváló tudományos műhelynek. Köszönöm a segítséget és támogatást, amit tőlük kaptam a Diószegi úton töltött évek során.

Köszönettel tartozom Kiss Andrásnak és Timár Józsefnek, az SE ÁOK II. sz. Patológiai Intézet jelenlegi illetve volt igazgatójának, akik hátteret biztosítottak kutatócsoportunk zavartalan működéséhez, továbbá az intézet minden munkatársának, aki segítségével hozzájárult dolgozatom elkészítéséhez.

Hálával tartozom korábbi témavezetőimnek, mentoraimnak és munkatársaimnak is, név szerint Révész Sárának, Mészáros Évának, Mohr Anitának, Sebe Attilának, Bodor Csabának és Németh Adriennnek. Rengeteget tanultam tőlük az együtt töltött évek során, és nagyban hozzájárultak a kutatói szemléletem kialakulásához.

És végül, de nem utolsósorban köszönöm férjemnek, családomnak és barátaimnak, akik mindvégig kifogynakatlan türelemmel és szeretettel támogattak, és osztottak örömömben és bánatomban egyaránt.
ADATLAP
a doktori értekezés nyilvánosságra hozatalához*

I. A doktori értekezés adatai
A szerző neve: Varga Karolina
MTMT-azonosító: 10035825
A doktori értekezés címe és alcíme: Plazmamembrán Ca²⁺ ATPázok expressziójának és funkciójának vizsgálata emlőtumorban
DOI-azonosító: 10.15476/ELTE.2018.151
A doktori iskola neve: ELTE TTK Biológia Doktori Iskola
A doktori iskolán belüli doktori program neve: Molekuláris Sejt- és Neurobiológia Program
A témavezető neve és tudományos fokozata: Dr. Enyedi Ágnes PhD, DSc
A témavezető munkahelye: SE ÁOK II. sz. Patológiai Intézet

II. Nyilatkozatok
1. A doktori értekezés szerzőjeként
a) hozzájárulok, hogy a doktori fokozat megszerzését követően a doktori értekezésem és a tézisek nyilvánosságra kerüljenek az ELTE Digitális Intézményi Tudástdárban. Felhatalmazom a Természettudományi kar Dékáni Hivatal Doktori, Habilitációs és Nemzetközi Úgyék Csoportjának ügyintézőjét, hogy az értekezést és a téziseket feltöltse az ELTE Digitális Intézményi Tudástdárban, és ennek során kitöltse a feltüntetéshez szükséges nyilatkozatokat.
b) kérem, hogy a mellékelt kérelemben részletezett szabadalmi, illetőleg oltalmi bejelentés közzétételeig a doktori értekezést ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástdárban;
c) kérem, hogy a nemzetbiztonsági okból minősített adatot tartalmazó doktori értekezést a minősítés (datum)-ig tartó időtartama alatt ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástdárban;
d) kérem, hogy a mű kiadására vonatkozó mellékelt kiadó szerződésre tekintettel a doktori értekezést a könyv megjelenéséig ne bocsássák nyilvánosságra az Egyetemi Könyvtárban, és az ELTE Digitális Intézményi Tudástdárban csak a könyv bibliográfiai adatait tegyék közzé. Ha a könyv a fokozatszerzést követően egy évig nem jelenik meg, hozzájárulok, hogy a doktori értekezésem és a tézisek nyilvánosságra kerüljenek az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástdárban.
2. A doktori értekezés szerzőjeként kijelentem, hogy
a) az ELTE Digitális Intézményi Tudástdába feltöltendő doktori értekezés és a tézisek saját eredeti, önálló szellemi munkám és legjobb tudomáson szerint nem sértem vele senki szerzői jogait;
b) a doktori értekezés és a tézisek nyomtatott változatai és az elektronikus adathordozón benyújtott tartalmak (szöveg és ábrák) mindenben megegyeznek.
3. A doktori értekezés szerzőjeként hozzájárulok a doktori értekezés és a tézisek szövegének plágiumkereső adatbázisba helyezéséhez és plágiumellenőrző vizsgálatok lefuttatásához.

*a doktori értekezés szerzőjének aláírása

*ELTE SZMSZ SZMR 12. sz. melléklet