Részecskefizika tanítása középiskolában

Oláh Éva Mária

Témavezetők: Dr. Horváth Dezső emeritus professzor

Dr. Varga Dezső tudományos főmunkatárs

Eötvös Loránd Tudományegyetem

Természettudományi Kar

Fizika Doktori Iskola

Vezető: Dr. Tél Tamás egyetemi tanár

Fizika Tanítása Doktori Program

Vezető: Dr. Tél Tamás egyetemi tanár

2018.
Tartalomjegyzék

Tartalmi összefoglaló...2
Bevezetés..6
A doktori munkám témaválasztása...16
A dolgozat felépítése..18
I. rész: Részecskefizikai detektor építése középiskolai háttérrel...19
1. Detektorok a középiskolai oktatásban..19
2. Részecskefizika tanítása a kutatólaboratóriumban...21
 2.1. Részecskefizikai detektorokhoz szükséges anyagok tesztelése.......................................22
 2.2. Nanoamper-mérő tervezése és összeállítása..27
 2.3. Sokszálás, proporcionális kamra építése középiskolai háttérrel...................................30
 2.3.1. Detektorok építése különböző méretekben..32
 2.3.2. Kozmikus müonok vizualizációja..34
 2.3.3. Lányok a kutatásban..42
 2.3.4. Fizikatanárok detektort építenek...45
II. rész: A részecskefizika szemléletes oktatása papírkockák segítségével.............................48
 3.1. A mikrovilág bemutatásának nehézsége..48
 3.2. Az ötlet...49
 3.3. Az eszköz bemutatása...49
 3.4. Alkalmazhatósági-, vagy tudományterületek bemutatása..51
 3.4.1. Hadronjáték..51
 3.4.2. Kvantum színdinamika...53
Doktori értekezés

3.4.3. Hadronok építése .. 55
3.4.4. Hadronizáció .. 58
3.4.5. Radioaktív béta-bomlás .. 63

3.5. Tapasztalatok a tanárok és diákok körében ... 67
3.6. Detektorépítés a legkisebbeknek ... 68

III. rész: A mikrovilág megismertetése zenei analógiákkal .. 70

4.1. Fizikusok és a zene kapcsolata .. 70
4.2. A hangok fizikája .. 70
4.3. Zenei analógiák a klasszikus fizikában .. 72
4.4. Részecskefizikától a szuperhúr elméletig ... 75
4.5. Játékos fizika tanulás a zene segítségével .. 78

IV. rész: A tanulók motiválása nem hagyományos módszerekkel .. 84

5.1. Sokszínű fizikabusz .. 84
5.1.1. Házhoz jön a mikrovilág ... 84
5.1.2. Képzeletbeli utazás az LHC-ben ... 85

5.2. Fizika konstruktív verseny ... 86
5.2.1. Játszani jó .. 87
5.2.1.1. Tojáselkapó „gép” ... 88
5.2.1.2. „Puki” építés ... 89

5.2.2. Építünk és tanulunk ... 89

5.3. Szórakoztató szakirodalom ... 90
5.3.1. A fizikatanuláshoz szükséges kompetenciák ... 90
5.3.2. Könyvválasztás.. 91
5.3.3. A képesség és a motiváció kapcsolata.. 93
5.4. Kísérletkészítő és bemutató verseny.. 94
 5.4.1. Előzmények.. 94
 5.4.2. A versenyről.. 95
 5.4.3. Konklúziók... 97
5.5. Tudományos futás.. 98

V. rész: A tanárok ismereteinek bővítése részecskefizikából... 100
 6.1. CERN.. 101
 6.1.1. Továbbképzés magyar fizikatanárok számára... 101
 6.1.2. Nagyköveti szerep... 102
 6.1.3. Detektorépítés tanárszemmel... 103
 6.1.4. Hogyan vigyünk diákokat a CERN-be?.. 104
 6.2. A Természettudományos Önképző Körök megszületése.. 105
 6.2.1. Az érdeklődés felkeltése tudományos előadásokkal... 106
 6.2.2. Az interdisciplináris oktatás jelentősége.. 107
 6.2.3. Az Önképző Körök eredményessége... 108

Köszönetnyilvánítás.. 109
Hivatkozások.. 110
Irodalomjegyzék.. 112
Mellékletek.. 116

 1. Kvíz feladatsor a szakirodalom feldolgozásához („Tréfál, Feynman úr?”)
2. Kvíz feladatsor a szakirodalom feldolgozásához (Csábító erők...)
3. Lány kutatócsoport 2016/2017 évi munkanaplója
4. Kísérletkészítő verseny pontozólap
5. Részecskefizika totó

Összefoglalás..131
Summary..132
Adatlap..133
Az oktatás mai, szinte válságos helyzetéről egyre többet hallani, ugyan ez világméretű probléma is egyben, de minket, magyarországi fizikatanárokat leginkább a hazánkban zajló, természettudományoktól, főleg a fizikától és a kémiatól eltávolodó folyamatok érdekelnek. Változó világunkban diákjaink és a tanulást segítő szülői háttér hozzáállása is jelentős átalakuláson megy keresztül, folyamatos megújulásra, új módszerek bevezetésére van szükség mindennapi tanításunk során. Már nem elég a „történelmi” nagy kísérletek leegyszerűsített változatának bemutatása, a lelkes tanári előadás, új kihívásokra, interaktív, konstruktivista szemlélet elsajátítására is szükség van. Ennek legfontosabb elemei a tanulók már meglévő tudásának felmérése, a differenciálás, a módszertani sokrétőség, az aktivitás, illetve a kreativitás növelése [19].

A részecskefizika legújabb eredményei napjainkban már nem csak a tudósok körében, hanem az átlagemberek között is egyre ismeretebbek, köszönhető ez a médiának és az egyre gyakoribb népszerűsítő előadásoknak, rendezvényeknek. A középfokú oktatásban e terület jelenleg még nem része a kötelező tananyagnak, de emelt szinten már követelmény a legegyszerűbb fogalmak, jelenségek ismerete. Ezért nélkülözhetetlen a diszciplína különböző szintű bevezetése a középszintű fizikaórákon vagy szakkörök, emelt szintű képzések során.

A részecskefizika szó hallatán sokan valami nagyon nehéz, mérettartománya alapján szinte elképzelhetetlen objektumot felsorakoztató tudományágra gondolnak, viszont a Standard Modell, az alapvető kölcsönhatások vagy a detektorok tudománya mára már teljességében ismert [20].

Standard Modell [21-23]

A görögök még úgy gondolták, hogy az anyag legkisebb alkotóelemei az atomok. Csak a 19. század végén derült ki, hogy az atomot még kisebb alkotóelemek, protonok, neutronok és elektronok alkotják. Később kiderült, hogy a protonok és a neutronok is összetett részecskék, kvarkokból állnak (1. ábra).
1. ábra Az atom felépítése

A kísérleti fizikusok részecskéket ütköztettek össze nagy energiákon, hogy ezeket megfigyelhessék. Így több, mint négy tucat újabb részecskét fedeztek fel. Észrevették, hogy a világban sokkal több részecske van, mint amennyit feltételeztek. A több tucat részecskének különböző neveketadtak: mezonok, pionok, kaonok, lambda, szigma stb. Szerencsére kiderült, hogy a részecskék egyfajta rendszert alkotnak, családokba lehet rendezni őket, a Standard Modell pedig összefoglalja, amely nem más, mint a szubatomi világ családfája. Három alapvető részecske típus van, a kvarkok, a leptonok és az erőhordozó részecskék, a kölcsönhatások közvetítői, a bozonok (2. ábra).

2. ábra. Részecske családok
A kvarkok önállóan nem létezhetnek, csak olyan kombinációkban, amelyek színtelenek. A színtöltés az egyik tulajdonsága a kvarkoknak.

3. ábra Fehér hadronok

A kvarkok a barionokban (protonban, neutronban) hármasával, a mezonokban párosával fordulnak elő kvark-antikvark párként (3. ábra).

A színtöltés mellett a kvarkoknak íztöltésük is van, ami hatféle lehet. Páronként három családba sorolhatók, egyre nagyobb tömeggel. A legkönnyebb pár a „fel” (up) és a „le” (down) kvark, majd a „ritka” (strange) és a „bájos” (charm) pár, végül a legnagyobb tömegűek, a „felső” (top) és az „alsó” (bottom) kvarkok (4. ábra).

<table>
<thead>
<tr>
<th>Magyar név</th>
<th>angol név</th>
<th>jelölés</th>
<th>nyugalmi tömeg (GeV/c²)</th>
<th>elektromos töltés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fel</td>
<td>Up</td>
<td>u</td>
<td>0,0015-0,005</td>
<td>2/3</td>
</tr>
<tr>
<td>Le</td>
<td>Down</td>
<td>d</td>
<td>0,017-0,025</td>
<td>-1/3</td>
</tr>
<tr>
<td>Bájos</td>
<td>Charm</td>
<td>c</td>
<td>1,1-1,4</td>
<td>2/3</td>
</tr>
<tr>
<td>Ritka</td>
<td>Strange</td>
<td>s</td>
<td>0,06-0,17</td>
<td>-1/3</td>
</tr>
<tr>
<td>Felső</td>
<td>Top</td>
<td>t</td>
<td>165-180</td>
<td>2/3</td>
</tr>
<tr>
<td>Alsó</td>
<td>Bottom</td>
<td>b</td>
<td>4,1-4,4</td>
<td>-1/3</td>
</tr>
</tbody>
</table>

4. ábra Kvarkok táblázata
Az u, c, t kvark elektromos töltése +2/3, a d, s, b kvarkoké pedig -1/3. A kvarkok töltése tehát tört értékű, a protonnak, elektronnak egész. Így a proton, aminek a töltése +1, uud kvarkokból \((2 \cdot \frac{2}{3} + \frac{1}{3})\), a neutron viszont, ami nulla elektromos töltésű, udd kvarkokból \((\frac{2}{3} + 2 \cdot \frac{-1}{3})\) áll.

Kölcsönhatások

Newton több mint 300 évvel ezelőtt megalkotta gravitációs törvényét, ami annyira pontos, hogy máig ezt használjuk. Úgy kellett módosítania a gravitáció törvényét, hogy az összhangban legyen a relativitás-elvvel. Einstein az általános relativitás-elméletében megalkotta a 3 tér és 1 idő dimenzióból álló ún. tér-időt. A gravitáció szerinte nem más, mint ennek a tér-idő szövetnek a görbülete. Ez az elmélet a Newton-féle gravitációs erőt kismértékben módosította, de ahhoz elég, hogy megmagyarázza pl. a Merkúr vonzásában már régóta felismert szabálytalanságot. Maxwell, a XIX. század közepén egyesítette az elektromos és a mágneses erőket. Így már a gravitációs erő mellett az elektromágneses kölcsönhatás is ismert volt. Einstein egész életében e két erő egyesítésére törekedett. A fizikusok az 1930-as évekre felfedezték az erős kölcsönhatást, ami egyféle, az atommagon belüli szuperragasztó, majd a negyedik erőt, a béta bomlásért felelős gyenge kölcsönhatást.

A 60-as évekre tehát megismertük a négy alapvető kölcsönhatást, és azt is tudjuk, hogy mindegyikük más-más közvetítő részecskén keresztül valósul meg. A fotonok az elektromágneses kölcsönhatás közvetítői, az erős kölcsönhatásban a gluonok ragasztják össze a kvarkokat, a gyenge magerőket pedig a W- és Z-bozonok közvetítik. A gravitációs erő közvetítő részecskéje a graviton nevet viselné, ha lenne rá bizonyíték (5. ábra).
Doktori értekezés

5. ábra Alapvető kölcsönhatások

Megmaradási tételek

A részecskefizika szempontjából az egyik legfontosabb megmaradási elv az elektromos töltésmegmaradás törvénye. A világ teljes elektromos töltésmennyisége ugyan nem változik, de a protonok és az elektronok száma nem marad állandó. Egy neutron egy protonra és egy elektronra képes elbomlani (és még egy további részecskére, amiről később lesz szó). Ebben a folyamatban is az össztöltés nulla marad. A proton mellett létezik még egy részecské, ami pozitív töltéssel bír, ez a pozitron. A pozitron egy úgynevezett antirészecske, lényegében az elektron tükröklepe, csak a töltése ellentétes, és ha egy elektronnal találkozik, akkor megsemmisíti egymást úgy, hogy fénnyé sugárzódnak szét. Ez a „fény” szemmel nem látható, olyan gammasugárzás, amely a látható fénytől csupán hullámhosszban különbözik. A töltésmegmaradáshoz vannak további részecskék is amiket számításba kell venni. Ezek a negatív töltésű antiprotonok, a pozitív töltésű π⁺ mezonok (pionok) és így tovább. Valójában valamennyi, a természetben előforduló részecskéhez tartozik töltés, ami persze nulla is lehet. Az összes részecske töltését össze kell adnunk, és akkor bármiféle történjen egy reakció során, az eredő töltés a folyamat előtt egyenlő az utána megjelenő össztöltés mennyiséggel.

A megmaradásnak van egy másik módja is, miszerint, ha a töltés valahonnan eltűnt, majd máshol megjelenik, akkor valaminek ténylegesen át kellett hatolnia a közük lévő téréségen. Ezt lokális töltésmegmaradásnak nevezik. Einsteintől származik az az érvelés, hogy ha valamilyen mennyiség megmarad, akkor annak lokálisan kell megmaradnia.

Jellegében a töltésmegmaradáshoz hasonlítható a barionszám-megmaradás, ahol szintén „darabonként” megszámlálható dolgokról van szó. Amikor a neutron protonra, elektronra és az előbb már említett, most már nevesített antineutrínóra bomlik, akkor ebben a reakcióban
a barionok száma nem változik. A természetben egyéb folyamatok is lejátszódhathatnak. Például két proton egymással ütközve furcsa részecskéket kelthet, \(\lambda\)-részecskét, protont és egy pozitív kaont (\(\kappa^+\)).

\[p + p \rightarrow \lambda + p + \kappa^+ \]

Mivel az egyenlet bal oldalán két barion van, csak úgy lehet egyenlő a két oldal, ha \(\lambda\) vagy \(\kappa^+\) maga is barion. A \(\lambda\)-részecske, bár nagyon lassan, tovább bomlik protonra és pionra, majd végül a pion is elbomlik.

\[\lambda \rightarrow p + \pi \]

És mivel keletkezett egy proton, egy barion, ez azt jelenti, hogy \(\lambda\)-nak is annak kellett lennie. Barionszáma +1, míg a \(\kappa^+\) barionszáma nulla.

A bariontöltés is tehát megmarad, egységnyi adagokban jelentkezik és feltehetőleg ugyanúgy, mint az elektromos töltés, a bariontöltés is egy mező forrása.

További hasonlóan „kiszámolós” megmaradási törvény, a leptonzám-megmaradás. Az, hogy egy folyamat milyen gyakorisággal megy végre, azt a ritkaság nevű mennyiséggel, más néven hiperontöltéssel jellemzhetjük. A szabály az, hogy a gyors reakciókban a ritkaság megmarad, míg a lassuakban változik. Például az erős kölcsönhatásban a ritkaság egzaktul megmarad. A megmaradási törvények arra is felhasználhatóak, hogy új törvényeket sejtsünk meg. Az energiamegmaradás törvényét is meg kell említeni, főleg azért, mert mindenkor halad a folyamatból. Ennek egy érdekes példája a neutron bomlása. Kezdetben azt gondolták, hogy csak protonra és elektronra bomlik, de amikor megmértek a keletkező proton és elektron energiáját, kiderült, hogy azok összege nem egyezik meg a neutronéval, hanem annál valamivel kevesebb. Vagy nem érvényes az energia megmaradás törvénye, vagy a folyamatban keletkezett még egy további „valami” is, ami elviszi a hiányzó energiát. Ezt a részecskét ma antineutrínónak hívjuk. Sokan azt gondolhatják, hogy az antineutrínót csak azért találták ki, hogy az energia megmaradás ne sérüljön. De ezen kívül rendbe teszi még az impulzus megmaradást is. Ráadásul azóta a fizikusok kísérletileg is ki tudták mutatni, így egyértelmű bizonyíték van a létezésére.
Szimmetriák

A kvantummechanikában egyszerű rendszerekkel foglalkozunk, amelyek belső felépítése gyakran mutat különféle szimmetriákat, és ez a szimmetria jelleg megmarad, ami a kvantumjelenségek megértésében nagy szerepet játszik. A fizikai törvényeknek is vannak szimmetriái, ami azt jelenti, hogy valamilyen meghatározott műveletnek alávetve ugyanolyan marad, mint amilyen annak előtte volt. Ismerünk úgynevezett részleges szimmetriákat is. Ilyen például az, hogy az erős magerők nem tesznek különbséget a protonok és a neutronok között. Az atommagon belüli kölcsönhatások ugyanakkorán két proton között, mint egy proton és egy neutron között, és ugyanakkora, mint két neutron között. Tehát a neutronok protonokkal helyettesíthetők anélkül, hogy bármiféle változást tapasztalnánk, de csak akkor, ha az erős kölcsönhatásról van szó.

Az egész természetre átfogó érvénnyel már nem teljesül, hiszen az elektromos kölcsönhatásban nem cserélhető ki a pozitív töltésű proton a semleges neutronra. Sok más részecskeére is érvényes ez a fajta felcseréléés, de így meg tudták határozni azokat a helyeket, ahol a részecskek hiányoznak, így új részecskeket tudtak felfedezni. A tudományok korábbi történetében már láttunk ehhez hasonló példát. Mengyelejev hasonlóan alkotta meg periódusos táblázatát. Az antianyag az anyag tükörképe, amelyek energiája negatív, és közönséges anyaggal találkozva azonnal kölcsönösen megsemmisülnek. Az antianyag létezése is a részecskefizikai folyamatok mögött meghúzódó mély szimmetriákról utal. Pozitron (az elektron antirészcskéje) és keletkezik például az űrből érkező kozmikus részecske és a légkör atomjainak az ütközéséből (6. ábra), de egy másik részecske is a pionok bomlásából, a műon. Ez a lepton az elektronnál 207-szer nehezebb és az idődílatació következtében képesek vagyunk a Földön, vagy akár a földfelszín alatt is megfigyelni. Ez a részecske „ingyen” van ezért különböző kutatásokra kiválóan alkalmas. Alkalmazott kutatásokban már több évtizedek alatt alkalmazták, de nincs vegyes értékelése alkalmas berendezések.
Az elemi részek világába csak úgy lehet behatolni, hogy egyre nagyobb gyorsítókat építs ve reakciókat váltunk ki, egymás közötti kölcsönhatásra kényszerítjük a részecskéket. A kölcsönhatás végeredményéről, a keletkezett részecskékről nem olyan könnyű tudomást venni, hiszen közönséges nagyítóval nem láthatók, élettartamuk sem teszi lehetővé, hogy megfigyelhessük Őket.

Az elemi részecskék az anyagokon történő áthaladásukkor változásokat hoznak létre. A kölcsönhatás jellege, a visszamaradott jelzések teszik lehetővé, hogy a fizikusok megállapítsák a részecske jellemzőit: töltését, energiáját, impulzusát stb. A töltött részecskék pályájuk mentén ionizálják az anyag atomjait, molekuláit. Ez azt jelenti, hogy újuk során ütköznek az atomokkal, s külső elektronjuknak annyi energiát adnak át, hogy azok képesek leválni az atomról, kikerülnek az atommag elektromos vonzásának hatóköréből. A semleges részecskék nem hagynak nyomot, de bomlásuk vagy valamilyen atommaggal való ütközésük pillanatában felismerhetők a keletkező töltött részecskék ionizációs nyoma alapján.

Az elemi részecskék megfigyeléséhez többféle típusú műszert használnak. A részecskenyom-detektorok a részecskék valamely anyagon történő áthaladásának nyomait mutatják, például a Wilson-féle ködkamra és a buborékkamra is ide sorolható. A részecskeszámlálók csak a részecske áthaladásának tényét jelzik, esetleg információt nyújtanak az energiájukról.
Szcintillációs detektorok segítségével észlelhetjük az áthaladó részecskét fényfelvillanásokkal, félvezető spekrométerek pedig az elektromos áram növekedése által adnak jelet [24].

1992-ben Nobel-díjjal ismerték el ötletét G. Charpac-nak, aki kifejlesztette sokszálás proporcionális kamráját 1968-ban a CERN-ben. A kamra feltöltésére nemegságt használnak, a stabilitás elérésehez pedig UV-fényt elnyelő gázat adnak hozzá. A gáztérbe beérkező, elegendő energiával rendelkező részecske a gázatomok kötött elektronjait kiszakítja, így visszamarad egy ionpár. Az alkalmazott elektromos mező hatására az elektronok a kiolvasó elektróda, az anód felé sodródnak, ugyanakkor a pozitív ionok sokkal kisebb sebességgel a katód felé sodródnak. Az elektronok a közepes szabad úthosszukon újabb atomokat ionizálnak, így kialakul egy elektronlavina, a teljes létrejövő töltésmennyiség arányos a felszabadult energiával. Több anódszál egymás mellé helyezésével a részecske pályája két dimenzióban is meghatározható [25].

Gáztöltésű számlálók esetében a gáz ionizációja folytán keltett töltéspárokat az elektromos tér a megfelelő elektródáakra kigyújti. Ha a térerősség olyan nagy, hogy a gázban az elektron két ütközés között elegendő energiára tesz szert az atom ionizálásával újabb elektronok keltéséhez, akkor az eredeti áram sokszorozódik, belső vagy gázerősítés lép fel. Ez az áram arányos az energiával: proporcionális kamra tartomány, ahol spektrum mérésre nyilik lehetőség. A jel nagysága egy adott feszültségnél a részecske ionizálóképességétől is függ, azaz a részecskefajtákat megkülönböztethetők [26]. Ennek egy iskolákban is használatos válajá a Geiger–Müller számlálócső, röviden GM-cső (7. ábra).

7. ábra GM-cső vázlatos rajza
Részecskefizika az oktatásban

Az utóbbi években több tanulmány is született ebben a témakörben, pedig még gyerekcipőben jár Magyarországon a részecskefizika középiskolában történő részletes oktatása. Dr. Pető Mária 2015-ben [27] vagy Dr. Horváth Árpád 2003-ban [28] megvédett doktori munkájában olvashatunk pár példát ennek lehetőségeiről. Előbbiben radon sugárzás mérés, ködkamraépítés, utóbbiban számítógépes program segítségével a DELPHI detektorban létrejövő részecskéatalakulások megfigyelésének módszere olvasható.

Kutatóközpontok, Egyetemek is egyre gyakrabban szerveznek középiskolás diákok részecskefizikai ismereteinek bővítését megbízó programokat. Ezek között a legkiemelkedőbb az úgynevezett Részecskefizikai Diákműhely, amely 2005-ben, a Fizika Nemzetközi évében indult el „Kutató lehetsz Te is egy napra” címmel az Európai Részecskefizikai Ismeretterjesztő Csoport szervezésében [29]. Ennek során a diákoknak lehetőségük van interaktív módon megismerkedni a modern fizika legújabb elméleti és kísérleti eredményeivel. Azóta minden évben kutatóintézetek és egyetemek szervezik meg a programot, ma már több mint 40 ország 10000 diája részvételével. A hazai rendezvények színhelyei a budapesti MTA Wigner Fizikai Kutatóközpont Részecske és Magfizikai Intézete, a Debreceni Egyetem Kísérleti Fizikai Intézete, valamint az Óbudai Egyetem székesfehérvári Alba Regia Egyetemi Központja. Az egész napos rendezvényre, intézményenként 20, iskolánként 2 diákat tudnak fogadni, részecskefizikai előismeretekre nincs szükség. Budapesten a nagy sikerre való tekintettel évek óta pótnap beiktatására is szükség van, ezzel még 20 diákat kap lehetőséget a kutatásokba bekapcsolódni egy napra.

A Nemzeti Alaptanterv leggyakrabban használt fizika „B” kerettantervében a Magfizika fejezetben találkozhatunk az erős kölcsönhatás fogalmával, az egyetlen, amely köthető a részecskefizika alapismeretéhez [30].

Egyes iskolák helyi tanterveiben találkozhatunk néha a „kvark” vagy „neutrínó” kifejezésekkel, de jelenleg nem követelmény az érettségi vizsgákon, sem közép, sem emelt szinten.

Részecskefizikai kutatásokba való bekapcsolódási lehetőségekkel doktori munkám megkezdéséig még nem találkoztam, ezért választottam e területet hiánypótlásként.
A doktori munkám témaválasztása

Az európai nukleáris kutatóközpontban, a CERN-ben 2008-ban indították el első alkalommal a Nagy Hadronütköztetőt, amely egy sajnálatos műszaki probléma miatt csak egy hétig üzemelt, több mint egy év után várni az újra indításáig. Be kell, hogy valljam, ennek kapcsán egy diákom kérdésének hatására néztem először utána a kísérletnek. Részecskefizikával egyetemi tanulmányaim során magfizika tantárgy keretén belül pár oldalnyi jegyzetből tanultam meg az akkori vizsgára az alapfogalmakat, de ez a tudás az LHC indításának időpontjára már teljesen elveszett.

2009-ben egy véletlen folytán lehetőségem adódott részt venni a minden évben megrendezésre kerülő CERN-i, magyarnyelvű fizikatanári továbbképzésen, amely alapjaiban változtatta meg a tanításomhoz és további tanulmányaimhoz való viszonyomat. Óriási fejlődést és motivációt jelentettek az elhangzott előadások és kísérlet látogatások, de egyben hiányérzetet is kellett bennem, nem éreztem elegendőnek a mikrovilág fizikájában való jártasságomat ahhoz, hogy diákjaimnak hitelesen tolmácsoljam e területen a legújabb eredményeket.

Tanítványaim számára a MTA Wigner Fizikai Kutatóközpontba (korábbi nevén KFKI) szervezett rendszeres látogatásaink során egy alkalommal, a programot szervező Dr. Jancsó Gáborral és Dr. Horváth Dezsővel folytatott beszélgetésben merült fel először a doktori munkám lehetősége. Mindkét fizikus szakavatott ismerője a részecskefizikának, de csak kutatói, legfeljebb egyetemi oldalról ismerik az oktatási lehetőségeket. Középiskolás tanárként, bár a témakör nem része a középiskolai tananyagnak, úgy gondoltam tanítványaim érdeklődésének tükrében, hogy hiánypótlásként fontos lenne a részecskefizika középiskolai oktatási bevezetésének gyakorlatát megvizsgálni és kidolgozni.

A szerencse, mint mindig, most is mellé szegődött, Dr. Horváth Dezső, abban az időben a Nagyenergiás Fizikaosztály vezetője és Dr. Varga Dezső, ugyanazon az osztályon dolgozó kutató fizikus, aki egyben az ELTE oktatójaként is, vállalták témavezetésem és immár hatodik éve szoros munka és baráti kapcsolatban segítik kutatásomat és doktori tanulmányaimat. Az elmúlt években, főleg a CERN-ben folyó munkának köszönhetően hatalmas eredmények születtek a részecskefizikában, több Nobel-díjat is kiosztottak a felfedezéseikért, a média is rendszeresen foglalkozik ezzel a területtel, vagyis az
„átlagemberhez” is eljutnak a hírek. Érthető módon diájkaim is rendszeresen kerestek meg ezzel kapcsolatos kérdéseikkel, amelyekre a továbbképzéseim, tanulmányaim során szerzett tudásmommal egyre magabiztosabban tudtam válaszolni.

Kutatásaim során azt is megtapasztaltam, hogy ezzel az összetett és igen mély fizika alapokat igénylő területtel nem ismertethetem meg tanítványaimat a hagyományos, frontális keretek között zajló fizikaórákon, szakkör, tehetséggondozás vagy emelt szintű képzések alakalmával lesz csak lehetőségem a témakör érdeklődést felkeltő vagy alaposabb ismertetésére.

Kutatómunkám és dolgozatom célja, hogy olyan módszereket mutasson be, amelyek a részecskefizikának tanórán belüli és kívüli tanítását segítik. A részecskefizika megértése sok diáknak okoz problémát, hiszen alkalmazás szintjén széleskörű fizikai előismereteket követel meg. A részecskefizika igazi megértéséhez szükség van a klasszikus mechanika, elektrodinamika, a magfizika, a kvantummechanika és a relativitásemlélet törvényeinek ismeretére. További problémát jelent, hogy a modern fizika tárgyalására az iskolai tantervekben a szükségesnél sokkal kevesebb idő jut. Az elmúlt évek tapasztalatai szerint a doktori munkám során a részecskefizika tanítására kidolgozott új módszereim, a fenti objektív nehézségek ellenére is eredményesen alkalmazhatók a diákok érdeklődésének felkeltésére és a részecskefizika néhány fontos és izgalmas kérdésének bemutatására.

A módszer lényege a diákok tanári irányíttással és tevékeny részvételével segített aktív „kutatómunka”. Diák kutatócsoporthoz szervezésével az érdeklődő tanulók számára lehetőség nyílik a kutatásalapú oktatásba való bekapcsolódásra. Az elemi részecskefizika megismerését szolgálhatja egy olyan, papírból készült mértani test sorozat, amelyek elkészítését a diákok maguk végzik, így játékos formában alkothatnak szemléletes képet a világunkat alkotó építőkövekről.

Zenei analógiák használata az oktatásban mindig nagy sikert arat, így ennek a művészeti ágnak a mikrorészcske fizikájával való összekapcsolása is az érdeklődés felkeltésének egyik hatékony módja.

Az oktatásban manapság egyre fontosabb feladat a diákok fizika tantárgy iránti attitűdjének a pozitív irányú megváltoztatása, ennek érdekében a legtöbb tanár nagyon nagy
erőfeszítéseket tesz. Különböző, rendhagyó versenyek, programok szervezésével, egyfelől a tanulók szabadidejének értelmes eltöltését segíthetjük elő, másfelől a fizika tanulásának egy olyan formáját alakíthatjuk ki, amelyben, a nem szokványos volta miatt, a diákok szívesebben vesznek részt.

A fizikatanárok részecskefizikai ismeretei többnyire hiányosak, viszont ennek bővítése nélkül nem várhatjuk, hogy a középiskolás tanulók egyre több alkalommal találkozzanak szakkörökön vagy tanórákon a mikrorészecskék fizikájával. Az alább ismertetett munkám elsősorban a részecskefizika megismertetésére, könnyebb megértetésére irányul, de helyet kap benne a szélesebb körű ismeretterjesztés is a természettudományokon belül.

A dolgozat felépítése

Öt nagy egységre osztottam fel dolgozatomat, az első kettő teljes mértékben a részecskefizika középiskolai bevezetésének lehetőségével foglalkozik, ebből az első az úgynevezett kutatásalapú tanulás kutatóintézetben való megvalósítását, a második pedig az adott téma megértését segítő oktatási segédanyagom használatát mutatja be.

A harmadik nagy rész interdiszciplináris, a zene és a fizika tudományának összekapcsolhatóságát vizsgálja a középiskolai fizika tananyag különböző területein, az utolsó két nagy fejezet pedig tehetséggondozást illetve a fizikatanár kollégák bevonásának gyakorlatát tartalmazza.

I. rész: Részecskefizikai detektor építése középiskolai háttérrrel [1-4], [11-12]

Bevezető

A MTA Wigner Fizikai Kutatóközpont kozmikus müon-sugárzás vizsgálatára alkalmazott mérőműszert (sokszálas proporcionális számláló) alapul véve iskolai kísérletezésre alkalmas demonstrációs eszköz fejlesztésében vettem részt és építettem ilyet. Az eszköz építésébe diákjaimat is bevontam. A szakköri keretek között végzett munka eredményeként a diákok nem csak részecskefizikai szakmai ismereteket szereztek, a fizika egésze iránt is motiváltakká váltak.

1. Detektorok a középiskolai oktatásban

Detektornak nevezünk minden olyan eszközt, amely az emberi érzékszervekkel közvetlenül nem érzékelhető hatásokról valamilyen érzékelhető formában hírt ad, illetve valamilyen információt szolgáltat. A sugárzások érzékelése (detektálása) azon alapul, hogy a sugárzások valamilyen kölcsönhatásba lépnek az anyaggal, és ennek a kölcsönhatásnak az eredményét érzékelhetjük. Legtöbb esetben ez az elemi kölcsönhatás elektromágneses természeti (Coulomb-kölcsönhatás). Ezért elektromosan semleges részecskéket közvetlenül nem lehet detektálni, csak másodlagosan, azokon a töltött részecskéken keresztül, amelyeket létrehozunk (pl. a röntgen- és γ-sugárzás elsősorban az anyagban lévő elektronokat lői meg, a neutronok pedig atommag-reactiót okoznak, és így jönnek létre elektromosan töltött részek). Az elemi kölcsönhatásoknak számos makroszkopikusan is észlelhető következménye lehet, amelyek lehetővé teszik a részecske detektálását. Ezek közül a leggyakrabban használtak a következők:

Ezek közül a diákok saját maguk is el tudják készíteni a ködkamrát, amely működtetéséhez az egyetlen nehézséget a szárazjég beszerzése jelenti. Működése azon alapul, hogy túlélhető gőzben a gőz kicsapódik a jelenlevő ionokra, és ezek a
kicsapódott ködcsapeccskék a további kicsapódás centrumaivá válnak. Emiatt tovább növekednek, és végül akkora méretűek lesznek, hogy láthatóvá váltnak. Így ki lehet mutatni azoknak a részecskéknek a pályáját, amelyek haladásuk során ionizálják a ködkamrában lévő gázt.

Kis idő és energiaráfordítással nagy élményt okozhatunk a diákoknak. A CERN S’CoolLab-jában minden odalátogatónak lehetősége van ilyet építeni (8. ábra), az általam szervezett diák és tanárcsoporthoz minden alkalommal nagy lelkesedéssel figyelik a beérkező részecskék nyomvonalait. A kialakult ködfonalat oldalról, ha megvilágítják, a sötét háttér előtt a nyomok jól kiemelkednek, amit egy fényképezőgéppel könnyen rögzíteni is lehet.

8. ábra A ködkamra építése és nyomvonalak

Sok iskola szertárában megtalálhatók a Geiger-Müller számlálócsövek (GM-cső), amelyek a gáztérbe beérkező részecske ionizáló hatásának következtében létrejövő elektromos jelet alakítják át hanggá, így jelezve annak áthaladását. A beérkező részecskék számának megállapítására kiválóan alkalmas, de más információt nem nyújt. A nagyobb hatás érdekében, ha még található ilyen a szertárban, használhatunk radioaktív forrást, a leggyakrabban fellelhető az úgynevezett tóríumos gázharisnya. Ezzel csak az a probléma, hogy a káros sugárzás miatt hivatalosan nem alkalmazható az oktatásban.

A következő fejezetben egy olyan sokszálas proporcionális kamra középiskolai oktatásba való bevezetésének lehetőségét mutatom be, amely a kozmikus sugárzásban keletkező müon részecskék megfigyelésére alkalmas anélkül, hogy egészségre ártalmas hatása lenne.
2. Részcskefizika tanítása a kutatólaboratóriumban

Az fizikaoktatás az elmúlt években, főleg a legújabb Nemzeti alaptanterv [32] bevezetése óta nagymértékben megváltozott. A különböző diszciplínák nem határolódnak el élesen egymástól, a kerettanterv ajánlásokat ad az egyes tantárgyak közötti átjárhatóságra, adott témakörök tanításánál a kapcsolódási pontokra. Alapelve az egységes természettudományos gondolkodás kialakítása. A fejlesztendő készségek és képességek a természettudományos műveltség megszerzését, gyakorlati alkalmazását teszik lehetővé. Maga a fejlesztés tartalomba ágyazottan történik, a természettudományok közös kulcsfogalmaihoz, alapvető elméleteihez és modelljeihez kapcsolódva. A természettudományos gondolkodás kialakításához nélkülözhetetlen a gyakorlatban való alkalmazhatóság lehetőségének felismerése, amelyhez különböző kutatóprojektek is szükségesek. A kutatásalapú oktatás a világ számos országában régóta ismert, bevezetése hazánkban még gyerekcipőben jár. Határozott törekvések vannak arra vonatkozóan, hogy a diákok a tanórán úgynevezett nyitott végű problémákkal is foglalkozzanak, ne a tanár mutassa meg mi lesz például egy kísérlet eredménye [33].

Kutatómunka végzésére egy mai középiskolásnak szinte csak az iskola keretein belül van lehetősége, lélkes fizikatanárok szakkörökön, emelt szintű tanórák keretein belül próbálkoznak a kísérleti alapon történő felfedeztető módszerrel. Minisztériumi pályázatok kerülnek egyre nagyobb számában kiíráshoz, hogy ezen az iskolák változtatni tudjanak, egyetemekkel, kutatóintézetekkel kötött megállapodási szerződést követően lehetősége legyen 2-5 fős diákcsoportoknak bekapcsolódni különböző kutatásokba. Évek óta nagy sikerrrel pályázok az Emberi Erőforrások Minisztériuma által támogatott „Útravaló, Út a tudományhoz” [34], ennek kapcsán kezdődött kapcsolatom a MTA Wigner Fizikai Kutatóközpontjával.

A Részecske és Magfizikai Intézet Nagyenergiás Fizikaosztályán Dr. Varga Dezső vezetésével működik a Lendület Innovatív Gáztöltésű Detektorfejlesztő kutatócsoport, amely többfajta részecskefizikai észlelő berendezéssel foglalkozik. Nagy hangsúlyt fektetnek az utánpótlás oktatására is, doktoranduszok, egyetemisták
folyamatosan kapnak lehetőséget kutatóprojektjeik elvégzésére, de az utóbbi években ez kiegészült középiskolások fogadásával is.

Sajnálatos módon egyre kevesebb középiskolás diák választja a fizikusi, vagy a műszaki tudományos pályát, ezért változtatásokra van szükség mind a közoktatásban, mind a kutatóintézetek részéről. Ezt felismerve ismerkedhetnek immár hatodik éve a középiskolás diákok a kutatómunkákkal, részt vehetnek a Kutatóközpontban dolgozók mindennapos munkájában.

Dr. Varga Dezső és fiatal kutatótársai hatalmas volumenű projektekkel foglalkoznak, részt vesznek például a CERN ALICE kísérletében is, úgynevezett időprojekciós kamrák (TPC) fejlesztésében, de egy japán kutatóintézettel közösen végzett kutatásban is figyelemreméltó sikereket érnek el, működő vulkánok feltérképezéséhez fejlesztenek műon-detektorokat. Hatalmas eredmény, hogy ebben a tevékenységben évek óta középiskolás diákok is teret kapnak, szinte hihetetlen, hogy a professzionális eszközök megépítésében is segédkezhetnek.

Az elmúlt hat évben kidolgoztam a kutatásalapú oktatás lehetőségét a detektorfejlesztő laboratóriumban és dolgozóinak támogatásával, korábbi iskolámban járó fiúk először csak egyszerűbb feladatokat végeztek, műhelymunkákkal ismerkedtek meg, elektronikai részfeladatokat kaptak, vagy teszteltek detektorokhoz szükséges különböző anyagfajtákot. Jelenleg csak lányokból álló kutatócsoportot vezetek, akik jelenlegi iskolámnak, a Bálint Márton Középiskolának tízéves évfordulója.

2.1. Részecskefizikai detektorokhoz szükséges anyagok tesztelése

Korábbi munkahelyemen, a budapesti Mechatronikai Szakközépiskolában hét tanuló járt emelt szintű fizikaképzésre (9. ábra). Ők abban a szerencsében részesültek, hogy elsőként, korábban nem volt még ilyen gyakorlat, heti rendszerességgel járhattak a MTA Wigner Fizikai Kutatóközpontba, ahol részt vehették a Nagyenergiás Fizikaosztály Detektorfizikai csoportjának a munkájában.
9. ábra Az első középiskolás kutatócsoportom

Mindkét témavezetőm, Dr. Horváth Dezső és Dr. Varga Dezső ott dolgozik, és mint doktoranduszkak biztosítani tudták a kutatásalapú oktatásban való jártasságom megszerzését. A hét fiú egyszerre nem tudott a laborban dolgozni, ezért két csoportra osztottam őket. Az első néhány alkalommal Horváth Dezső és Varga Dezső tartott számukra bevezető jellegű előadásokat a részecskefizikáról, a detektorlaborban folyó munkáról és a detektorok működési elvéről. Talán első alkalommal kicsit íjesztőnek és bonyolultnak tűnt az elvégzendő feladat, de a végeredmény bizonyította, hogy képesek középiskolás diákok is hasznos feladatokat ellátnak. A több hónapig tartó munka során észrevétlenül sajátították el a modern fizika és azon belül is a részecskefizika bizonyos kutatási módszereit. Minden alkalommal, örömmel érkeztek a laboratóriumba, sokszor estig is ott maradtak, hogy az elkezdett méréseket befejezhessék.

A kutatási feladat megfogalmazása a diákokkal közösen történt, ez is motiválta őket. Az egyik csoport többszörös szórási kísérleteket végzett saját maguk által összeállított kísérleti eszközözzel. Különböző fóliákat teszteltek béta-sugárforrásból származó részecskének segítségével. Ez időigényes, gondos beállítást követő feladat. A mérési eredmények segítségével a diákok ellenőrizni tudták a szakirodalomban található értékeket a konkrét detektoranyagokra.

A mérés alapelve az, hogy meghatározzuk a béta-sugárforrásból kijövő olyan elektronok számát, amelyek egy fólián áthaladva az egyenes repülés pályájától adott szöggel eltérnek. Az elektron pályáját néhány milliméter átmérőjű lyukakkal
(kollimátorokkal) irányítjuk (10. ábra). A mérés során a szóródási szög meghatározása mellett a diákok lejegyezték a keletkezett részecskék számát a szcintillátorokban történő beütések száma alapján. A 4. ábrán láthatjuk a mérés összeállítását, amelynek jobb alsó sarkában a henger alakú tárgy a bétasugárforrás, a szürke dobozban pedig két szcintillátor található.

10. ábra A mérés összeállítása

A sugárforrás olyan kialakítású, hogy az már meghatározza a beérkező sugárzás irányát (a forrást tartalmazó tok maga egy kollimátor). Az 11. ábrán a tanulók által készített grafikon látható a 4, illetve 9 rétegben hajtogatott, 25 μm vastag alumíniumfólián szóródott elektronok mért beütésszámáról az eltérülés szögének függvényében.

11. ábra Szórásgrafikon

12. ábra Logikai rajz
A szintillációs számlálókból először a két erősítőbe mennek a jelek, majd egy-egy zajszűrő diszkriminatorba. Az elektron beérkezését a két szintillátor egyidejű, azaz koincidenciában történő megszólalása mutatta. A mérés előtt beállításokat végeztek a diákok, majd kiosztották egymás között a feladatokat. Eldöntötték, ki fogja a szöget változtatni, ki olvassa le a beütések számát és ki jegyző le az adatokat (13. ábra).
Egyikük számítógépen is rögzítette az eredményeket, az értékeket táblázatokban gyűjtötte össze (14. ábra) és standard számítógépes programokkal megrajzolták a keresett görbét.

<table>
<thead>
<tr>
<th>Részecskék árakészésének szége</th>
<th>A két szintillátoron átmenő részecskék száma</th>
<th>Mérés hossza (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>-35</td>
<td>39</td>
<td>100</td>
</tr>
<tr>
<td>-30</td>
<td>39</td>
<td>100</td>
</tr>
<tr>
<td>-25</td>
<td>115</td>
<td>100</td>
</tr>
<tr>
<td>-20</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>-15</td>
<td>350</td>
<td>100</td>
</tr>
<tr>
<td>-10</td>
<td>536</td>
<td>100</td>
</tr>
<tr>
<td>-5</td>
<td>681</td>
<td>100</td>
</tr>
<tr>
<td>-2,5</td>
<td>793</td>
<td>100</td>
</tr>
<tr>
<td>0</td>
<td>720</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>725</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>515</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>339</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>193</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>130</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>68</td>
<td>100</td>
</tr>
<tr>
<td>35</td>
<td>29</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>27</td>
<td>100</td>
</tr>
</tbody>
</table>

14. ábra Mérési adatok

Az eredmények láthatóan mutatták, milyen kapcsolat van a fóliák anyaga és a görbe szélessége, magassága között. A pontos képlet helyett első körben számukra csak az volt a fontos, hogy lássák, a fóliák vastagságát növelve a görbe alacsonyabb és szélesebb lett, azaz jobban szétszórta az elektronokat. Valójába „n” réteg esetén a görbe szélessége √n-szeresére kellene, hogy változzon. Az egyik konkrét eredmény – a szög függvényében az alumíniumfólián áthaladó és szóródott elektronok száma – a fenti, diákok által készített 11. ábrán látható. A piros vonal 4 réteg 25 μm vastag

2.2. Nanoamper-mérő eszköz tervezése és összeállítása

A diákok a laboratóriumban végzett munkák során megtanulták, hogy a detektorrendszerek működésének folyamatos ellenőrzéséhez kiegészítő, monitorozó berendezésekre is szükség van. Az LHC óriási „digitális kamerái” sokkal nagyobbak, mint amilyenekkel itt találkoztunk, és ha ezek meghibásodnak, költséges és nagyon bonyolult a szétszerelésük. A folyamatos adatszolgáltatás érdekében viszont a cél az, hogy minél hosszabb időn keresztül, fennakadás nélkül tudjanak működni, a meghibásodásra utaló jeleket pedig időben észre vehessék. Ilyen jellegű problémával volt kapcsolatos a másik csoport munkája. Ők azt a feladatot kapták, hogy olyan árammérő műszert tervezzen és építsenek, amely több kV-os feszültség mellett nanoamper nagyságrendben képes több detektor áramát mérni. Az ehhez szükséges elméleti háttérrel ismerkedve a diákok megértették a gáztöltésű kamrák működési alapelvét. Egy proporcionális számlálóban a mérendő ionizáló (töltött) részecske elektron-ion párokat hoz létre, az elektronok a pozitív töltésű vékony anódszál felé vándorolnak. A szál közelében nagy az elektromos térerősség, emiatt elektronlavina alakul ki: a gyorsuló elektron újabb elektront kelt, majd minden egyes lépésben megduplázódik az elektronok száma, exponenciálisan növekedve akár százezerszeres méretre (15. ábra).

15. ábra Elektronlavina keletkezése

![16. ábra Kapcsolási rajz](image)

A csapat egy része az ampermérő elektronikai részével foglalkozott. Korábbi munkahelyen, a Mechatronikai Szakközépiskolában szerencsére már gyakorlatot szereztek, emiatt nem volt ismeretlenszámukra a forrasztópáka használata, vagy az ellenállások színkódja. Rutinosan bántak a csípőfogóval, blankoló fogóval és egyéb szerszámokkal. Két fiú a mérőműszer dobozát állította össze. A 17. ábra második képén egyikük éppen a műszer alsó lemezén fúr adott nagyságú lyukakat a nagyfeszültségű csatlakozók számára.
17. ábra Mechanikai munkálatok

Beszerelték a négy, műanyag tartóoszlopot is, ami a doboz formáját adta meg, a digitális kijelzőket, és végül beforrasztották a nyomtatott áramköröket is. Már csak a műszer kalibrálása volt hátra, amelynek eredményével a gyakorlott kutatók is meg voltak elégedve (18. ábra).

![Mechanikai munkálatok](image)

Áramerősség lineáritása

![Áramerősség lineáritása](image)

18. ábra A kalibráció eredménye

Az elkészült eszköz egyszerre tudja a detektor nanoamper nagyságrendű áramát és az 1650 V körüli feszültséget mérni (19. ábra).
A résztvevők a tanév során mindkét projektet sikeresen lezárták, de a diákok annyira megszerették ezt a fajta tanulást-kutatást, hogy még a nyári szünetükből is hajlandók voltak pár hetet erre áldozni. Önálló szervezéssel mentek fel dolgozni a Wigner Fizikai Kutatóközpontba, ahol az ott dolgozók akkor is, mint ahogyan egész évben, nagy tudással és türelemmel foglalkoztak a jövő „kutatóival”. Az iskolai tanórákon is láttam az elvégzett munka kedvező hatását, sokkal tudatosabban készültek a továbbtanulásra, és belátták, hogy ehhez nélkülözhetetlen a fizika egyes ágait belül az elméleti tudás megszerzése.

2.3. Sokszálas, proporcionalis kamra építése középiskolai háttérrel

Motiváció

Pár éve kezdem el foglalkozni a részecskefizika középiskolában való tanításának lehetőségével. A modern fizikának ez a speciális ága nem szerepel a tantervben, emelt szintű képzés, vagy szakkör keretén belül sikerül csak időt szakítani a téma feldolgozására. Amint már az előzményekből kiderült, évek óta lehetőségem adódik a Wigner Fizikai Kutatóközpont Nagyenergiás Fizikaosztályának munkájába bekapcsolódni, ahol gáztöltésű detektorok fejlesztése folyik. Érdeklődő diájkimból az évek során alakítottam több csoportot is, akik megismerkedhettek az ott dolgozók tevékenységével, és maguk is bekapcsolódhattak a kutatásokba. Az eddigi tapasztalatok egyértelműen bizonyítják, hogy léjtögosultsága van az oktatásban a kutatásalapú tanításnak is, hiszen ezzel a tanórán kívüli oktatási módszerrel a diákok az elméleti ismeretek megszerzésén kívül a gyakorlati elemeket is elsajátíthatják.
Bevezető

A kamra általunk használt formája az intézet fizikusainak ötlete alapján készül, a célok között az is szerepelt, hogy költséghatékony legyen. Ez fontos szempont, mert a kamrák akár részecskék demonstrációs bemutatására, akár gyakorlatban történő felhasználására készülnek, lényeges, hogy könnyen szállíthatók és kisméretűek legyenek, sokszor barlangokban, piramisokban üregek felderítését szolgálják, esetenként nagy kiterjedésű területeken nagyszámú kamrát kell elhelyezni [35].

A diákok a fentieknek megfelelően sok munkafolyamatban vehettek részt, esetenként tanulhatták meg azokat. Ezek között a fűrészelés és a ragasztás éppen úgy előfordult, mint a tekercselés vagy a forrasztás. A részecskék nyomának követése céljából több kamrát helyeztünk egymásra, ezek mindegyikét csatlakoztattunk mind a nagy-, mind a föld potenciálra, a jelek továbbításához pedig az erre alkalmazott áramkörökre. Az ezekhez szükséges, végükön kivezetésekkel ellátott vezetékeket színtén a diákok készítették. (20. ábra)
2.3.1. Detektorok építése különböző méretekben

21. ábra A tekercselő keret

A vastagabb szálak tipikusan 100 µm vastagságú bronzból, a vékonyabbak 24 µm vastagságú aranyozott wolframból készültek. A szálak távolsága 12 mm, az általunk készített kamrák alapja, 20 cm x 12 cm, magasságuk 2 cm, de a diákok a 80 cm x 80 cm méretű detektorok készítésében is segítenek alkalmanként, illetve az intézetben a fejlesztéseknek köszönhetően újabb 80 cm x 120 cm méretű eszközök is készülnek (22. ábra).

22. ábra Munka a nagydetektoron

Az 1650 V-os nagyfeszültségre kapcsolt anódszálak a speciális, 24 µm átmérőjű W-Au szálak. Kellően kis átmérőjüknek a térerősség nagyságában van szerepe, emellett pedig fontos, hogy a mechanikai igénybevételnek is megfeleljen. Ez jelentős részt
jelent a költségekből, hiszen az arannyal bevont száltekercs „aranyárban” van. A tekercselő eszköz szerepe az, hogy ezen szálakból keletkező hulladék mennyisége a lehető legkisebbre csökkenjen, hiszen az eszköz segítségével egyszerre két kamrát is tudunk tekercselni, így csak az átforduláshoz szükséges darabok esnek le. A vastagabbak, az úgynevezett térformáló szálak, amelyek az anódszálak között helyezkednek el felváltva, a teret, illetve az erővonalak elrendeződését optimalizálják, átmérőjük 100 µm (23. ábra).

23. ábra Vastag és vékonyszálak

Ezeket, és a kamra szálakkal párhuzamos alsó és felső lapját fölöltetjük. A ragasztás után a lezárt kamrákat ellenőrizzük, hogy nem maradtak-e lyukak, ahol a gáz megszökhet belőlük. Ez nem könnyű feladat, szemmel sokszor nem láthatók a rések, ezért speciális eszközöket (leakhunter) is használunk. A kamrákba töltött gázkeverék összetételét is kísérletek előzték meg, minden szempontból legkedvezőbbnek az argon és szén-dioxid 4:1 arányú keveréke bizonyult, ezért ezt használjuk. A kész kamrát lassan, körülbelül 5 liter/óra sebességgel töltjük fel és áramoltatjuk működtetés közben. Az elektronlavina következtében már mérhető jeleket tudunk észlelni a szálakon, és bár a keletkező elektromos jelet akár számítógéppel is fel lehet dolgozni, a mi általunk készített eszközök középfokú oktatásban is használható változatban készülnek, ezért az adott szálak végére kötött LED égősor felvillanása jelzi számunkra az áthaladó részecskét (24. ábra).
2.3.2. Kozmikus müonok vizualizációja

A müonokról

Az általunk készített detektorokkal müon részecskék pályáját figyelhetjük meg két dimenzióban. A müon a Standard Modell egyik leptonja, az elektronhoz hasonló, csak 207-szer nagyobb a tömege, a kozmikus sugárzásban keletkezik pionok bomlásából.

A müon nagyon rövid idő alatt tovább bomlik stabil részecskékre és az élettartama nem tenné lehetővé azt, hogy a földfelszín közelében, sőt, akár alatta is észlelni tudjuk. Az egyik legrégebbi bizonyítéka a relativitásemléletnek az, hogy képesek vagyunk földi laboratóriumokban is méréseket végezni velük [36]. Még egy fontos eleme az eszköznek, hogy középfokú oktatásban is alkalmazható, a szemléletes bemutatás mellett olyan sugárzást használunk, amely „ingyen” van és nem káros az egészségre.

A tervezett projekt bemutatása

A diákok a rendszeres látogatásaik alkalmával olyan feladatokat is végezhettek, amelyekkel a középiskolai oktatás keretein belül soha nem lenne alkalmuk megismertedni. A műhelyekben ipari fúrógéppel, fűrészel, vágóberendezéssel készítették elő a detektorhoz szükséges elemeket, természetesen megfelelő felügyelet mellett.

A kamrák lezárását követően pedig a kiolvasáshoz szükséges elektronikai alkatrészeket kellett beforrasztaniuk a megfelelő helyekre. (25. ábra)
25. ábra Alkatrészek forrasztása

Eközben megtanulták, mit jelentenek a kondenzátorokon lévő feliratok, miért csíkosak az ellenállások és az adott színek mekkora értékeket jelentenek. A nagyfrekvenciás zajok kiszűrésének céljából egy, két ellenállásból és egy kapacitásból álló áramkört kapcsoltak az anódszálakhoz. A jelek észlelése a kamrára rögzített áramkőri lapon történik. Az anódszálakról érkező jel mellett a térformáló szálakon is megjelenik egy feszültségimpulzus, a LED az egyidejű jelek keletkezésekor villan fel.

Részfeladatok ismertetése

Elsőként a mechanikai munkálatokat kellett elvégezni, a diákok megismerkedtek az esztergagép és az ipari fúrógép használatával, bár több szükséges elem métre készítve állt rendelkezésükre. Meg kellett tanulnia mindenkinek forrasztani is, hiszen a szálak forrasztással történő biztonságos rögzítése létfontosságú feladat.

A ragasztás, bár a minden barkácsboltban megtalálható, közönséges, kétkomponensű ragasztóval történik, az egyik legfontosabb munkafázis, hiszen a detektor gázban van feltöltve, és a legkisebb rés sem engedhető meg. Ráadásul a ragasztó 5 perc elteltével használhatatlanná válik, tehát sietni kellett, de közben az egyenletes eloszlatásra és a pontos elhelyezésre is figyelni kellett. Első alkalommal még több-kevesebb hibával dolgoztak a diákok, de hamar ráérzett mindenki saját tapasztalatai alapján.

26. ábra Száltekerés
27. ábra Felfüggesztett test fejti ki az állandó húzóerőt

28. ábra Ellenirányban feszítő motor

A szálak pontos beigazítása után következett azoknak leforrasztása, amely csak egy kis gyakorlatást igényelt. Azt tapasztaltam, hogy ezt majdnem mindenki nagyon ügyesen végezte, függetlenül attól, hogy iskolai gyakorlatok során már tanultak forrasztani, vagy először került kezükbe forrasztópáka. A forrasztásnál arra
mindenképpen ügyelni kellett, hogy szétfröccsenő ón ne kerüljön be a gáztérbe. Ennek megakadályozása érdekében a gáztér fölé papírlapot tettünk (29. ábra).

29. ábra A szálak leforrasztása

Erre az egész munka során nagyon kellett figyelni, bár ezeket a demonstrációs célt szolgáló kamrákat nem úgynevezett „tiszta laborban” készítettük, de azért igyekszettünk minél tisztább körülményeket biztosítani. Izopropil alkohollal mindent, a munkaasztalt és az egyes elemeket gondosan áttörölgetünk használat előtt. A leforrasztás után a felesleges szálakat le kellett vágni, de itt is figyelni kellett nagyon arra, hogy a forr pöttyök közvetlen közelében történjen, hiszen a csúcshatás nagymértékben érvényesül a kiálló, kis görbületű sugarú fémeknél (30. ábra).

30. ábra A szálak levágása
A kamra lezárása színtén ragasztással történt. Ezt követte a „lyukkeresés”, amit elsőként szabad szemmel, sikertelenség esetén speciális eszközzel végeztünk, amely a kereskedelmi forgalomban is kapható.

A mechanikai munkálatokat az elektronikai feladatok követték. Mint tudjuk, a beérkező kozmikus részecske ionizálja a kamrában lévő nemesgázt, úgynevezett elektronlavinát hozva létre. Az anódszálhoz érkezve a jelet elektronikus formában tudjuk érzékelni, és ennek érdekében a detektorunkhoz különféle áramköri elemeket, ellenállásokat, kondenzátorokat, nagyfeszültségű csatlakozókat kellett forrasztani. Az egyes kamrákat, hiszen többet szerettünk volna egymás fölől helyezni, elektronikus összeköttetéssel hoztuk kapcsolatba, és a gázcsövek segítségével el tudtuk érni, hogy a beérkező gáz is szabadon áramolhat mindegyiken át (31. ábra).

![31. ábra Összeköttetések a kamrák között](image)

A kamrarendszer lelke a trigger (32. ábra), amely a megfelelő pillanatban jelet ad, és indítja a mérést.
Ennek az eszköznek az elkészítését, és a kiolvasó elektronikát a szakközepes diájkaim készítették, így sikeresen tudták alkalmazni a szakközépiskolájukban tanultakat. Ha a részecskék kétdimenziós pályáját is láthatóvá szeretnénk tenni, az előre elkészített 16 LED-ből álló égősor is csatlakoztattuk a 16 csatornás detektorokhoz, így az egymásra helyezett készülékek különböző helyein jelet adó részecske irányát is meg tudjuk határozni (33. ábra).

32. ábra Trigger

33. ábra LED-égősorok
Tanulás új módszerekkel

A különböző munkafolyamatok előtt mindig előzetes elméleti oktatásban is részesültek a tanulók, a laboratóriumvezető kutatói mindig elmondtták mit, miért és hogyan kell használni, milyen folyamat eredményezte az eszközök kialakítását, illetve természetesen a szükséges fizikai hátteret is átbeszélték a diákokkal. Ebben nekem, mint fizikatanárnaknak is nagy szerepem van, hiszen a tananyagban többnyire még nem tartunk az adott témakörnél, ezért előzetes és utógondozásra is szüksége van a diákoknak a jobb megértés érdekében. A kamra működési elvéről és alapvető felépítéséről érdemes már az első látogatás előtt beszélgetni a diákokkal. A munkák közben felmerülő kérdésekre én sem tudom mindig a választ, nekem is folyamatosan tanulnom kell a terület szakavatott fizikusaitól, hiszen mai fejlődő világban tájékozottnak kell lennem a legújabb kutatási eredményekkel kapcsolatban. Van olyan témakör, mint például az elektrodinamika, amely a középiskolai tananyag részét képezi, de emellett olyan diszciplínákkal is kell foglalkoznunk, mint a részecskefizika, relativitásmélet, kvantumelektrodinamika, amely legfeljebb a szakkörök vagy az emelt szintű képzések során fordul elő. Volt, hogy szóba jött például a határozatlansági reláció, vagy az idődilatáció, amely kapcsán természetesen egyéb kérdések is felvetődtek, így nagyon izgalmas foglalkozások alakultak ki, mindig hatalmas öröm motivált, érdeklődő gyerekekkel foglalkozni. Vagyis az iskolában végzett „háttérmunkáink” is óriási szerepe van. Sokszor hívunk akár a tanítási órára, akár a Természettudományos Önképzőköri foglalkozásokra külső előadókat, de én is tartottam több alkalommal részecskefizika bevezető előadásokat. A diákokkal folytatott beszélgetésekből az is kiderült, hogy sok ismeretet önállóan szereztek meg, sokszor igyekeznek a témának utánanézni, ez a fajta tanulási tevékenység túlmutat a középiskolákban megszokottól. A kutatómunkában részt vevő diákjaim elhivatottsága a fizika iránt az idő előrehaladtával folyamatosan nőtt, mindegyikük műszaki vagy fizika területen folytatta tanulmányait a középiskola befejezése után.

Összegzésként

Fentiek alapján azt tapasztaltam, hogy a valódi kutatás, kísérletezés a várattnál is több alkalmat ad a tanulásra. Míg az osztályteremben többnyire induktív módszerekkel vezetjük be az adott témakört, a kutatómunkák során a szinte játékos építési
feladatok közben észrevétlenül tanulják meg diákjaim az elméletet, maguk jönnek rá, hogy az eszköz működésének mélyebb megértéséhez milyen ismeretekre van szükségük. Természetesen minden alkalommal ott vagyok Velük, munka közben jó hangulatú, kötetlen beszélgetések alakulnak ki, és a tanulóknak és további kérdéseket vethetek fel Bennük. A legtehetségesebb és legmotiváltabb diákjaim akár jelentős hazai és nemzetközi sikereket is elérhetnek. Kiemelkedő eredményt ért el csoportom egyik tagja, Peti, a saját maga által épített TPC detektorral, amelynek adatkiolvasó rendszerét is ő tervezte.

2.3.3. Lányok a kutatásban

A természettudományok művelői között továbbra is a fizikában a legmagasabb a férfiak aránya. Férfiak töltik be az állások 90%-át a fizika tanszékeken, a 2003-ban doktoráltak között 82%-ot tettek ki a férfiak. (1970-ben a fizikából doktoráltak között még csak 2,4% volt nő.) A férfitöbbség az egyetemi tanulmányok elején, a főiskolai években alakul ki. Az első években fizikát tanulók között a lányok még a hallgatók csaknem felét teszik ki, a fizikából Bachelor fokozatot szerzők között viszont már egynegyednél kevesebb a nők aránya. Tehát a fizikát is tanuló nők fele húsz éves kora körül dönt úgy, hogy nem a fizikusi pályát választja. A fizikusi pályán elindult nők életútja, karrierje nem különbözik a férfiakéttől. Más tudományágakban némileg eltérő a nők helyzete. A nők helyzete országról-országra is változik. Franciaországban és Törökországban például a fizikából doktoráltak között egynegyednél nagyobb a nők aránya, míg Németországban és Svájcban az amerikainál jóval alacsonyabb, 10% körüli [37].

Általános vélekedés, hogy a nők hátrányt szenvednek a tudományos, főképp a természettudományos pályákon. Egy beszédes adat: a 186 orvosi Nobel-díjas között mindössze 7 nő található. Kiváló kutatónők vannak, akiket nem ismer a világ, és akiket sok tapasztalatai szerint még ma is hátrányos megkülönböztetés ér.

A tudós nők közül kétségtelenül Marie Curie a legismertebb a közvélemény előtt. Maria Sklodowska néven született 1867-ben Varsó közelében. Lánya, Iréne fizikus lett, férjhez ment Frédéric Joliot-hoz, és sikeres tudóspárost alkottak. Ők fedezték fel a mesterséges radioaktivitást, azt a lehetőséget, hogy az atommagjukba való
beavatkozással a stabil elemek is sugárzóvá alakíthatók. A sors furcsa játéka, hogy az anya a spontán, lánya pedig a mesterséges radioaktivitás felfedezője lett. Mindketten Nobel-díjat kaptak, és az anya megérte lánya elismerését. Marie Curie-hez hasonlóan Lise Meitner is az atommagfizikában ért el maradandó, korszakos eredményeket. Ausztriában született, ő volt az első nő, aki a Bécsi Egyetemen fizikából szerzett doktorátust.

A L’ORÉAL Magyarország és az UNESCO Magyar Nemzeti Bizottság - a Szociális Innováció Alapítvány a Kelet-Európai Térség Fejlesztéséért - útján, a Magyar Tudományos Akadémia védelmében - 2016-ban tizennegyedik alkalommal hirdette meg ösztöndíjpályázatát a nemzetközi L’ORÉAL-UNESCO FOR WOMEN IN SCIENCE program szellemében [38].

Az ösztöndíj célja az volt, hogy a fiatal tudós nőket és kutató szakembereket kiemelkedő és gyakorlatba vehető tudományos eredmények elérésére serkentse, továbbá ösztönözze és előmozditsa a magyar nők helyzetét a tudományos és kifejezetten kutatói pályán, a legkülönbözőbb kutatási területeken.

Hasonló célt tűzött ki a MTA Wigner Fizikai Kutatóközpontja is, hisz évek óta szervezi meg a Lányok Napját, amely során a középiskolás diáklányok egy fénynapos program keretében női kutatók előadásait hallgathatják és belepillantatnák aktuális kutatási tevékenységükbbe. A Nők a Tudományban Egyesület, a NaTE is az esélyegyenlőségért dolgozik mind a kutatás, mind az innováció területén belül. Az első, csak fiúkból álló kutatócsoportomhoz csatlakozott diáklány a több éven át tartó lelkes kutatómunkájának tapasztalatai alapján a „Tudós Csajok” diákkiáltatási lehetőségét szervezte meg, amely fél éven keresztül, heti 1,5 órás foglalkozásokat jelent összesen 40 órában. Ezen a programon tanulhatnak, ismerkedhetnek a lányok kutatásokkal, de ezen kívül is vannak hasonló rendezvények, mint például a Budapesti Műszaki Egyetem Villamosmérnöki Kara által szervezett Lányok Napja. Tapasztalataim és a hazai előzmények alapján bennem is megfogalmazódott az, hogy milyen formában lehetne jobban bevonni az effajta tevékenységekbe a „gyengébb” nem képviselőit. Ehhez az is hozzájárult, hogy három évvel ezelőtt munkahelyet váltottam (a
szakközépiskolában nagyon lecsökken az óraszámom), és a gimnáziumban, ahol jelenleg is tanítok, fele-fele arányban járnak fiúk és lányok.

A kilencedik évfordulón tanuló diáklányaim bevonását többen, korábban Velük együtt sikertelen volt közös projekt, verseny előzte meg, amely során kiderült, hogy mennyire jól tudunk együtt dolgozni.

Már második év, heti rendszerességgel foglalkozom tehetséggondozás keretein belül négy lányt, akik részt vesznek a korábbi fiúcsapataimhoz hasonlóan a Nagyenergiás Fizikaosztály munkájában. A 2017/2018-as tanévben már pályázati keretei között, Velük is sikerült elnyernem (az elmúlt öt évben már harmadik alkalommal) az Emberi Erőforrás Támogatáskezelő által kiírt Útravaló, Út a tudományhoz pályázatot. Minden alkalommal részecskefizikai, gáztöltésű detektorok tervezése és megépítése volt a terv, de az évek során folyamatosan fejlődött a projekt, innovatív ötletekkel, a hibák kiküszöbölésével, hasonló működési elvvel, de más geometriával, elrendezéssel készültek az eszközök (34. ábra).

Tapasztalataim szerint semmi különbség nincs a között, hogy fiúk vagy lányok dolgoznak a laboratóriumban, minden munkát a mechanikától az elektronikai feladatokig képesek elvégezni. Különbség a diákok munkájában legfeljebb a hozzáállásukban vettem észre, de ez viszont nem a nemek közti különbségből adódott. A 2017/2018-as tanévben Főigazgató Úrral megtervezve indítottuk be első ízben a MTA Wigner Fizikai Kutatóközpontjának Nagyenergiás Fizikaosztályán az úgynevezett Középiskolás Kutatótanári Laboratóriumot azzal a céllal, hogy középiskolás diákok számára, fizikatanáruk mentorálása mellett és az én

34. ábra Lányok munka közben
koordinálásommal bemutathassuk a kutató fizikusok napi feladatait azzal a nem titkolt szándékkal, hogy ezáltal kedvet kapjanak a fizikusi vagy a műszaki pályákhoz. Ebben a tanévbén két iskola csatlakozhatott a már meglévő, lánykutatócsoportomhoz, két neves budapesti gimnázium négy-négy tanulója ismerkedhetett a kutatásalapú oktatás módszereivel. Összesen a három iskolából 12 diák vett részt a projektben, fele-fele arányban fiúk és lányok. Elmondhatom, hogy teljesen azonos módon, ügyességgel, motivációval álltak mindig a feladatok elé. Hozzá tartozik, hogy ezek a tanulók iskolájukban is kiemelkedő teljesítményt nyújtanak, ennek okán kerültek is kiválasztásra.

2.3.4. Fizikatanárok detektort építenek

Kezdhetném azzal a „vicces” mondással, hogy „valaki tudja, valaki tanítja”, vagyis egy tanárnak csak az elméletet kell biztosan ismernie, legfeljebb jól átadnia, de egy ilyenfajta kutatómunkához kapcsolódás során ez az elmélet nem állja meg a helyét. Ahhoz, hogy a tanulók minden héten megjelenjenek a laboratóriumban, felkészüljenek az adott munkára, előzetes és utólagos elméleti oktatásban részesüljenek, mindenféle szükség van egy úgynevezett mentor tanárra. Ez a tanár, évekig csak én, idén már két másik kolléga ugyanúgy, a teljes időtartamban a kutatódiákokkal együtt van, így természetes, hogy ő is segít a munkálatokban. Nekem sem volt könnyű, amikor témavezetőm előállt azzal az ötlettel, hogy most már igazán nekem sem ártana megépíteni az elejétől a végéig egy-két detektort, hogy lássam miben állnak a buktatói az egyes részfeladatoknak. Ezáltal sokkal magabiztosabbnak éreztem magam, hitelesebben tudtam segíteni és irányítani a munkálatokat, nem utolsó sorban közben magam is rengeteget tanultam (35. ábra).
Ezek után vetődött fel bennem, főleg, hogy már én is előadója, később szervezője is lehettem a CERN-ben folyó továbbképző programnak [39], hogy mi lenne, ha a fizikatanárok, a már kezdetektől bevezetett ködkamra építés mellett épitenének ugyanolyan müon-detektorokat, amelyek tervezését, összeállítását már több éve gyakorlom mentorált diákjaimmal.

2015-ben volt az első alkalom, hogy pilot program jelleggel, még a hivatalos menetrendbe nem beletéve két kisebb csoport összeállított két-két kamrát, amelyeket hozzátettünk a már korábban készített hat detektorhoz, így egy tízelemletes tornyot kaptak, és a beérkező részecskék pályáját gyönyörűen meg tudták figyelni. Ez a kísérlet olyan jól sikerült, hogy azóta minden évben, már beilleszthe egy programba minden tanár bekapcsolódik a munkába. Szabadon választhatják mit szeretnének csinálni, ki milyen részfeladatot választ, elvileg semmi sem kötelező, de mégis kivétel nélkül mindenki, akár az éjszakai pihenésének kárára is részt vesz az építésben.

A detektorok készítése közben is, és az elkészült kamrák beindításakor is ugyanazt a gyermeki örömöt látom kollégáim arcán, mint a Kutatóközpontban a diákokén. Az utólagos beszámolókban mindannyian egyöntetűen megerősítik mennyit jelentett számukra ez a lehetőség, mennyit tanultak, magabiztosabbak lettek. Ez, a CERN-ben egyedülálló kezdeményezés más országok tanárcsoportjainak az érdeklődését is felkeltették, ebben a tanévben a kutatódiákokkal egy olyan detektorrendszert is
tervezünk építeni, amelyet később francia kollégák is használnának az oktatásban (36. ábra).

36. ábra Fizikatanárok műon-detektort építenek
II. rész: A részecskefizika szemléletes oktatása papírkockák segítségével [9-10], [13-14]

Bevezető

Új módszert és szemléltető segédanyagot dolgoztam ki az elemi részecskék diákok számára érdekes, de nehezen áttekinthető rendszerének tanításához, beleértve a részecskefizikai változásokra jellemző speciális megmaradási tételeket is. A módszer a diákok cselekvő aktivitásán keresztül, játékos formában segíti az ismeretek rögzítését, illetve alkalmazását.

3.1. A mikrovilág bemutatásának nehézsége

Kutatásaim során azt tapasztaltam, hogy a tanórán időhiány miatt nincs esélye a fizikatanároknak a részecskefizika bővebb tárgyalására, ráadásul nagyon nehéz a diákokhoz közlelebb vinni a témakört, hiszen a részecskék nagyon parányiak, például egy kvark mérete 10^{-18} m, egy protoné három nagyságrenddel nagyobb, és így nagyon nehéz elképzelni őket makrovilágunkban. Szubatomi részecskékről van szó, vagyis az atom méreténél (10^{-10} m) is kisebbek. Kémia órán a diákok megismerkednek az atom főbb alkotórészeivel, amelyeket a XIX. század legvégétől kezdve fedeztek fel. 1897-ben Thomson az atom egyik alkotórészét, az elektronról fedezte fel katódsugárcsöves kísérletei közben. Később Rutherford rájött munkatársaival együtt, hogy az atom belsejében egy parányi, kemény mag található, amelyen az alfa-részecskék különböző mértékben szóródnak. 1911-ben volt ennek százéves évfordulója. 2032-ben pedig Chadwick az atommag másik nukleonját, a neutront tudta azonosítani egyik kísérletében, amelyben alfa-részecskével bombázott berilliumot, aminek következtében egy semleges részecské lőködött ki. Az 1950-es évektől kezdve pedig rohamosan nőtt a felfedezett szubatomi részecskék száma, hiszen a részecskegyorsítókban egyre nagyobb energiákon tudtak részecskéket ütköztetni és azonosítani is tudták a keletkezett bomlástermékeket.

Ezeket az adatokat a részecskekről sok tanár megtanítja az órákon, de így nehezen rögzül a diákok fejében, hiszem, hogy a szemléletesség az oktatás során nélkülözhetetlen, az emberek többsége vizuális típus.
3.2. Az ötlet

A szemléltető eszköz ötletének alapjául több dolog is szolgált. A részecskefizikában a fizikusok mindenhol három csoportokba sorolják a részecskéket, de szerintem a hatos a bűvös szám, hiszen hat kvarkot, antikvarkot, leptont vagy antileptont ismerünk. Kézenfekvő tehát egy hexaédert, vagyis kockát használni, amelynek mind a hat oldalára különböző fogalmakat tüntethetünk fel (37. ábra), és ezekkel játékos feladatok során ismertethetjük meg a részecskefizika alap-, középiskolában is tanítható fejezeteit. A legfontosabb valóban a játék, és az úgynevezett „Hands-on mind-on” módszer, hiszen amit csak hallunk vagy látunk, azt könnyen elfelejtjük, viszont amit magunk készítünk és utána beépítjük a tanulási folyamatunkba, az hosszú távon is bevésődik a memóriánkba. A tanulásnak ezen kívül még az is fontos eleme, hogy a diákok a készítés folyamata során maguk is új ötletekkel állhatnak elő, és egy hosszabb foglalkozás-sorozat során folyamatosan fejlődhet a modellkészítő projekt, amit így sokkal inkább magukénak érezhetnek.

37. ábra Kockáim készítése közben

3.3. Az eszköz bemutatása

A fizika szertárak többségében megtalálhatók a drága, neves cégek által gyártott kísérleti eszközök, amelyek leginkább a tanár általi bemutatásra alkalmasak. Az én
elméletem és tapasztalom szerint viszont a tanulók sokban szeretik a maguk által készített kísérleti tárgyakat. Ezekhez is mindig otthon található, akár hulladékokból álló alapanyagokat javaslok, így nincs szükség anyagi ráfordításra egy-egy jelenség vagy modell bemutatásához. A kockakészlet elkészítése nagyon egyszerű és kis költségvetésű. Csupán színes kartonpapirokra, hungarocell töltőanyagra, ollóra, ragasztóra festékre és filctollra van szükségünk. Többféle méretű kockát érdemes kivágni, a legtöbb részecskéhez 5 cm x 5 cm x 5 cm-es kockahálót, a nukleonokhoz 10 cm x 10 cm x 10 cm-eset és a tengerkvarkokhoz 2 cm oldalhosszúságúakat javaslok. A legfontosabb színek a piros, a zöld és a kék, ezekből vágjuk ki majd a kvarkokat és az antirészecskék szimbolizálásához a kis háromszög lapokat. A nukleonok, leptonok, a közvetítő bozonok tetszőleges színű kartonból készülhetnek, a műveleti jelekhez fehér papírt használtam. A többnyire fehér színben forgalmazott töltőanyagot pedig meghatározott szabály szerint kell befesteni. Fekete filctollal pedig a végén az elnevezéseket és a fizikai paramétereket tudjuk ráírni a kockákra (38. ábra). Egy teljes készlet bekerülési költsége ezer forint körüli összegbe kerül.

![38. ábra A papírból készített készlet](image)

Az elkészült kockákat érdemes egy nagyobb cipősdobozban tárolni nehogy sérüljenek. A papír meggyűrődhet, elszakadhat a használatban, így újabb ötlettel álltam elő: készítsük el ennek a tartós változatát is, 5 cm x 5 cm x 5 cm-es fakockákból legyenek az alaprézecskék, természetesen ahhoz nem jól, hogy „elrejtsünk” bennük újabb részecskéket.
Elég őket temperafestékkal egyszer átkenni, majd fekete, illetve a sötét színű kockára fehér jelölő filctollal az adatokat felírni (39. ábra).

39. ábra Részecskék fakockákból

3.4. Alkalmazhatósági-, vagy tudományterületek bemutatása

3.4.1. Hadronjáték

Először mindenképpen a Démokritosz által kimondott „oszthatatlan” fogalmat érdemes kockák segítségével eloszlatni, és azt, hogy a proton és a neutron nem elemi részecskék, mint ahogy még ma is több kémiaikönyvben így szerepel. Elemi részecske alatt azt értjük, hogy nincs belső szerkezete, nem bontható fel kisebb részecskékre. Mivel a részecskefizika az atommag fizikájának alfejezete, ezért az elektron természetiével nem foglalkozunk, ezt a kvantumfizika írja le. Első feladatként vizsgáljuk meg a proton és a neutron belső szerkezetét látható tárgyak segítségével. Nagyobb méretű, kb. 15x15 cm-es kockába rejtsünk el egy piros, egy zöld és egy kék kiskockát, színesre festett hungarocell töltőanyaggal töltsük ki a fennmaradó helyeket, és ha még pontosabban szeretnénk modellünket összeállítani és a nukleonok összetételét elmagyarázni, akkor még kvark-antikvark párokat is helyezhetünk bele (40. ábra). Nagy büszkeséggel tolt el, hogy a Nukleon folyóirat egyik számának címlapján is az én proton-kockám szerepel (41. ábra).
Az RGB (piros, zöld, kék) kockák a nukleonokat alkotó kvarkok lesznek, az angol elnevezésüknek megfelelő kezdőbetűt az oldalukra írjuk. A hungarocell „kukacok” modellezik az erős kölcsönhatás közvetítő részecskéit, amelyek összetartják az azonos töltésű nukleonokat, tulajdonképpen, mint egy szuper ragasztó, míg a kvark-antikvark
párok az úgynevezett „tengerkvarkok”, amelyekkel tele van a nyugvó nukleon, és ezek adják a nukleon tömegének több mint 90%-át. Ezzel a modellel rendkívül szemléletesen el tudjuk oszlatni a protonról és a neutronról az oszthatatlan, vagyis elemi részecske tévhitét [40].

3.4.2. Kvantum színdinamika

Arról, hogy miért éppen olyan színűek a kockáink amilyenek, elég csak a legfontosabbakat megemlíteni. A kvantumszíndinamika nagyon nehéz fejezet, magasabb szintű matematikai ismeretekre lenne szüksége a diákoknak a megértéséhez, ezért a középiskolában elég csak alapszabályokat rögzítenünk: A természetben csak fehér szín létezik, amely előállítható a három-RGB- színből, vagy akár két színből is, de akkor egy színhez a részecske saját antiszínét kell párosítani. Ehhez használhatjuk az optikában tanult additív színkeverés analógiát. A játékhöz szükséges kockák és „kukacok” elkészítése közben bőven lesz időnk ennek begyakorlására (42. ábra). Érdekességként megemlíthetjük, hogy ugyan a gluonok szintén szín és antiszín hordoznak, a 3x3 szín-dublett variáció mellett mégis csak 8-féle közvetítő részecskejét ismerjük az erős kölcsönhatásnak, mert a fehérből fehér átmenet kiesik [41], de ez szintén meghaladja a középiskolai szintet. Az erős kölcsönhatást szimbolizáló hungarocell testek festezetése közben elegendő időnk jut a színek és antiszínek megtanulására, és a kvantumszíndinamika alapjainak begyakorlására és megértésére.
Még érdekessebbé lehet tenni a gyakorlást egy kis édességgel, hiszen tudjuk, hogy szinte minden gyerek szereti a gumericukrot. Az egyik legnagyobb gumericukrot gyártó cég kínál olyan fajtű cukorkákat is, amelyek két színt tartalmaznak többféle variációban. Minden diák választhat egyet, amelyet csak akkor ehet meg, ha kitalálja, a természetben előforduló gluonról van-e szó, vagyis egy alapszínből, és egy antiszínből, de nem a sajátjából áll. Véletlen ugyan, de van kék, zöld, piros, magenta, cián és sárga szín is rajtuk, így játékosan gyakorolhatják a gluonok esetében a kvantum színdinamika törvényeit (43. ábra).
3.4.3. Hadronok építése

A Nagy hadronütköztetőben jelenleg 13 TeV (teraelektronvolt) energiákon protoncsomagokat ütköztetnek, vagyis a protonnak hadronnak kell lennie. Viszont nem csak a protonok, amelyek egyben barionok tartoznak a hadronok csoportjába, hanem az úgynevezett mezonok is. Ezeket az ismeretlen kifejezéseket is csak sok gyakorlással, szemléletes modellekhez kötve lehet maradandóan megjegyezni, és reményeim szerint ebben segít a hadronjáték.

Összesen hat darab 5x5 cm-es kockára lesz szükségünk, kettő-kettőt készítünk piros, zöld és kék színekből is. Viszont mindegyik kockapárból egynek az oldalaira még egy kiegészítő színű háromszöget is ragasztunk. Így kapjuk az úgynevezett antikvark kockáinkat. Igaz ugyan, hogy pl. a piros szín antiszínje a türkiz, ezt mégis kék-zöld kombinációval érzékeljük, mert a tapasztalat azt mutatja, hogy így jobban megértik a diákok az antiszín fogalmát. Ezeknek a kockáknak az oldalaira a hatféle kvark és antikvark elnevezések (praktikusan az angol nyelvű) kezdőbetűit tüntetjük fel. Egy másik, későbbi feladathoz a betűjelek mellé a kvarkok törtöltéseit is odaírjuk. Újabb „szabályt” fogalmazunk meg, miszerint, ha három kvarkból áll egy részecske, barionnak, ha egy kvarkból és egy antikvarkból, akkor viszont mezonnak nevezzük (44. ábra). Természetesen most már a szintöltéseket is figyelembe kell venni, hiszen a Pauli-elvnek itt is teljesülne kell, ugyanis létezik olyan részecske, (Δ²⁺=uuu) amely 3 azonos állapotú kvarkból áll, de tudjuk, hogy ez nem felel meg a kizárási elvnek. Csoportos feladatok során a diákok játszva jegyzik meg ezeknek a nehéz fogalmaknak a jelentését.
A kvarkok elektromos töltésének ismertetése után a barionok és a mezonok töltését is meg lehet határozni, majd különböző szakirodalmi adatok alapján a tanulók ellenőrizhetik azok létezését, illetve csak azt, hogy mai tudásunk szerint sikerült-e már ezeket felfedezni. Az 50es, 60-as évektől kezdve számtalan részecskét figyelhettek meg a tudósok, és nevezték el a görög ábécé betűinek segítségével. Bár ismert olyan mezon is, mint a c és \bar{c} kvarkokból álló J/Ψ mezon (45. ábra), amelyet azonos időben, két különböző kísérletben is sikerült felfedezni, ezért kapott kétféle elnevezést is.

45. ábra A J/Ψ mezon
Gyakorlás, vagy akár számonkérés során teszelhetjük az eddig tanultakat például olyan gyakorlattal, amelyben „csukott szemmel” választanak ki három kvarkkockát, vagy kettőt, kvark-antikvark párt. A diáknak kell megmondania, hogy az adott kombináció egy természetben is megtalálható részecské e vajon, de annak is utánanézhet, hogy sikerült-e már felfedezni a tudósoknak az elmúlt évtizedekben. Az antirészecske fogalmát is elmagyarázhatjuk kockák segítségével, de ehhez a már korábban elkészített antikvark kockákra lesz szükségünk. Minden részecskének van antirészecskéje, ezek minden fizikai paraméterükben pontosan megegyeznek, kivéve az elektromos töltésüket, amelyek egymás ellentettjei. Például az up kvark antirészecskéje az anti-up kvark. Míg előbbinek +2/3 az elektromos töltése, utóbbié -2/3. A proton, ami két up és egy down kvarkból épül fel, és így a töltése +1, az antiprotoné viszont -1, mert 𝑢̅𝑢̅𝑑̅ összetételű hadron (46. ábra).

![Proton és antiproton](image-url)
Érdekes kérdés és kutatási feladat lehet a gyerekeknek, hogy a nevezetes J/Ψ mezón, amely c és c̅ kvarkokból áll, vajon miért nem alakul át energiává, hiszen a részecské saját antirészecskéjével találkozik. És a legnagyobb kérdés, amelyre a CERN kutatói is keresik a mai napig a választ, „Hova tűnt az antianyag?”. A Világegyetem 4-5%-át ismerjük jelenleg, amelyben nincs antianyag. Viszont az Ősrobbanáskor egyenlő számban kellett, hogy keletkezzenek részecskék és antirészecskék. A gyakorlatok során ehhez hasonló problémafelvetésekre is sor kerül, és kelti fel a diákok érdeklődését a XX.-XXI. század fizikája iránt.

3.4.4. Hadronizáció

A kockák segítségével számos folyamatot lehet még bemutatni és felhasználni a gondolkodtató, felfedeztető oktatás gyakorlására. Azt tudjuk, hogy a detektorainkkal, amelyeket a diákokkal együtt fejlesztetek, műon részecskék áthaladását figyelhetjük meg, amelyek a kozmikus sugárzásban pionok bomlásából keletkeznek. De hogyan jönnek létre a pionok? Ezt a hadronizációknak nevezett folyamatot is a szemléletes modellkészletelemmel érthetőbbé tehetjük.

A kozmikus sugárzással főleg protonok érkeznek a légkörbe, ahol is ütköznek oxigén vagy nitrogén atomokkal. Az atomok protonjaiban lévő egyik kvark az ütközés hatására távolabb kerül a másik kettőtől, közben kialakul egy gluon-”fonal”, amelynek elemei nagy energiákon képesek átmenetileg átalakulni tengerkvarkokká, vagyis kvark-antikvark párokká. Az antikvark az eltávolodott kvarkkal létrehoz egy mezont (47. ábra), amely u̅d formájában egy pozitív piont, űd-ként egy negatív töltésű piont, de lehet uū vagy d̅d̅ kombinációjú semleges mezón is. A modellezés során végig figyelnünk kell a kvantum színdinamika törvényeire, a három valencia kvark mindig piros, zöld és kék színű, a keletkezett mezón pedig színt és a saját antiszínét tartalmazza, vagyis összességében fehér kell, hogy legyen.
Még egy érdekes megmaradási törvényre vezethetjük rá a tanárokat és a diákokat, az úgynevezett elektronikus és müonikus leptonoszám megmaradására. A leptonősség megmaradását Marx György ismerte fel 1951-ben. A háromféle lepton és a hozzájuk tartozó neutrínók leptonősségét 1, az antirészecskéké -1, minden más részecskéké 0. A teljes részecskék kölcsönhatása során a leptonősség is megmarad, a hat megmaradó mennyiség közül ez az egyik.

Ennek bevezetését érdemes a tanárok és diákok körében is népszerű ködkamra készítéssel és az áthaladó részecskék nyomonalainak megfigyelésével kezdeni. Anélkül, hogy mágneses térbe helyezzük a kamrát, meg tudjuk állapítani, hogy a hosszú, vékony nyom az elektronon jelzi számunkra (48. ábra). Egy „picit” segíthetünk, hogy ez egy müon bomlásából jöhetett létre, vagyis igazából a müon-részecskék földre érkezését detektáltuk. Itt persze öhatatlanul előjön a speciális relativitáselmélet és a műon, mint ennek legdöntőbb bizonyítéka. Ezt a tanult képletek és a müon élettartama ismeretében az ügyesebb diákok ki is tudják számolni, így bizonyítani az idődilatáció és a hosszkontrakció érvényességét.
Doktori értekezés

48. ábra Elektron nyoma a ködkamrában

Viszont mi most azt szeretnénk kockáink segítségével bebizonyítani, hogy egy müon bomlása tulajdonképpen kétbomlásos folyamat és három részecske keletkezik a bomlás során. Legtöbben azt gondolják, hogy μ^--ból elektron és még valamilyen semleges részecske, μ^+-ból pedig pozitron és a feltételezett neutrínó keletkezik.

Nézzük meg kockák segítségével, hogy ennek a feltételezésnek a nyomán, hogy néz ki egy folyamat (49. ábra)!

49. ábra a müon bomlásának folyamata

A rávezetéses módszer lényege, hogy először nem áruljuk el a végeredményt, hanem ismert és kevésbé ismert törvények segítségével próbáljuk kitaláltatni a hiányzó részecske fizikai paramétereit. Ehhez először az elektromos töltés megmaradását ellenőrizzük, majd a kétféle leptontöltés megmaradását (50. ábra).
Három megmaradó mennyiséget tüntettem fel előre a leptonkockákon, az elektromos töltés, az elektronikus és a müonikus leptontöltést. Mivel mindhárom mennyiség megmarad, az egyenlet bal és jobb oldalán a számok összege egyenlő kell, hogy legyen. A kockák megfelelő forgatásával ezeket ellenőrizni tudjuk, így kapjuk a háromrészecskés folyamatot mind a pozitív, mind pedig a negatív töltésű müon esetében (51. ábra).
A kockák előkészítése is egy fontos lépése a tanulási folyamatnak, hiszen a diákok által korábban még nem ismert mennyiségekkel, illetve azoknak jellemző értékeit kell rögzíteni. Sokszor segítek különböző táblázatokkal (52. ábra), mert nem a száraz adatok „bemagoltatása” a célom, hanem hogy gondolkodásra késztessem Őket.
3.4.5. Radioaktív béta-bomlás

A középiskolai fizika tananyagnak fontos részét képezi a modern fizika témakörén belül a radioaktív bomlások fejezete. Még a középszintű vizsgát tevő diákok is könnyedén ki tudják számolni függvénytáblázat segítségével a bomlási folyamatok hiányzó tagjait. Viszont tapasztalatom szerint fogalmuk sincs arról, hogy mit miért csinálnak, csak a „bemagolt” sémákat követik. Be kell, hogy valljam, nekem is sokáig problémát jelentett, hogy megjegyézzem mikor és mennyivel változik a tömegszám és a rendszám és hogy mikor, milyen fajta részecske keletkezik.

Elsősorban a magam számára próbáltam kitalálni valamilyen módszert, remélve közben azt is, hogy ezzel a diájakimnak is megkönnyítem a megértést, tehetségesebb tanítványaimnak pedig a mélyebb szinten történő folyamatokat is el tudom majd magyarázni. Ehhez az ötletet gyermekeim egyik játéka adta, egy kockákból álló puzzle, ahol a kockák forgatásával mindig különböző képrészlet válik láthatóvá, egyszerre és azonos irányba forgatva őket, felismerhető lesz a teljes kép valamelyik meséből. Mi lenne, ha mi is valami hasonló módszerrel vizsgálnánk meg a bomlási folyamatokat a nukleonok, vagy akár a kvarkok szintjén is? Most újfajta kockákat kell készítenünk, azoknak a részecskéknek a modelljeit, amelyek a béta-bomlásokban előfordulnak. Itt viszont a kocka hat oldalára annak a hat megmaradó mennyiségnek a részecskére vonatkozó adatait írjuk, amelyek minden kölcsönhatásban megmaradnak. Itt a „bűvös” hatos a következő: elektromos töltés, energia/tömeg, impulzusmomentum, barion-szám, lepton-szám és az izospin hármas vektora. Ebből csak párat használunk a megértetéshez, csak azokat, amelyek könnyen számolhatók.

Legyenek ezek a korábbi tanulmányokból már jól ismert paraméterek, mint az elektromos töltés, a barion-szám és a lepton-szám. Persze tisztáznunk kell azt is,
hogyan definiáljuk a barion- és lepton-számot. Ehhez a játékhoz megadhatjuk a
számokat egy táblázatban, amit használhatnak a feladat megoldása közben, nincs
szükség a „száraz” adatok megtanulására, bár elég logikus a magyarázat.
Leegyszerűsítve: minden, ami barion, annak a barionszáma +1, természetesen így a
leptonszáma 0, a leptonoknál pedig éppen fordítva van, leptonszámuk +1, barion-
számuk 0, az antileptonok leptonszáma logikusan -1. Először vizsgáljuk meg a
neutron béta-bomlását (53. ábra)! A mag belsejében lévő neutron egy protonná, egy
elektronná és még valamivé kell, hogy alakuljon. E. Fermi felfedezése óta tudjuk, kell,
 hogy legyen még egy szinte zérustömegű részecske, amely elviszi a hiányzó energiát
[42]. És ez, a lepton-szám megmaradás értelmében egy antilepton kell, hogy legyen,
negatív béta-bomlásnál elektron-antineutrínó.

53. ábra A neutron béta-bomlása

De sokkal izgalmasabb a feladat, ha előre nem áruljuk el az összes bomlásterméket a
diákoknak, hanem maguknak kell rájönniük a megmaradási törvények használatával,
milyenek keletkeznek. Ugyanis, ha csak az elektromos töltés megmaradását nézzük,
akkor az is igaz, hogy neutronból egy proton és egy elektron keletkezik, sőt, ha
forgatunk egyszerre, egy irányban mindegyik kockánkon, és így a barion-töltések
válnak láthatóvá, még ebben az esetben is helyes az egyenletünk. Viszont a következő
forgatás után felborul az egyenlőségünk, amikor is a lepton-szám megmaradást

64
ellenőrizzük, hiszen \(n \rightarrow p + e \) bomlással esetén a lepton-számok a következőképpen alakulnak: \(0 \rightarrow 0 + 1 \) (54. ábra).

54. ábra A barion- és a leptonszám megmaradása

Ez azt jelenti, kell, hogy legyen egy antirészecske is, mert annak a lepton-száma -1. Az előre elkészített részecske-kockákból a diáknak magának kell kiválasztania, kiokoskodnia a hiányzó részecske fajtáját. Ellenőrzésképpen pedig ellenkező irányú forgatások során megvizsgálhatjuk a barion-szám és az elektromos töltés számának egyenlőségét az egyenlet bal és jobb oldalán. Szakkör keretein belül azt is megmutathatjuk, hogy a bomlás igazából kvarkszinten játszódik le, hiszen tulajdonképpen egy kvarkcsere történik, a d-kvarkból u kvark lesz vagy fordítva, eközben keletkezik egy negatív vagy pozitív W-bozon (a gyenge kölcsönhatás mértékbozonja), amely tovább bomlik egy lepton-antilepton párra (55. ábra).
A célom az, hogy játszva, szemléletesen tanulják meg tanulók az amúgy kevés érdeklődést kiváltó, ráadásul nehezen emészthető részecskefizika témakört, itt is becsempészhetünk egy plusz trükköt. A W-bozonunkat, mivel ő a standard modell szerint már nem a fermionok családjába tartozik, és eddig azokat szemléltettük kockákkal, készíthetjük például tetraéder alakúra, és a belsejébe elrejthetünk két kisebb kockát, ezek lesznek a lepton-antilepton párraink. A bomlás kvarkszintű modelllezésénél mintegy varázsütésre „előbújnak” a tetraéderből a bomlástermékek. A béta-bomlás mind a három fajtáját be lehet mutatni a kockák segítségével, és eközben tanítványaink észrevétlenül sajátítják el a tananyagot.
3.5. Tapasztalatok a tanárok és a diákok körében

Az ötletek tárháza kimeríthetetlen, hiszen a diákok kreativitása is határtalan. Több iskolában is már bemutatva a projektet, természetesen saját diájkaimmal is kipróbálva, azt tapasztaltam, hogy minden alkalommal bővül a modellkészlet. Volt olyan csoport, ahol barkácsolás közben például a Higgs-bozon bomlására készítettek új kockákat, de továbbképzések alkalmával tanárok is nagy örömvel „játszottak” (56. ábra).

56. ábra Diákok és tanárok modellkészítés közben

Számos rendezvényen, konferencián, továbbképzések alkalmával mutattam be ötletemet fizika- és kémia tanár kollégáknak (57. ábra), ahol minden esetben pozitív visszajelzéseket kaptam.
Tudomásom van róla, hogy többen is kipróbálták szakköri kereteken belül és használták oktatási segédanyagként a kocka készletet tanórákon is, és hallottam, hogy volt olyan kolléga, aki fából is elkészítette a modell „tartós” változatát. A legnagyobb örömöt és izgalmat számonra is az elkészítés és az ötlettelgetés folyamata jelentette. Örömömre szolgálnak azok a visszajelzések, amelyek azt mutatják, hogy tényleg segítséget nyújt a középfokú oktatásban, a modern fizika témakörének feldolgozása közben ez a „fillérekből” elkészíthető látványos, „kézzel fogható” modell. Bár évek óta állandóan azt halljuk, hogy a digitális oktatásnak milyen fontos szerepe van, mégis hiszem, az elmélyült, technikaórák hangulatához hasonló csoportos foglalkozásoknak nagyon fontos szerepe van mai világunkban, a virtuális megoldásokra csak kiegészítésként van szükségünk. Akár ezt a projektet is, kiegészítő feladatként meg lehet valósítani számítógépes animáció segítségével.

A CERN-ben működő Nagy hadronütköztető beindítása óta egyre több médium foglalkozik a részecskefizika érdekes világával, és próbálják fizikusok, tanárok az átlagember számára is érthetővé tenni a látott-hallott eseményeket. Különböző játékok is készülnek a szemléletesség érdekében, plüssfigurák, kártyajátékok vagy számítógépes simulációs programok. Az utóbbi években bebizonyosodott, hogy ezek a módszerek felkeltik nem csak a diákok, hanem az érdeklődő felnőttek figyelmét is, és a témakörrel való játékos ismerkedés után bátrabban kezdenek bele tudományos írások tanulmányozásába. Remélyeim szerint minél többen megismerik a jövőben ötletemet, és tudják használni tanításuk, tanulásuk során.

57. ábra Előadást tartok egy gimnáziumban és egy rendezvényen
3.6. Detektorépítés a legkisebbeknek

Nem lehet elég korán kezdeni a részecskefizika oktatását, mondhatnánk viccesen, de sok igazság is van benne. Számos rendezvényen (Science on Stage, Sokszínű fizikabusz road show) találkoztam általános iskolás korú, ezen belül akár alsó tagozatos gyermekkel, aki érdeklődéssel figyelte a busz hátlujában lévő CMS (Compact Muon Solenoid) detektor kicsinyített mását, vagy a színes kockámat. Igazi kihívás volt, hogy egy olyan diáknak, aki nagy valószínűséggel még a protonokról, neutronokról sem hallott, vajon miként lehet egy apró szeletet bemutatni ebből, a még középiskolások számára is nehezen érthető témakörből.

Egy ilyen alkalomra, amikor engem kértek fel a Sokszínű fizikabusz hátsó részében található „mini” LHC és CMS detektor bemutatására, vittem magammal a technika órákhoz hasonló felszerelést. Karton papírt, ollót, sablont, ragasztót, fényképet a detektor keresztmetszetéről, sőt még kinyomtatott QR kódot is, amelyet az elkészített makettre ráragasztva, okos telefonnal rögtön a keresett oldalra tudtak menni. Minden kisdiák elkészíthette saját CMS detektorát (58. ábra), amit haza is vihetett. A munka folyamán kötetlenül tudtam beszélgetni Velük, mesélhettem az óriás gyorsítógyűrűről, a négy szuperdetektorról, és az egyik „legszebbről”, a CMS-ről. A keresztmetszeti fénykép felragasztása közben el tudtam magyarázni a hagymahéj szerkezetet, és pár dolgot lefordítva egyszerű nyelvre.

58. ábra A CMS detektor papírból készült makettje
III. rész: A mikrovilág megismertetése zenei analógiákkal [5], [15], [18]

Bevezető

A fizika egyes fejezeteinek érdekes, figyelemfelkeltő tanításához bevezettem új, általam kidolgozott módszereket zenei párhuzamok használatával. Hangok különböző eszközökkel való keltésén és elemzésén túl dallamok segítségével magyarázhatók a bolygómozgás törvényei vagy akár a húrelmélet jelenleg ismert tételei. Így a zene jótékony hatását kihasználva diájakainak motivációja növelhető.

4.1. Fizikusok és a zene kapcsolata

A fizika és a zene kapcsolata régóta ismert. Nagy fizikusok, mint Kepler, Newton vagy akár Einstein, de a részecskefizikával foglalkozók is számtalan alkalommal nyúltak a zene adta lehetőségekhez. Tanításom során régóta használom ezt a módszert egyes tananyagok színesítésére, jobb megértetéséhez.

Egy hangszer megjelenése a fizikáórán, hacsak nem hangtannal foglalkozunk, meglepő és szokatlan. Ennek a figyelemfelkeltő erejét mindenképpen érdemes kihasználnunk egy nehezebbenek gondolt anyag feldolgozásakor. A fizika és a zene kapcsolata már a XVII. századtól ismert, nagynevű fizikusokat fűzte szoros kapcsolat a zenéhez. Többen játszották maguk is hangszeren, Einstein kiválóan hegedült, Helmholtz és Heisenberg kitűnően zongorázott, de említhetnénk a közelmúltból Reines nevét, aki például kórusban énekelt. A hangközök kalibrálása J. S. Bach nevéhez fűződik, akinek a XVIII. század elején sikerült megvalósítania az oktáv pontos, geometriailag egyenlő közű felosztását.

4.2. A hangok fizikája

A zene nem más, mint jól meghatározott frekvenciájú hangok, meghatározott időközönkénti megszólalása. A hangok magassága pedig az adott hang frekvenciája. Elsőként mindig tesztelni szoktam diákjaimat, kinek milyen a hallása. A táblagépemen található alkalmazás segítségével 0 Hz-tól 20000 Hz-ig tudom változtatni a frekvenciát, ami közben tapasztalják saját fülükkel, hogy nagyobb frekvenciához nagyobb hangmagasság tartozik. Eközben megbeszéljük, hogy a hanghullámok milyen módon jutnak el hallásszervünk közé, milyen feltételek szükségesek ahhoz, hogy ez folyamat létrejöjjön. A fizika ugyanis az anyagokban történő rugalmas deformációit tekinti hangnak, vagyis a longitudinális hullámok
létrejöttéhez közegre van szükség. Különleges esetekről, az állatok között lévő hallás különbségekről is beszélhetünk ennek kapcsán, mint a hallás bajnokairól. Az elefántról, aki infravékony hangokat, vagyis 20 Hz alatti és a denevérről vagy a molylepkről, akik ultrahangot, 20000 Hz feletti tartományokban is hallanak és kommunikálnak (59. ábra).

59. ábra A hallás bajnokai

Mivel különböző hangszerek segítségével szeretném elmagyarázni a diákoknak a hangtan alapjait, ezért először bemutatom minimális elméleti ismereteket Nekik. A projektet kipróbáltam általános iskolás korosztályokkal és középiskolásokkal is, azt tapasztaltam, hogy ennyi háttértudás elegendő a hangszerek működésének megértéséhez. A hangok a levegőben longitudinális rezgésként terjednek, viszont egy rezgő gitárhúr transzverzális rezgéseket végez. Ezt a jól bevált „lépcsőjáró” rugó segítségével könnyen bemutathatjuk (60. ábra).

60. ábra Transzverzális és longitudinális rezgések

Az alapvető mennyiségek jeleit, mértékegységeit és a köztük lévő kapcsolatot természetesen bemutatom és a különböző frekvenciákhoz tartozó hullámhosszakat grafikonon ábrázolom (61. ábra).

\[f = \text{Hz} \rightarrow \text{frekvencia}, \lambda = \text{m} \rightarrow \text{hullámhossz}, \frac{c}{s} = \text{terjedési sebesség} \]
Az alapgondolat, amelyet elég könnyen megértenek a gyerekek az, hogy rövid hullámhosszhoz nagy frekvencia tartozik, ami egyben magasabb hangot jelent. Ha például egy mosogatóhoz használt úgynevezett „bűzcsővel” kísérletezünk (62. ábra), akkor még a sebesség, a frekvencia és a hangmagasság közötti kapcsolatra is rávezethetjük a tanulókat, hiszen a bolygók mozgására bemutatott zenei analógiához erre egy másik projekt alkalmával még szükségem lesz. A gégecsövet különböző sebességekkel forgatva más és más magasságú hang szólal meg, és ha sikerül megfelelő sebességgel pörgetnem, akkor ismert szolmizációs hangok ismerhetők fel, akár egy egyszerű dallamot is el lehet a cső segítségével játszani.

4.3. Zenei analógiák a klasszikus fizikában

Kepler törvényei a nagy méretekből adódóan nehezen képzelhetők el, viszont azok, a bolygók „hangjainak” kepleri megszólaltatásával érdekesebbé, és könnyebben megjegyezhetővé válnak. Azt tapasztaltam, hogy bármilyen absztrakció igényes modell egy ilyen fajta hangulati elem segítségével a tanulók számára természetesebbé, „kézzel foghatóbbá” válik.
Kepler az általa ismert 6 bolygóhoz (Merkúr, Vénusz, Föld, Mars, Jupiter, Szaturnusz) rendelt hangsorokat (63. ábra), így alkotva meg a szférák zenéjét. Az ára utolsó kottája alá az van írva, hogy „ez is egy másik hely”, ami valószínűleg a Holdra utal. Érdekes feladat lehet diákok számára is a Kepler-féle égi harmónia kiszámolása, és ha a bolygókhoz zenei magyarázatot fűzünk, könnyebbe válik az égi mechanika összefüggéseinek a megértése. Ha ezt még a magunk által bemutatott zenei aláfestéssel is kiegészítjük, akkor biztos nem marad el a siker. A gitáromon meg tudom mutatni az állóhullámokon mutatkozó duzzadó helyeket és csomópontokat papírolovasok segítségével. Ennek kapcsán rögtön utalhatunk a kvantumvilág furcáságai közül arra, hogy az atommag körül lévő elektron is állóhullámként viselkedik. Húroknál a kialakuló hang frekvenciája egyenesen arányos a húrt feszítő erővel, és fordítottan arányos a hosszával és a keresztmetszetével, de a rezgésszámot még befolyásolja a húr anyagának a sűrűsége is.

Az égitestek mozgásánál a pálya menti sebességek és a frekvencia arányosságát fedezetetjük fel a tanulókkal (v=2πrf,), és vonunk párhuzamot a zenével, hiszen magasabb hanghoz nagyobb frekvenciaérték tartozik. A bolygók egymáshoz képesti mozgása pedig az összhangzatot adja. Kepler „Harmonices mundi” című művében ír erről teljes részletességgel és bizonyítja zenei jártasságát. Az egyik közkedvelt videómegosztó csatornán megtalálható a zenemű olyan formában is, hogy a megszólaltatott hangokkal egyidejűleg a kottában is jelezve van a lejátszott hang [43].

Kepler törvényeivel egyidőben szoktam tanítani Newton gravitációs erőtörvényét és azt is, hogy a Nap körül keringő bolygókra ható erők miként egyenlítik ki egymást. Ezért, ha a bolygó pályájának lapultsága miatt közelebb kerül a fókuszponthoz, akkor nagyobb gravitációs erő, ennek következtében nagyobb, ellenkező irányban ható tehetetlenségi erő (helytelenül szokták centrifugális erőnek is nevezni) hat a testre, vagyis nő a sebessége. Ha viszont nő a sebessége, a modellünk szerint magasabb hangon „énekel”. A bolygó, ha távolodik a központi égitestétől, akkor a gravitációs erő csökkenésével együtt a sebessége is csökken, egyre alacsonyabb hangok rendelhetők hozzá.

Mivel a Vénusz pályája közel kör alakú, a hangmagasság alig változik a Naphoz legközelebbi ponton, ahol a leggyorsabban halad, ezt láthatjuk a kottán is, hiszen ugyanazt a hangot látjuk leírva egymás mellé, ezt még a zeneileg képetlen diák is megéríti. A Földpálya excentricitása is kicsi (szakirodalomban ellenőrizhetjük az excentricitás értékeit), ami azt jelenti, hogy az
általa keltett hangok közel vannak egymáshoz, csak egy fél hangköznyit ingadozik. A futamok elhelyezkedésének is van jelentősége a kottában, hiszen, ha alacsonyabb elhelyezkedésű minden hang, akkor összességében lassabban halad a bolygó, mint a magas hangtartományban mozgó társa, és ez azt jelenti távolabban van a Naptól. Ezután már, hogy a tanulók megértették az analógiát, maguk is kitalálhatják, hogy melyik bolygónak a pályája a leglapultabb, a Szaturnusz vagy a Jupiter van közelebb a Naphoz.

63. ábra Az égitestek kepleri és a ma használatos, átírt hangjai

Egy másik megközelítéssel pedig a dallamok elhangzása után, anélkül, hogy a diákok látnák a kottát, megpróbálhatják kitalálni, hogy melyik bolygó mozgását vélik felfedezni. A legnehezebb feladat, igazi csemege lehet a projekt végén, ha az összes bolygó futamait, a kepleri „szimfóniát” egyszerre hallgatjuk, és eközben kell felismerni, hogy melyik bolygó lép be éppen a zeneműbe.

Azt is meg lehet mutatni a fizikaórán, hogy Isaac Newton, miközben a napfény színeinek elemzésével foglalkozott, a spektrumban található 7 színhez hozzárendelte a skála 7 egész hangját. (nála D hangról indult a hangsor a szimmetria miatt) Majd egy kör mentén helyezte el őket, így körbe-körbe haladva mindig egy oktávval feljebb lehetett ismételni a hangsort (64. ábra). A körök megfelelő nagysága különböző volt a megfelelő hangközök értelmében.
Doktori értekezés

64. ábra. A Newton-féle hangskála

4.4. Részecskefizikától a szuperhúr elméletig

Kutatómunkám során találkoztam azzal is, hogy a hürelmélet képviselői találóan, kozmikus szimfóniaként emlegetik az Univerzumban lejátszódó jelenségeket, és bár a szuperhürelmélet a részecskefizika egy speciális területe, amely elemi részecskék helyett rezgő energiaszálak kifejezést használ, mégis felhasználhatjuk ezt a modellt is a részecskefizika iránti érdeklődés felkeltéséhez. Több mint négy évtizede tartó zenei érdeklődésem, és az, hogy magam is játszom klasszikus gitáron, ahhoz a kérdéshez vezetett, vajon a mikrovilágban és az Univerzumban lejátszódó jelenségek és elemi részecskék közötti kapcsolatok is felhasználhatóak a zenei érdeklődés felkeltéséhez. Azonnal felismertem, hogy a zene a részecskefizika területére is felhasználható.

Így, a zenén keresztül eljuthatunk akár nehezebbnek vélt témakörökre, akár a ma még csakéről ismeretlenekre is. A zene hangsúlyozza a különböző elemi részecskék és energiaszálak nagyságát.

A hürelmélet azt feltételezi, hogy az atomok érőként energiaszálak ből épülnek fel, és ezek a rezgések felelnek meg a különböző elemi részecskék által kifejezett energiájukra.

A zene azonban felismeri, hogy a gyakorlatban a rezgések valószínűleg kevésbé pontosak, és ezért a zenei hangokat nem úgy kifejezhetjük, mint a fizikai rezgésekhez hasonlóan.

A zenei hangokat tehát azonban úgy kell felismernünk, hogy ezek a rezgések nem feltétlenül pontosak és pontosan megegyeznek az atomok energiaszálakéval. A hangok képessége különböző elemi részecskékre is felhasználhatók, amelyek különböző energiaszálakkal rendelkeznek.

A zenei hangok és a fizikai rezgések közötti kapcsolat felismertével könnyen a zenei érdeklődés felkeltéséhez juthatunk az elemi részecskékkel és energiaszálakkal. Azonban ez nem jelenti azt, hogy a zenei hangok pontosan megegyeznének a fizikai rezgésekkel.

A zenei hangokat tehát a fizikai rezgésekkel összehasonlítva felismernünk és megértjük, hogy ezek különböző energiaszálakkal rendelkeznek. Azonban ez a kapcsolat nem feltétlenül pontos és pontosan megegyezik a fizikai rezgésekkel.

A zenei hangokat tehát a fizikai rezgésekkel összehasonlítva felismernünk és megértjük, hogy ezek különböző energiaszálakkal rendelkeznek. Azonban ez a kapcsolat nem feltétlenül pontos és pontosan megegyezik a fizikai rezgésekkel.

A zenei hangokat tehát a fizikai rezgésekkel összehasonlítva felismernünk és megértjük, hogy ezek különböző energiaszálakkal rendelkeznek. Azonban ez a kapcsolat nem feltétlenül pontos és pontosan megegyezik a fizikai rezgésekkel.

A zenei hangokat tehát a fizikai rezgésekkel összehasonlítva felismernünk és megértjük, hogy ezek különböző energiaszálakkal rendelkeznek. Azonban ez a kapcsolat nem feltétlenül pontos és pontosan megegyezik a fizikai rezgésekkel.
egyenletei olyan pontosak, hogy még ma is azt használjuk. Newton viszont nem tudta hogyan működik a tömegvonzás.

Einstein, a svájci szabadalmi hivatal tisztviselője, miközben a fény viselkedésén gondolkodott, a tömegvonzás törvényeinek a magyarázatára is rájött. Ehhez képzeljük el a következő gondolati kísérletet. Mi történne, ha a Nap egyszer csak eltűnne az égboltról? Newton szerint a bolygók azonnal elhagynák pályájukat, Einstein szerint még a gravitáció sem lehet gyorsabb a fénysebességnél, tehát körülbelül 8 perc szükséges ahhoz, hogy a gravitációs zavar keltette hullám a Földet elérje. Ha Newton tévedett, akkor viszont mi tartja helyükön a bolygókat? Egy új elmélet született, ahol a gravitáció nem lépi át a „kozmikus” sebességhatárt. A 3 tér és 1 idő dimenzió egy egységes szövetet alkot, a tér-időt. A tér-idő görbülete jelképezi azt, amit mi gravitációsan értelmezünk (66. ábra). A bolygó egyszerűen csak követi a tér-idő görbületét. A tömegvonzásról alkotott új képet Einstein általános relativitáselméletnek nevezte el.

65. ábra A naprendszer bolygói

66. ábra Görbült tér-idő szövet
Fél évszázaddal korábban már Maxwell egyesítette az elektromosságot és a mágnességet. Einstein viszont egyesíteni akarta az új gravitációs erőképet az elektromágnességgel. Egy mindent leíró egyenleten gondolkodott.

A 30-as évekre további két erőt találtak a fizikusok. Az erős kölcsönhatás az atommagon belüli egyfélére szupertagarasztó, a másik a béta-bomlásért felelős gyenge kölcsönhatás (67. ábra). Nagy fizikusok egyik legfőbb kérdése, hogy vajon létezik-e egy mindent leíró egyenlet. Ma ez a szuperhúr elmélet célja, hogy a világ természeti jelenségeit minél egyszerűbb elvek alapján lehessen leírni. Egyetlen vezéregyenletben összefoglalni mindent, az Univerzum születésétől a galaxisok örvényléséig.

67. ábra A hürelmélet egyesíti az erőket?

Az apró húrok vibrálását az extra dimenziók alakja is befolyásolhatja. Ha pontosan tudnánk, hogyan néznek ki ezek az extra térddimenziók, ha egyáltalán léteznek, képesek lennénk kiszámolni, hogyan néznének ki a lehetséges „hangjegyek”, vagyis az elemi részecskék. Az LHC a következő években talán be tudja bizonyítani az extra dimenziók létezését. Ez lenne a tökéletes világmindenség, ami a húrok zenéjéből áll.

A hürelmélet mellett mások M-elméletről beszélnek, ami a különböző szuperhúr elméletek 11 dimenziós határesetei. Ők azt feltételezik, hogy az Ősrobbanás után kb. háromszáz évvel alakultak ki a semleges hidrogénatomok, de még ez előtt az Univerzum rendkívül sűrű plazmaként oszcillált, ami azt jelenti, hogy hanghullámok szaladgáltak benne ide-oda. Ezt az információcserét úgy lehet elképzelni, mintha egy üstdobnak a membránja rezegne. A Világegyetem hűlése közben hirtelen befagyott egy adott rezgésformában ez a „membrán”. Ennek ugyanúgy vannak sajátrezgései, mint az üstdobnak, és ezeket ki lehet számolni.
Doktori értekezés

Valójában, e szerint az elmélet szerint is, az Univerzum szintén majdnem úgy viselkedik, mint egy hangszer, csak éppen kozmikus méretekben. Sőt, a csillagok óriás gázgömbjeinek a belsejében is hanghullámok terjedhetnek. Ezek a rezgések akkorá láthatóak, hogy a csillagok fényének változásaként érzékelhetők, így a csillagbelső „hangjait” halljuk. A csillagok hangjai alapján megismerhetjük belső szerkezetüket és működésüket. A csillagrezgések is kapcsolhatóak az akusztikus hangszerek fizikájához, a változócsillagok Kepler mintájára a kortárs szférák zenéjének a zenekarát alkothatják.

Ahogy Newton és Kepler is tette, mi is a rezgések, a hangokon keresztül vezethetjük be a modernfizika egyes fejezeteit, a zenei hangokat elemi részecskékhez hasonlítva érdekes párhuzamot vonhatunk a hangok közötti viszonyok és a Világegyetem felépítése között. A diákok fantáziajára bízhatjuk a „komponálást”, egyszerű összefüggések ismeretének a segítségével ők is megismerhetik a mikrovilág zenéjét. Így a fizikaórák színesebbé, szórakoztatóbbá tehetők, lehetőséget adva kreativításuk kibontakoztatására, és megmutatjuk az utat egy fantasztikus, ma még ismeretlen világ megismerésének esélyére.

4.5. Játékos fizika tanulás a zene segítségével

Szakkörön, tehetséggondozáson különböző tárgyakat is segítségül hívtunk zenei hangok keltéséhez, amely tovább segítette a hangtan alapjainak az elsajátítását. A foglalkozások rendkívül népszerűek bizonyultak, főleg lányok, de pár fiú diák is részt vett a muzsikálásban. Már a kezdetekben már a zenei hatása a fizikatanítás során is rendkívüli érdekes, és a művészeti területen esélyt adott a közösen létrehozott produktum, a “zenekarunk” által több szólamban eljátszott zenemű bemutatása közönség előtt. 2017. szeptemberében is megjelentek a kutatók Éjszakája rendezvényes rendezvénysorozaton belül, mint „Öveges tanár úr utódja”, hogy diákjaink közreműködésével előadást tartassak. Mivel már fizikaórákon, szakkörön is próbálkoztunk különböző, házi készítésű hangszerek megszólaltatásával, összeállítottuk bemutatóinkat „Zenejünk fizikául, avagy fizikázzunk zenéül” címmel.

A hangszeret általában három nagy csoportba osztják: pengetős, fúvós vagy útős hangszerekre. Hosszú éveken keresztül a zenei hangzásom eredményeképpen a fizikaórára gitált és furulyát szoktam bevenni, ezeken keresztül a húrok rezgésein, az állóhullámokat, csomópontokat, felhangokat is be tudom mutatni, illetve a nyitott és zárt végű sípok fizikáját
is szemléletesen mutatom be, de ennél sokkal érdekesebb, ha a tanulók a maguk által készített hangszerek segítségével tanulnak. Az ötleteket szakirodalmi leírásokból merítettük [44], [45].

A pohárorgona évszázadok óta ismert kedvelt hangszer, amihez jó minőségű és különböző méretű borospoharak szükségesek. Az üvegpoharakba adott magasságig vizet öntöttünk és bejelöltük a megfelelő hangot. Benedvesített újjal a pohár száján körkörös mozgást végezve meg tudjuk rezentetni a vízoszlopot és ezáltal a felette lévő levegőréteget (68. ábra). A diákok maguk jönnek rá, hogy minél több vizet öntenek a pohárba, annál magasabb hang keletkezik, hiszen a levegőoszlop hossza és a frekvencia között fordított arányosság van.

68. ábra Behangolt poharak és a diákok bemutatója

Lehet készíteni dobot is egyszerű eszközökből, egy konzervdoboz és lufimembrán felhasználásával is (69. ábra). A rezgő hártya szintén megrezegteti a levegőt, a membránfelület nagysága és feszessége megváltoztatja a hang magasságát.

69. ábra Házilag készített dob
A pohárorgonához hasonló elven működik a befőttesüveg „orgona” (70. ábra), de ebben az esetben egy fakanállal való útjogéssel keltjük a hangokat.

70. ábra Behangolt befőttes üvegek

Üdítős üvegek (de persze középiskolás fiúknál sokkal kedveltebb például egy sörös üveg) fújásával már a legkisebbek is próbálkoznak, miután kiitták tartalmukat, de azt, hogy különféle hangmagasságokat is meg lehet velük szólaltatni, ahhoz egy kis fizikát is kell hozzá tanulniuk. Ebben az esetben az oldalról történő fújással (71. ábra) a levegőoszlopot hozzuk rezgésbe, és a már többször ismételt alapösszefüggést alkalmazva a diákok megtanulják, hogy minél hosszabb a levegőoszlop az üvegben (a maximális hosszt úgy lehet elérni, ha üresen hagyjuk az üveget), vagyis a hullámhossz, annál kisebb a frekvencia értéke és így mélyebb hang keletkezik.

71. ábra Oktávnyi hangköz palackokból
Ügynevezett szívószáldudát is tudunk egyszerűen készíteni (72. ábra), amivel látványosan tudjuk bizonyítani a hullámhossz és a frekvencia közti fordított arányosságot azáltal, hogy ha fújás közben egy ollóval egyre rövidebbre vágjuk.

72. ábra Szívószálduda

A világon egyre népszerűbb és sok iskolában is zenekarokat alakítanak egyes diákok csoportok, ahol műanyag zenecsövek a hangszerek. Legolcsóbban a háztartási boltokban kapható, elektromos vezetékekhez használt, hosszú műanyag csövekből lehet adott méretre vágni azokat.

73. ábra Házilag készített zenecsövek

Táblázatban megadhatjuk az adott hangmagasságoknak megfelelő pontos hosszúságokat. Érdemes a mérethez vágás után a hangok ábácés betűit feltüntetni, de a zenéhez kevésbé értők, vagy akár óvodások, kisiskolások kedvéért a hangokhoz színkódot rendelni (73. ábra).

A világhálón is találhatóak, de magunk is készíthetünk ügynevezett szívárvány kottákat, így könnyen követhető a dallam (74. ábra).
Ebben a projektben a legfontosabb, hogy a diákok a zene szeretetén keresztül tanulják meg a hangok fizikájának az alapjait mindenféle számolás és képletek alkalmazása helyett. Tapasztalataim alapján, akár általános iskolai, akár középiskolás csoporttal végezem ezt a fajta oktatási tevékenységet, minden esetben óriási sikernek örvendett, szereplést is sokan vállaltak különböző rendezvényeken (75. és 76. ábra).

74. ábra Egy- és többszólamú „szivárvány” kotta

75. ábra A lelkes kis csapat
76. ábra Közös „fellépés” az Ericsson házban
IV. rész: A tanulók motiválása nem hagyományos módszerekkel [7], [16-18]

Bevezető

Azon diákok számára, akik nem a fizikát választják továbbtanulásuk során, kidolgoztam újszerű fizika versenyeket és programokat, ezzel segítve érdeklődésük felkeltését a tantárgy iránt. Mindezek ahhoz is lehetőséget nyújtanak, hogy művelt, a felfedezések és újítások iránt is nyitott emberekkel váljanak, tudásukat képesek legyenek másokkal is megosztani.

Munkám során lépten-nyomon tapasztalam, hogy mennyire nagy erőfeszítéseket kell tennie a fizikatanároknak, annak érdekében, hogy diájaik érdeklődését felkeltsék a természettudományok iránt, és kedvet csináljanak a fizika tanulásához, különböző módszerekkel történő feldolgozásához. Az utóbbi években, főleg az informatika robbanásszerű fejlődésének hatására, már nem taníthatunk csupán az eddig megszokott „kísérletezős”, „feladatmegoldós” módszerekkel, új impulzusok kell, hogy érjék tanulóinkat, és a megszokottól eltérő módszereket is be kell „vetnünk” az eredmények eléréséhez. Egy átlagos középiskolában általában kevés diák jut el arra a szintre, hogy nagynevű, országos fizika versenyeken sikerrel vegyen részt, viszont szeretnek versengeni, az adott tantárgyban, és közösségen belüli helyzetüket felmérni, közös projektekben együttműködni. Ezt felismerve dolgoztam ki újszerű, a fizikához kapcsolódó, szórakoztató versenyformákat, programokat, amelyek alkalmával kettős cél vezérelt. Természetesen nagyon fontosnak tartom a tehetségek kibontakoztatását, de ennek a kis létszámú csoportnak folyamatosan lehetőséget biztosítok szakkör és kutatócsoport formájában is a fizika tananyagban való mélyebb elmélyüléshez. A másik, a diákok nagyobb részének a motiválása, a gyengébb képességű tanulóknak a fizika tudományába való játékos bevonása.

5.1. Sokszínű fizikabusz

5.1.1. Házhoz jön a mikrovilág

A Sokszínű Fizika Roadshow [46] egynapos programot kínál az érdeklődő iskoláknak. A rendezvény elsősorban középiskolásoknak szól, de gyerekeknek és felnőtteknek egyaránt érdekes lehet. Egy rendezvény során 45 perces ismeretterjesztő előadásokat hallgathatnak meg az érdeklődők, melyeken aktív
A program alatt folyamatosan látogatható a Sokszínű Fizika Busz. Az interaktív, utazó kiállítás a fizika széles palettáján vezeti végig a látogatókat a nanotudományok érdekességeitől a 2014-ben 60 éves fennállását ünneplő CERN, a világ legnagyobb részecskefizikai laboratóriumának rejtélyes világáig. A buszban demonstrátorok vezetik végig a látogatókat, akik kipróbálhatják a kísérleti eszközöket és érdekes információkkal lehetnek gazdagabbak. A busz külső megjelenése egy graffitit-művész csapat munkája, mely már messziről hirdeti, milyen sokszínű lehet a fizika (77. ábra).

5.1.2. Képzeletbeli utazás az LHC-ben

A Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpontja által berendezett és működtetett busz sok interaktív, különböző nanotechnikai kísérletet tartalmaz, de a busz hátsó harmadában szerepet kap a részecskefizika is. Fénykép formájában látható a CMS detektor keresztmetszete, a padlón pedig kicsinyített formában, futófények által kirajzolódik a Nagy Hadronütköztető gyorsító gyűrűrendszere.

Ezeknek a segítségével lehetőségem volt a látogató diákok és szüleik, ismerősök számára elmagyarázni a gyorsítógyűrűben történő fizikai folyamatokat, a futófényt követve a gyerekek képzeletbeli részecskekké váltak. Emellett, főleg a kutatók mutatják be a legújabb eredményeket, technikai újdonságokat, tudományos felfedezéseket. Emellett izgalmas interaktív kísérleti bemutatókra kerül sor.
kisebbek megégépíthették kartonpapírból saját CMS detektorukat, amelyet hazavihettek emlékül.

Érdekes tapasztalat volt, hogy ez a bonyolult, sok fizikaismeretet igénylő terület, a részecskefizika akár az alsó tagozatos kisdiák érdeklődését is mennyire felkeltette, így játékos, szemléletes módon részesei lehetettek egy képzeletbeli utazásnak a CERN (Európai Nukleáris Kutató Szervezet) híres gyorsítójában. Ugyan fizikát csak hetedikes koruktól fognak tanulni, egyértelmű volt számomra, hogy ezek a gyerekek kíváncsian, érdeklődve fognak a tantárgy felé fordulni, és talán a jövő kutatói, fizikusai lesznek Belőlük.

5.2. Fizika konstruktív verseny

Az utóbbi években a legnagyobb népszerűségnek az úgynevezett „Fizika Konstruktív verseny” örvend. Ez egy csapatverseny, 3 fős csapatok versengenek egymással 1 órán keresztül. Előre nem kell készülni, nevezésként csak a csapattagok neveit várom, akiknek nem kell egy osztályból szerveződniük sem. Meghatározott időpontban, többnyire egy nagy előadóban meg kell jelenniük, ahol ismertetem a feladatot és a szabályokat. Az 1 óra leteltével a csapatoknak be kell mutatniuk az elkészült produktumot, amelyeknek előre meghatározott követelményeknek is eleget kell tenniük. Ha ezt a csoport teljesíteni tudja, projektmunka ötös jár minden tagnak.

Felmerülhet bárkiben a gondolat, hogy ezek a mai gyerekek csak a „potya” ötösért jelentkeznek erre a versenyre, de hiszem azt, és pár éve tapasztalom is ennek jótékony hatását, hogy nem így van. Volt olyan év, amikor a 400 főt számláló szakközépiskolából 27 csapat, azaz 81 tanuló jelentkezett és töltött a szabadidejéből délután két órát játékos tanulásra. Első nézetben akár úgy is gondolhatjuk, hogy ennek a versenynek nem sok köze van a fizikához, bár én minden fizikaórámon azt igyekszem megmutatni, hogy a körülvettünk lévő jelenségek milyen kapcsolatban vannak a fizika törvényeivel, mégis fontosnak tartom, hogy az alkotóképességét, kreativitását, gondolkodását is fejlesszem a mai fiataloknak. Aki meg fogékony rá, az utána úgy is el fog gondolkodni azon, milyen módszerekkel érhetett volna el jobb eredményt, számításokkal ellenőrizheti gondolatait. De ez már
a tehetséggondozás körébe tartozik, nekem pedig ez alkalommal is a fizika és tanárának (amin rettentő sok minden múlik) népszerűsítése a fő célom.

Ahhoz, hogy a tanulóknak legyen kedve és főleg bátorsága kiállni a nézők, érdeklődők elé bemutatni kísérleteiket, meg kell tanítani Őket kísérletezni. Szerencsés vagyok, hogy iskolámban lehetőségem van hatodik évfolyamotól tizenegyedik évfolyamig tanítani a fizikát, így a legkisebbeknek nagyon sok tanulói mérési feladatot szoktam feladni. A kísérleti eszközöket legtöbbször otthon található tárgyakból készítjük el, és mérési jegyzőkönyvet is írunk, ami az évek előrehaladtával egyre szakszerűbb és pontosabb lesz. Az 78. ábrán hatodikosokkal tömegmérési feladatot végzünk kétkarú mérleggel és rizs szem súlyosorozattal.

78. ábra Mérési feladat tanulópárokban

5.2.1. Játzszani jó

Nem csak a gyerekek, de a felnőttek is hatékonyabban tanulnak játék közben [47]. A játékos tanulás ezért egy fontos eszköz a pedagógusok körében ahhoz, hogy önálló gondolkodású életrevaló gyerekeket neveljenek. A játékos szemléletmód a legnagyszerűbb tanító. A játékos tanulás segít a gyermekeknek könnyebben venni az akadályokat, a játék által sokkal fogékonyabb lesz az új tudás elsajátítására, mintha bármilyen más módszerrel próbálkoznánk és nem utolsósorban sikeresebb, boldogabb felnőtt válhat belőle. Mindig és mindenhon lehet játszani. Játékos
tanulással mindenre fel lehet készíteni a diákokat. A világ egy hatalmas játszótér, s ha a tanítványainknak ezt a szemléletmódot adjuk át, csodálatos dolgot adományozunk nekik. A játék lényege nem az eszközben rejlik, hanem a belefeledkezésben és az együtt töltött időben. A legjobb játékok egyszerűek, és mivel csapatversenyről van szó, arra kell törekedni, hogy kialakuljanak játékszabályok, egyénre lebontott feladatok és együttműködés, vagyis megtanulják a csoportmunka szabályait.

Két példát mutatok be ötleteim közül: az egyik az úgynevezett tojáselkapó “gép”, a másik a “pukiépítő” nevet viseli. Elsőhöz 25 db A/4-es fénymásoló papírlapra van szükség csapatonként, a másikhoz 1 zacskó extrudált kukoricapehelyre (79. ábra). Még ha 50-100 diákok versenyez is összesen, akkor sem haladja meg az anyagi költség a 2000 forintot.

79. ábra A leghosszabb híd építése “pukiból”

5.2.1.1. Tojáselkapó “gép”

A feladat egy úgynevezett nyerstojás elkapó szerkezet megépítése volt a csapatok számára a 25 ív papír felhasználásával. Nem
használhattak ragasztót, sem ollót, sem másfajta segédeszközt, csak hajtogatás módszerével lehetett építeni. Anélkül, hogy fizikaórán tanultuk volna, ösztönösen ráéreztek a gyerekek arra, valahogy el kell “nyeletni” a zuhanó tojás energiáját. Ugyanis a verseny abból állt, kinek a tojása tud a legmagasabbról leesni az elkapó szerkezetre anélkül, hogy összetörne. Természetesen a vidám hangulatot az hozta meg leginkább, amikor egyesek tojása a “gép” mellé esett vagy ugyan elkapta, de összetört. A győztes csapat tojása (mindenki egy nyers tojást kapott a verseny kezdetekor, azzal kellett gazdálkodni) több mint 5 m magasról leejtve sem összetört. A győztes építéshez magas, kétágú létrát használtunk, a balesetvédelmi szabályokat betartva.

5.2.1.2. „Puki” építés

Az élelmiszer boltokban kapható extrudált kukorica pehely sok gyerek kedvence, bár nem mondható kifejezetten egészségesnek. Viszont nagyon olcsó. Egy zacskóban körülbelül 100 db 4-5 cm-es rudacska található, tökéletesen alkalmas akár építőanyagnak is. De mi lehet a malter? Ebben a feladatban is csak a csapatonként 1 zacskó élelmiszert lehetett felhasználni mindennemű segítőanyag felhasználása nélkül és építeni belőle a lehető legmagasabb épületet. Hamar felfedezték a tanulók azt, hogy a nyállal, mint ragasztóanyaggal ragyogóan össze lehet illeszteni a kis rudacskaikat. Fantasztikus technikákat vélttem felfedezni miközben vándoroltam a több méter távolságban dolgozó csapatok között, és ami a legfontosabb, rengeteg mosolygó arcot láthattam. A verseny tárgyát itt az képezte, hogy egyfelől a legmagasabb „tornyot” állítsák össze és a zsőri asztalára kitéve, a mérés körülbelül 30 másodperce alatt, ne dőljön össze. A nyertesek épülete, hasonló formájával a párizsi Eiffel toronyhoz, meghaladta a 110 cm-t. Az elkészült produktumok még hosszú ideig színesítették a verseny után is az iskola folyosóját.

5.2.2. Építünk és tanulunk

A versenyek után a fizikaórákon mindig értékeltem közösen a diákokkal a feladatok megoldását, a kivitelezéseket. Az érdeklődőbb tanulókkal a problémák fizika hátterét
is megbeszéljük, az energiaviszonyokat illetve a statikai megoldásokat. A valóságban lezajló eseményeket modellezzük, hiszen minden feltétel, hatás figyelembevételével szinte megoldhatatlan feladatokat kapnánk, amely meghaladja a középiskolai szintet. Azt viszont látniuk kell, például a tojás szabadesése közben, hogy hogyan függ a magasság, a végsebesség és az ütközési felületre ható erő egymástól, vagy a „puki”-torony építése közben mikor kerül egy test a stabil egyensúlyi helyzetbe. Ezt a versenyt már többször kiterjesztettem és egyben összekapcsoltam más iskolai eseménnyel. A nyolcadikosoknak szervezett nyitott kapuk alkalmával a hozzánk látogató gyerekek és szüleik is lelkesen versenyeztek saját diákjaink közreműködésével.

Végeredményben elmondhatom, hogy ez a fajta játékos tanulás beváltja a hozzá fűzött reményeket, szeretik a diákjaim a tantárgyat, szívesen vesznek részt az általam szervezett programokon, amelyeken nagyon jól érzik magukat, így el tudom érni azt a „normál” fizikatanítás során is, hogy figyeljenek rám és kíváncsiak legyenek az új dolgokra, és ez már fél siker.

5.3. Szórakoztató szakirodalom

5.3.1. A fizikatanuláshoz szükséges kompetenciák

A fizika kerettanterv alapvető céljának tekinti a tanulók felnőtt életének sikeressége szempontjából kiemelt fontosságú kulcskompetenciák fejlesztését, [48] az egész életen át tartó tanulásra való felkészítést, a személyiség központú, interaktiv, önálló tapasztalatszerzést lehetővé tevő tanulásra alapozó tanulási eljárások és módszerek terjedésének elősegítését. Mindezek segítséget nyújthatnak a tanulók személyes boldogulásukhoz és fejlődésükhöz, az aktív állampolgári léthez, a társadalmi beilleszkedéshez és a munkához. A fizika oktatásának központi eleme a természettudományos kompetencia fejlesztése. A természettudományos kompetencia fejlesztése révén a tanuló képessé válik arra, hogy a természet leírásának eszköztárát megismervé értelmezze, s bizonyos mértékig előre jelezze a környezetében lezajló kölcsönhatásokat, tudatosan irányítsa mindennapi cselekedeteit, elemző, objektív módon hozza meg döntéseit.
Az anyanyelvi kompetencia fejlesztése (szövegképzés, szövegértés) minden tantárgy (műveltségterület) esetében alapvető törekvés kell, hogy legyen. A hétköznapi világban, illetve a munka világában való boldoguláshoz elengedhetetlen, hogy a tanuló képes legyen különféle tudományos-ismeretterjesztő szövegeket, összegyűjteni és feldolgozni, belőlük a releváns információkat kiemeli, s az ezekkel kapcsolatos saját gondolatait a helyzetnek megfelelő módon meggyőzően megfogalmazni és kifejezni.

A Nemzeti alaptanterven belül a fizika kerettanterv is megfogalmazza a kulcskompetenciák fejlesztésére vonatkozó igényt, de ettől az elvárástól függetlenül is nap, mint nap tapasztalom már több évtizede, hogy a tanulók negatív attitűdje a tantárgy iránt főleg a szövegértési képességeik hiánya miatt mutatkozik meg.

Ezt a problémát is szerettem volna orvosolni az úgynevezett „Könyvolvasós” házi versenyemmel, de emellett más szempontok is vezéreltek.

5.3.2. Könyvválasztás

A könyvek kiválasztására nem volt előre kidolgozott stratégiám, a könyvesboltokat járva, időnként megjegyzem valamelyik könyv, esetleg korábban hallottam már róla és szerettem volna saját magamnak megvásárolni.

Richard Feynmanról korábban, előadásokon, sok érdekes történetet hallottam, persze azon kívül, hogy Nobel-díjas fizikus, de leginkább a zenéhez fűződő kapcsolata ragadta meg a figyelmemet. A humor sem áll messze tőlem, tanítási gyakorlatom során is gyakran élek vele, ezért a sok Feynman-könyv közül a „Tréfál Feynman Úr?” címűt választottam, mert a cím azt sejtette, könnyedebb hangvételű művel állok szemben (80. ábra).
Az online könyváruházak ismertetői is rendkívül vonzóvá teszik ezt a művet, idézem: „Richard P. Feynman (1918-1988) Nobel-díjas fizikus élt-halt a bizarr kalandokért. Önletrajzi könyvében a maga utánozhatatlan stílusában meséli el nekünk, hogy miről csevegett az atomfizikával kapcsolatban Einsteinnel és Bohrral; hogyan nyitotta ki a feltőrhetetlennek hitt íratszegényeket, bennük a legféltettebb atomtitkokkal; hogyan kísért balettelőadásokat a bongódobján; hogyan nem festette meg a meztelen torreádornőt és még sok más elképesztő kalandot. Megismerhetjük Feynman csodálatosan különc, mégis nagyszerű pályafutását, amelyet mindvégig magas hőfokon tartott a kivételes intelligencia, az áradó önbizalom és a határtalan kíváncsiság” [49].

A másik könyvnek a címe „Csábító erők, avagy a mindennapok fizikája” (81. ábra).
Ebből viszont egyből látszik, hogy olyan jelenségeket, kísérleteket tartalmaz, amelyeknek kapcsolata van a hétköznapok gyakorlathoz. A fizika tananyag egyes fejezeteit is mindig hétköznapi esetekkel, otthoni alkalmazásukkal kezdem, ezért gondoltam, hogy jó választás lehet ez a könyv. Az ajánlás itt is rendkívül vonzó, sokan kedvet kapnak az elolvasásuk által: „A Csábító számok szellemében született könyv ezúttal a fizika rejtelmeibe vezeti be az olvasót. Nem tankönyv, nem is törekszik arra, hogy a fizika minden területét felőlelje. Csupán szórakoztató történetek segítségével szeretne néhány fizikai fogalmat az olvasó számára érthetővé tenni, vagy eleleveníteni. Aggodalomra azonban semmi ok. Ez a könyv nem azokkal a fizikai modellekkel foglalkozik, amelyekkel az ősrobbanás vagy a hürelmélet kutatói. A Csábító számokhoz hasonlóan, a szerző most is a hétköznapi emberek számára is érthető fizikai alapkérdéseket boncolgatja, rengeteg humorral, és megdöbbentően egyszerű megoldásokkal” [50].

5.3.3. A képesség és a motiváció kapcsolata

A diákok tanuláshoz való hozzáállása nagyon sokféle, függ az öröklött mechanizmusoktól, a környezeti hatásoktól, de véleményem szerint a legnagyobb mértékben a tanár személyétől. A tanulókban hatalmas a sikervágy és a kudarcfélelem mellett az elismerési vágy. Ezeket a döntő motivációkat kell ügyesen
kihasználni egy tanárnak, főleg, ha a tantárgyához való kötődés a különböző nehézségek miatt nem olyan nagy.

Sok éven keresztül egy szakközépiskolában, és most is egy átlagos képességű gyerekekből álló középiskolában tanítok, vagyis nem „versenyistállóban”. Tapasztalataim és alapelvem szerint a mai átlagos képességű diákok érdeklődését a fizika iránt nem lehet már csak az évtizedeken keresztül elfogadott tanulási módszerekkel felkelteni. Ráadásul azt szeretném elérni, hogy a még gyengébb képességű tanulók is örömmel vegyenek részt az órámon, ne féljenek a kudarc lehetőségétől, magabiztos, kíváncsi, érdeklődő felnőttekkel váljanak.

Hiszem, hogy mindenki számára meg lehet találni azt a tanulási formát, amelyben sikerélményhez, ennek következtében jeles osztályzathoz juthat, és félelem nélkül, saját motivációja által kezd el a természetben lezajló jelenségekkel, tulajdonképpen fizikával foglalkozni. A dolgozatomban felsorolt összes „játéknak” tűnő verseny, projekt is mind ezt a célt szolgálja, és szerencsére tapasztalom alapján azt látom, hogy eredményesen. Egyik legnagyobb népszerűségnek örvendő és nagy létszámot megmozgató nem hagyományos versenyem a következő:

5.4. Kísérletkészítő és bemutató verseny

5.4.1. Előzmények

A tanítási órán, a Nemzeti alapantanerv (NAT) szellemében, a formális fizika órák mellett egyre gyakrabban alkalmazunk új pedagógiai módszereket, a csoportmunkát, az önálló kísérletezést vagy a projektmunka formát. Ezek mellett is úgy érzem, szükség van a tanítási órák után, értelmes, de szórakoztató elfoglaltságok biztosítására. Eddigi munkahelyeimen (Mechatronikai Szakközépiskola, Bálint Márton Általános Iskola és Gimnázium) elképzelhetetlen volt, hogy csupán feladatmegoldásokból álló fizikaversenyeket szervezzünk, jó párvével ezelőtt még próbálkoztam vele, de a beigért ötös ellenére is csak késő volt a részvételi arány. Néha, a társaik közül kiemelkedő tanulókat, némi felkészítés mellett benevezzük például az Országos Középiskolai Tanulmányi Versenyre, de legtöbbször csalódást vált ki belőlük, hogy maximum egy feladathoz tudnak hozzákezdeni, hiszen nincs számolási rutinjuk,
az órán megoldott feladatok mellett, az otthoni folyamatos önképzés nem az erősségük. Ez a probléma nem csak az én iskolám diákjait érinti, emiatt több középiskola is mostanában újszerű fizikaversenyek szervezésével próbálkozik. Leggyakrabban egyéni verseny helyett csoportok közötti vetélkedőt hirdetnek például kísérletek összeállítására, feladatmegoldásra vagy hétköznapi jelenségek értelmezésére. Ezek a versenyek is felkészítést igényelnek, és egy ilyen fajta munkára a mi tanulóink nehezen vehetők rá.

A sok éves tapasztalom következtében arra a határozásra jutottam immár több mint 10 évvel ezelőtt, hogy nem próbálkozom felzárkózni a versenyeredményeket nagy számban felmutató gimnáziumokhoz, hiszen maximum 1-2 gyerek alkalmas erre nálunk, inkább olyan népszerűsítő megmérettetéseket találok ki, amelyek minél nagyobb létszámú tanulót mozgatnak meg.

5.4.2. A versenyről

Röviden szeretném bemutatni a már hagyománnyá váló, (és ezt mind a két iskolámban el tudom mondani) Kísérletkészítő és bemutató versenyt.

Ezen a versenyen otthon található eszközök, alapanyagok segítségével kell összeállítani egy kísérletet és egy 5 tagú zsűri előtt bemutatni. A bizottságban nem csak fizika szakos tanárok, hanem akár magyar vagy informatika végzettségű is pontoz, hiszen nem csak az ötletet, a fizikai tartalmat, hanem a kivitelezést és az előadás módját is értékeljük. Utóbbi években felsőbb éves diák is részt vesz a bizottság munkájában, és ez pluszösszöntözést jelent a tanulók számára.

A tudás egy nagyon összetett fogalom, sokféle kompetenciát feltételez. Ezzel a versenyformával az a célom, hogy a diákok megmutathassák a fizikatudásuk mellett az egyéb képességeiket is. [51] A természettudományos kompetencia kialakítása nagyon fontos feladat, a tudásalkalmazás a gyakorlati bemutatókon keresztül látható, és a kísérletek mindig egy hétköznapi jelenség modellezéséről szólnak. A felkészülés a hatékony, önálló tanulás képességét fejleszti, hiszen önállóan kell feldolgozni az ismereteket, a szóbeli előadás pedig az anyanyelvi kommunikációs képességet. De ide sorolhatnám az esztétikai- művészeti tudatosság és kifejezőképesség kategóriát is,
mert az összpontszámba beletartozik a bemutatás módja is, amely tulajdonképpen a művész önkiifejezés eszköze.

A versenyt két kategóriában hirdetem meg, általános iskolások és középiskolások bemutatóit külön értékeljük. A résztvevők száma 30 és 50 fő között szokott változni, de évről-évre nagyobb népszerűségnek örvend. Ennek az is egy oka, hogy a nagy előadóteremben rendezem a versenyt, és az összes osztályból várom az érdeklődőket közönségnek. Ettől persze egy kicsit nehezebb a versenyző dolga, hiszen nem könnyű akár 50-100 fős nézőközönség elé kiállni (többnyire előző teszten felkel). A jobb láthatóság érdekében kamerán keresztül ki is vetítjük a sokszor kisméretű összeállításokat, térmikrofon segítségével pedig a sokszor félenk, halk beszédet erősítjük fel. A közönségnek még abból a szempontból is nagy szerepe van, hogy „kedvet kapjanak” a diákok egy következő évi versenyen való induláshoz (82. ábra).

82. ábra Kicsik és nagyok kísérletezés közben
Az 5 fős zsűri, ötféle szempont szerint értékeli a produkciókat, egyenként a maximálisan adható tíz ponttal, így gyerekenként 250 pont érhető el legfeljebb. A verseny után a zsűri összegyűjti az elért pontokat és a helyesések sorrendjéről, de be kell, hogy valljam, néha kicsit „csalunk” és olyan diákunkat is kiemeljük az eredményhirdetésen, aki nem a legjobbak között volt igazából, de tudjuk, mennyire fontos lehet számára egy ilyen fajta visszajelzés.

5.4.3. Konklúziók

Körülbelül 10 éve tartom ezeket a versenyeket az aktuális iskolámban, a szakközépiskolában 9-11. évfolyamig, a jelenlegi, vegyes iskolámban pedig 6-11. osztályig. Mivel a verseny általában tavasszal szokott lebonyolításra kerülni, ezért az érettségi előtt állók már inkább a tanulásra koncentrálnak. A kicsik mindig nagyon lelkesek, de nagyon sok felkészítést igényel a versenyen való indításuk, tanórán is, de inkább tehetséggondozáson Velük a társak előtt történő kísérletezést, és természetesen, hiszen Ők még szinte csak olyan kísérletet választanak, amelyhez nincs meg a megfelelő háttértudásuk, segítek Nekik az elméletet leegyszerűsíttet formában megértetni.

A középiskolások nagyon színvonalas előadásokat tartanak, az elméleti ismeretek terén is tájékozottabbak, és bátrabban, humorral fűszerezve mutatják be kísérleteiket.

A verseny célja itt is legfőképpen a tanulás, amely szintén a „Hands-on mind-on” módszeren alapul. A saját maguk által összeállított kísérlet, annak előzetes többszöri kipróbálása, a mondandó begyakorlása mind-mind a komplex
fizikatudásukat fejleszti. Úgy érzem ennyi év távlatából, hogy a sikere nem csak a szórakoztató „fizikashow”-ban rejlik, hanem hatalmas lökést ad a diákok számára a fizika szeretetéhez, tanulásához.

5.5. Tudományos futás

„Mens sana in corpore sano”, vagyis „Ép testben ép lélek”, tarja egy latin közmondás, amely elvet én is a magaménak vallok. Több évtizede folytatott sportmúltam arra kötelez, hogy ezt a mozgás szeretetet diájkaimnak is átadjam. Viszont nem vagyok testnevelő tanár, ezért nincs más módom, mint a sportokat is „becsempészni” a fizikába. Ezt persze nem én találtam ki elsőként, több tudományos értekezés is született már ebben a témában [52]. Az én újításom az, hogy futás közben, illetve azzal kapcsolatban végzünk. Az első, úgynevezett évadnyitó futóversenyen több éven keresztül vettem részt diákjaimmal (83. ábra), amely során 12 km-t kellett futni Budapest legszebb részein keresztül. Azon túl, hogy ennek a távnak a teljesítése fizikailag is elismerést érdemlő, a szellemet is feladatokra késztette.
A befutást követően mindenki kapott egy feladatlapot, amelyen különböző paramétereket kellett megadniük, majd azokkal számításokat végezniük. Adott volt a távolság, és mindenki megkapta a hivatalosan mért időeredményét. Ebből átlagsebességet kellett számolniuk, de voltak, akik okos eszközük segítségével résztávokat és részidőket is tudtak rögzíteni, így különböző sebességszámitási feladatokat találhattak ki saját maguk is. Minden esetben meg kellett az átlagos mozgási energiájukat határozniuk, illetve a mozgás teljesítményét. A kapott energia értékeket kalóriába átszámolva, ugyan nem hitelesen, de talán érdekesen át tudták számolni, hogy mekkora tömegű csokoládé mennyiséget futottak le a csokipapíron megadott energiaérték felhasználásával.

Ennek a kihelyezett fizikaórának kettős eredménye lett. A legtöbb diák életében először futott ilyen hosszú távot, saját teljesítőképességeik határátt felé gezették, ezáltal sportbéli sikerélményhez jutottak, illetve a kért fizikai mennyiségek meghatározásával azok kézzel foghatóvá, értelmezhetőbbeké váltak, vagyis gyakorlati példákon keresztül tudták a tananyag ezen részét elsajátítani. Biztos vagyok benne, hogy az ilyen fajta tudás maradandó és adott, későbbi szituációkban feleleveníthető.
V. rész: A tanárok ismereteinek bővítése részecskefizikából [6], [14]

Bevezető

A fizikatanárok részecskefizikai ismereteinek felelevenítéséhez és fejlesztéséhez kidolgoztam egy komplex tematikát, amely segítséget nyújt számukra a témakör feldolgozásában. Oktatási segédanyag, kutatómunkába való bekapcsolódás vagy az általuk korábban már ismert kísérletek mikrofizikai elemzéseivel tudásuk növekszik és ezáltal magabiztosabbá válnak a részecskefizika tanítása során.

Nekünk, fizikatanároknak a tanításon kívül nagyköveti szerepünket is be kell töltenünk. Továbbképzések, konferenciák alkalmával látottakat, tanultakat kötelességünk megosztani diákjainkkel és kollégáinkkal. A tanárok közötti együttműködés nélkül nem várhatjuk, hogy jelentős fejlődésen essen át az közoktatás, és olyan területe a fizikának, mint a részecskefizika, bekerülhessen a középiskolai tananyagba, akár csak szakköri kereten belül. Több éves kutatómunkám eredményeit szeretném szeretném minél több fizikatanár társammal megosztani, és közös projektekbe is bevonni őket.

Kidolgoztam egy oktatási rendszert a részecskefizika népszerűsítésére és feldolgozására, amelyben részt vett az Eötvös Loránd Fizikai Társulat, a CERN magyarországi fizikatanárokat továbbképző csapata, valamint a Wigner Fizikai Kutatóintézet REGARD kutatócsoportja. Különböző segédanyagokat készítettem a mikrovilág bemutatására, amelyek középiskolában való felhasználásra is alkalmazásak. Megismertettem fizika- és kémia tanárnak kollégáimmal, a részecskefizikával kapcsolatos módszereimet, amelyeket azóta többen is alkalmaznak tanításuk során. Régi, bevált kísérleteknél, mint például a „ködkamra” készítésnél a látható és láthatatlan nyomvonalak elemzéséhez új módszert használtam. Egy programot adtam a részecskefizika középiskolai feldolgozására, amely részletes szakköri tematikát is tartalmaz. Lehetőséget teremttem továbbképzések alkalmával arra, hogy minél több érdeklődő tanár bekapcsolódhasson a kozmikus műonok észlelésére alkalmazott detektorokat építő programra. Rendszeres segítséget nyújtok kollégáimnak a diákokat CERN-be eljuttató utazások szervezésében.
Ezeknek a tevékenységeimnek eredménye képen, egyre több fizikatanár foglalkozik a részecskefizika középiskolai oktatásba való beépítésének a lehetőségével, és ad diákjainak segítséget ahhoz, hogy tudásukat elmélyíthessék az adott témakörön belül.

6.1. CERN

A CERN az Európai Nukleáris Kutatási Szervezet [53], a részecskefizikai kutatások európai szervezete, a világ legnagyobb részecskefizikai laboratórjum, a Nagy Hadronütköztető (LHC) és a World Wide Web születési helye. A francia-svájci határon helyezkedik el, Genffől kissé északra. Az alapító okiratot 1954. szeptember 29-én írta alá 12 ország, jelenleg 22 tagja van, köztük Magyarország is.

A CERN célja részecskeryorsítók és egyéb kísérleti berendezések biztosítása a nagyenergiájú fizika számára. Nemzetközi együttműködéses keretében számtalan kísérletet építettek fel itt. A fő telephelyen, Meyrin-ben található egy nagy számítástechnikai központ is, rendkívül hatékony adatfeldolgozó kapacitással.

A teljes idejű alkalmazottak mellett tudományos kutatók, informatikusok és mérnökök, a világ részecskefizikai közösségének mintegy fele, dolgozik CERN-beli kísérleteken. A nagyközönség szívesen látott vendége a CERN Mikrokozmosz és Globe kiállításának, de lehetőség van időnként ténylegesen működő detektorok szervezett látogatására is.

A CERN nemzetközi szervezet, nem tartozik egyik befogadó állam fennhatósága alá sem, telephelyei a szervezet felügyelete alá tartoznak.

Mélyebb részecskefizika ismeretek megszerzésére a CERN oktatási csoportja számos kezdeményezést vezetett be az évek során mind tanárokon, mind egyetemi és középiskolás diákok számára.

6.1.1. Továbbképzés magyar fizikatanárok számára

2006-ban Magyarország és a CERN kezdeményezte, hogy fizikatanáraink továbbképzésen vegyenek részt anyanyelvükön a CERN-ben. Ez a program olyan sikeresnek bizonyult, hogy azóta a CERN-nél együttműködő valamennyi ország csatlakozott hozzá. Korábban, tíz éven keresztül évente negyven magyar fizikatanár ötnapos elméleti és gyakorlati foglalkozáson vett részt, az elmúlt három évben a szervezők személyében és a támogatók körében történt változás eredménye képen

101
20-22 kollégá utazhat repülővel az egyhetes továbbképzésre. Itt bepillantást nyerhetnek a részecskefizika módszereibe és legújabb kutatási eredményeibe, így megfelelő alapot kapnak ahhoz, hogy diákjainak ezt a tudást tovább adhassák.

Világszerte csökken a természettudományok iránti érdeklődés, és ez Magyarországon kezd katasztrófális lenni: ha így megy tovább, a következő generációs gyerekeket senki sem fogja fizikára tanítani. A CERN, az európai országok közös részecskefizikai laboratóriuma, a világ legnagyobb fizikai kutatóintézete 2006-ban elhatározta, hogy anyanyelvi továbbképzést hirdet a tagországok fizikatanárainak. Korábbi ismeretségük alapján Robert Aymar, a CERN akkori főigazgatója és Sükösd Csaba, a BME professzora az Eötvös Loránd Fizikai Társulat alelnöke elhatározták, hogy az új tanfolyamot magyar fizikatanárokon kísérletezik ki. A munka oroszlánrészét Sükösd Csaba és Jarosievitz Beáta végezték a kirándulás megszervezésével és lebonyolításával. A CERN részéről Rolf Landua állította össze az előadások programját és Horváth Dezsőt (RMKI és ATOMKI) kérte fel azok megszervezésére, azok megtartására eleve a CERN-ben tartózkodó magyar kollégákat kérte meg. A kísérlet rendkívül sikeresnek bizonyult, azóta évente mintegy negyven hasonló tanfolyamot szervez a CERN, beleértve, természetesen, az augusztusonként ismétlődő magyar programot is. Ennek a fantasztikus csapatnak vagyok előadója 2014 óta, sőt, az elmúlt három évben ezen kívül az egyik szervezője is lehetek. Saját eredményemnek ebben a jól működő és szigorú szabályokhoz rögzített programban azt tartom, hogy kiegészülhetett az előadások listája az én részecskefizikai bevezető műhelyfoglalkozásommal és az ötletelem, terveim alapján készíthetnek immár negyedik alkalommal modern részecskefizikai detektort a tanároknak. A programok időrendje és az előadások anyaga elérhető a CERN Education honlapja alól.

6.1.2. Nagyköveti szerep

Az előadások fizikatanároknak szólnak, de azzal a céllal, hogy át tudják adni megszerzett tudásukat diákjainak, az igazi célközönség tehát a középiskolás diáknak, mi pedagógusok „csak” a nagyköveti szerepet töltjük be. A tanárok általában nagyon érdekesnek, nagyon hasznosnak tartják az előadásokat. Sajnos, sokan a továbbképzés után nem magabiztosabbnak érzik magukat, hanem épp ellenkezőleg, rájönnek mennyire hiányos a tudásuk. Ez az érzés vezetett engem is oda, hogy mélyebben
kezdjek el foglalkozni a részecskefizikával. Az oktatás ütemezése elég feszes, nyáridőben a napi 4 óra előadás-hallgatás kimerítő őket, és az előadók erőfeszítése ellenére többen túl magas színvonalának érzik azokat. Ennek enyhítésére vezettük be például az én „kvarkockás” játékos előadásomat, így gyakorlatban kerülhetnek közelebb a nehezen megjegyezhető fogalmakhoz. A délutáni programok a legnépszerűbbek, fantasztikus érzés bepillantani a jelenleg folyó kutatások némelyikébe. És persze, ha szerencséje van a csoportnak, éppen nem működik az LHC, akkor a zsíröntésen át, a „megakísérelt”, a CMS-detektor megtétele fő attrakció. Működés esetén csak a szerviz szintig lehet lejutni, de a védősisak viselése, a liftezés és a gemkapocs-szál elgörbülése a közeli nagy mágneses mező hatására, minden tanáról gyermekő szeretőt vált ki. Megtekinthető erőfeszültség minden évben a LINAC, az antiproton lassító (AD), a SPS NA61-es kísérlete, az ATLAS látogatóközpont, a számítástechnikai központ (CC), az SM18 mágnes ellenőrző állomás és a Mikrokozmosz is. Az utóbbi években még az űrkutatással kapcsolatos kísérlettel, az Alfa Mágneses Spektrométerrel (AMS) is megismertedhetünk, amelynek egyik vezetője a Nobel-díjas Samuel C. C. Ting professzor, a J/Ψ- mezón felfedezője [54].

6.1.3. Detektorépítés tanárszemmel

A jó tanár egész életében megmarad kíváncsi, érdeklődő „gyereknek”, és az effajta kíváncsiságot igyekszik a program azzal kielégíteni, hogy saját készítésű kísérletek elvégzésére is lehetőséget ad. Az egyik ilyen lehetőség egy ködkamra megépítése, amely kis csoportokban történik. A kísérletek kapcsolódnak a részecskefizikához, de tulajdonképpen egy projektmunkáról van szó, amit a tanítványaink esetében is érdemes kipróbálni. Ehhez, a tanárok és diákok körében népszerű kísérletbe (bár a szárazjég beszerzése nehézségekbe ütközik) én is hozzájárulhatok, mert új elemekkel, ötletes, szemléletes módon segítem a detektorban lezajló bomlási folyamatok megértését.

Minden tanár a program elvégzése után úgy érzi, ő is ehhez a hatalmas közösséghez tartozik, akik mind egy célért küzdnek, vagyis, hogy megtaláljuk a válaszokat a következő kérdésekre: Honnan jöttünk? Miből vagyunk? Hová tartunk? Azok a diákok, akiknek a fizikatanárainál részt vesznek ezen a továbbképzésen nem csak a részecskefizika területén kapnak sokkal többet oktatóiktól, hanem egy lelkesebb, nyitottabb szemlélettel rendelkező pedagógot kapnak vissza, akik próbálnak a fizika
többi területén is új dolgokat bevezetni, a tantárgyukat minden lehetséges módszerrel megszerettem.

6.1.4. Hogyan vigyünk diákokat a CERN-be?

Talán az elsők között voltam, aki az első CERN-i látogatásomat követően azonnal szerveztem iskolám diákjai számára tanulmányi kirándulást a részecskefizika fellegvárába. Ennek megszervezése nem volt egyszerű feladat, de az élmény, amit így adni tudtam diákjaimnak, mindent megért (84. ábra).

84. ábra Mechatronikai Szakközépiskolások a CERN-ben

Azóta már többször sikerült eljuttatnom akkori és mostani iskolám tanulóit, tanárait is továbbképzés céljából és segíteni is tudtam más középiskolában tanító kollégáimnak is a szervezésben.

Gyakorlatilag három nagy egységből áll az utazás előkészítése: szakmai program, közlekedés, szállás lefoglalása. A szakmai programhoz a CERN látogatói központja segítséget nyújt [55], több hónappal az utazás tervezése előtt ajánlott az online jelentkezés elvégzése, ahol megkapjuk az időpontot és a látogatható helyek, kísérletek listáját. Emellé, a kint dolgozó magyar fizikusok közreműködésével lehetőség van ködkamra építésére is, amely minden alkalommal nagy sikert arat. Ingyenesen látogathatók a CERN által működtetett Microcosmos illetve a GLOBE kiállítása. Mindkettőhöz segítséget kaphatnak a tanárok a honlapokról angol nyelven. Így lehetőségünk van másfél napos szakmai programot biztosítani a tanulóknak és az érdeklődő kollégáknak, akik elkísérik a csoportot. Érdemes a szakmai programon túl a CERN által már évek óta kínált „kincskereséses” módon felfedeztetni Genf városát, kultúrtörténeti feladatok adásával. A fapados járatok megjelenésével már nem
érdemes a hosszú, időgényes busszal történő utazási formát választani, kényelmesen, gyorsan el lehet jutni a genfi reptérre, ahonnan a helyi busz fél óra alatt el tud juttatni bennünket CERN-be. Az évek óta nagyszámú látogató közönség hatására szállodák, hostelek is kínálnak diákoknak élérhető áron szállást, helyi tömegközlekedésre jogosító bérlettel.

Ahogy magam is, számos diák is nyert már inspirációt CERN-i látogatását követően a részecskefizika tanulásához. Ugyan már 2009 óta üzemel a világhírű részecskegyorsító, mégis ugyanolyan nagy dolog eljutni az európai nukleáris kutatóközpontba, esetleg, szerencsés időzítéssel megpillantani az egyik föld alatti detektorát, a CMS-t. Örök élményt és a fizikához való másfajta hozzáállást szereztek azok a diájkaim, kollégáim, akik általam eljuthattak a CERN-be.

6.2. Természettudományos Önképző Körök megszületése

A 2006/2007. tanévben kezdte meg működését a BERZE-TÖK Természettudományos Önképző Kör Dr. Csörgő Tamás neves fizikus, fizikatanár vezetésével. Maga az ötlet, aggódi szülők fejében fogalmazódott meg, akik felismerték, hogy mennyire kevés a természettudományos tantárgyak óraszáma. Az önképző kör mindenfajta természettudománnyal szívesen foglalkozik, sőt, néha vannak humán tárgyú előadások is. Minden héten tartanak egy diákelőadást, és általában havonta meghívna egy nagyobb előadót is, akit az iskolában hallgatnák meg. Az önképző kör feladatai közé tartozik még többek között az is, hogy segítséget nyújtszon a tehetséggondozásban, és a továbbtanulás kapcsolatban is. Sok érdekes matek- és fizikapéldát lehet megoldani együtt; a különféle előadások segítenek eldönteni, hogy milyen tantárgyat válasszanak a diákok a továbbtanulásukhoz, a kísérletek pedig a szemléltetést és a gyakorlati ismeretek fejlődését szolgálják. Ez az ismertető található a Berze Gimnázium Természettudományos Önképző Körének honlapján [56].

Erről a mozgalomról a 2013. évi székesfehérvári Fizikatanári Ankét és Eszközbemutató, egy műhelyfoglalkozás keretében hallottam [57]. Ezen a konferencián magam is előadóként szerepeltem, 4 diákom részvételével számoltunk be első alkalommal a nagyközönségnek a Wigner Fizikai Kutatóközpontban végzett kutatótevékenységünkől. Azért is emlékezetes ez a rendezvény, mert a megnyitó napján esett az rendkívüli mennyiségű hó március közepe ellenére, hogy szinte
megbénította a közlekedést Magyarországon. A program mindig nagyon színvonalas, lelkes, innovatív pedagógusok, tudósok beszélnek ötleteikről, adnak további motivációt a tanári munkánkhoz. Itt ismerkedtem meg azzal a régi hagyományokat felelevenítő lehetőséggel, amely a szakköri tevékenységnek egy kiterjesztett változata.

6.2.1. Az érdeklődés felkeltése tudományos előadásokkal

Sajnos az utóbbi években rendkívül lecsökkent a fizikaórák száma, Szakközépiskolában (mai nevén Szakgimnáziumban), ha műszaki terület besorolású az intézmény, akkor a kerettanterv szerint 2+2+1 fizikaóra jut hetente, viszont a diákoknak előre meghatározott az ötödik, választható érettségi tantárgyuk. Abban az esetben kell mégis fizika érettségi vizsgát tenniük, ha a felvételi rend ezt megköveteli. Emellett az alacsony óraszám mellett legtöbbször a kötelezően előírt tananyagot sem tudjuk elvégezni, pláne nem jut idő olyan témakörökre, amelyeket a tanulók a médiából ismerhettek és kíváncsiak lennének a magyarázatokra.

Nagy örömömre szolgált, hogy csatlakozhattam a TÖK-mozgalomhoz (már eleve vonzó ilyen formában a diákok számára az elnevezés), korábbi iskolámban, a Mechatronikai Szakközépiskolában a székesfehérvári Ankétot követően, 2013 őszén elindítottam a Mecha-TÖK előadássorozatot [58]. A Berze-TÖK terveivel ellentétben számonra az volt a fontos, hogy minél több diákunkkal ismertethessük meg olyan diszciplínákat, amelyekre a tanórákon nem kerülhet sor. Jelenlegi iskolámban a Bálint Márton Általános Iskola és Gimnáziumban nagy sikerrel folytattam ezt a kezdeményezést „Természettudományos Előadássorozat” címmel.

Az előadásokra havonta, péntek délutánkonként került sor, háromórai kezdettel. Hetekkel korábban a fizikaórákon már „reklámoztam” és pár szóval ismertettem a témákat, és persze a motiváció sem maradhatott el. Ebben nagymértékben eltértem Csörgő Tamás javaslatától, aki el tudta érni körülbelül 10 tanulójánál, hogy érdek nélkül vegyenek részt ezeken a foglalkozásokon. A kreativitás sosem állt messze tőlem, ebben az esetben is egy játékos megoldást választottam. Készítettem kisméretű kártyákat, amelyeket az iskola pecsétjével láttam el és különböző jutalmakat írtam rá. Volt közöttük „fizika ötös”, „pirospont”, „mentesség egy felelés alól”, „csokoládé”, „Joker” és „így jártál” feliratú is. Minden diák az előadást követően húzhatott egy kártyát és azt beválthatta egy későbbi tanórán, vagy
helyen megkaphatja a csokoládét. Sok mindenre fel kell készülni egy mai korban tanító tanárnak, egy lépéssel a diákok előtt kell járni, hiszen próbálnak túljárni az eszünkön. Figyelnem kellett a kiosztáskor arra is, hogy mindenki tollal ráírja a saját nevét, nehogy üzleti tranzakciók tárgyává váljon. Péntek délután lévén mindig gondoskodtam frissítőről és zsíroskenyérről, főleg, hogy többségében kamasz fiúgyerekek vettek részt a rendezvényen.

A jelenlegi munkahelyemen a vezetőséggel egyeztetve kicsit másképp szerveztem az előadássorozatot. Kezdetben szintén péntek délutánoként hívtam előadót kénhavi rendszerességgel, de később engedélyt kaptam arra, hogy tanóra keretében a teljes középiskolai tagozat részt vehessen a programon. Így mindenkinak „kötelezően” végig kellett hallgatnia az előadást, és otthoni projektmunka jelleggel írásos beszámolót készíthetek az elhangzottakról, amelyre jeles osztályzatot adtam.

Az Önkapzó Köröknek az is egy fontos momentuma, hogy az előadásokat követően az érdeklődő diákok egyénileg is feltehetik kérdéseiket az előadónak. Erre mindig sor került, 4-5 érdeklődő diákkal rendszeresen ott maradt és válaszokat kapott. Több előadóval azóta is szoros barátságot tartok, a segítségükkel kekapcsolódhatnak diájkim a munkakörükhöz kötődő kutatásokba.

Az előadások témáját fizika, csillagászat, kozmológia, biofizika, energetika, környezetvédelem területekről választottam saját kapcsolataimnak megfelelően. Mindegyik előadót ismertem már korábbi tanulmányaim vagy kutatásaim által, meghívásomra szíves örömest jöttek ellenszolgáltatás nélkül is.

6.2.2. Az interdisciplináris oktatás jelentősége

létrehozni. A tervezésnél érdemes a tanítást egy hosszabb folyamatként értelmezni, amely lényegesen tudatosabb munkát jelent, mint a 45 perces tanórák tananyagközpontú világa. A tanítási folyamatban meghatározó tanári tevékenységeket érdemes a célokkal, a feladatokkal és a tantervi tartalommal konzisztens egységben kezelnél. Ez a rendszer a kompetenciák struktúrájából (ismeretek, képességek, attitűdök) épül fel és számos tantervi és pedagógiai lehetőséget nyújt. [59]

Ezen alapelveket szem előtt tartva kezdtem el az előadássorozatok bevezetését középiskoláimban, mert ezen alkalmakkor lehetőségem van nem csak a szélesebb körű ismeretterjesztésre, hanem arra is, hogy különböző tudományterületeket zökkenőmentesen összekapcsolhassam, a diákok számára a természet tudományok így egységes egészet alkotnak.

6.2.3. Az Önképző Körök eredményessége

Az előadások sikert leginkább az bizonyította, hogy a kezdődő hétvége ellenére nagyon nagy számmal vettek részt rajta a tanulók. A kártyák kiosztásával egyben a létszámot is tudtam ellenőrizni, a létszám minden esetben 50 és 100 között változott. Az elmúlt öt évben több mint 1000 diák részesülhetett olyan, Nekik szóló előadásban, amelyek az adott tudományterület legújabb eredményeit ismertették.

Hallhattak a CERN-ről, az exobolygó kutatásról, a sötét anyagról vagy akár arról, hogy miért jó, hogy csíkosak a zebrák, de a legnagyobb figyelmet mégis társaik előadása váltotta ki belőlük. Volt, immár egyetemista diáktársuk a Forma 1 előszobájában, a Formula 1 csoportban végzett munkájáról számolt be, de hitetlenkedéssel, de egyben elismeréssel hallgatták azt is, amikor a divatos, csinos lénytanulók a kozmikus műonok észlelésére alkalmas detektorok építéséről tartottak prezentációt.

Az Önképző Kör arra is alkalmat adott, hogy az iskolán belül végzett más projektjeimmel is össze tudtam kapcsolni. Csapatommal, a „Törökbálinti energiakommandó” -val sikerült elnyerni a fődíjat [60], pályázatunk fenntarthatósággal, az iskolán belüli szelektív hulladékgyűjtés bevezetésével volt kapcsolatos. A diákok környezettudatos gondolkodásának kialakításáért egyik állomásaként Környezetfizika-szakos egyetemi hallgatót hívtam előadást tartani.

Az esemény híre nem csak az iskola falain belül terjedt el, hanem tágabb környezetünkben is. Szülők, testvérek, barátok, de sokszor idegen „járókelők” is
betértek az előadásra és maradtak az azt követő kötetlen beszélgetésre. Mindenképpen azt láttam, hogy az iskolánk hírnevének öregbítését is elértem ezzel a projekttel.

Utoljára, de nem utolsó sorban említem meg, hogy ezek az előadások kollégáim számára is kiváló lehetőséget nyújtottak önképzésük érdekében. A terméhszettudományokat oktató tanároknak minden esetben részt vettek a rendezvényen, de nagyon sokszor, a saját, de más iskolákból érkezett kolléga is nem ezeket a tantárgyakat tanítja. A pedagógusok hatalmas laterheltsége miatt nem jut idejük konferenciáikra, előadásokra járni, ezeknek sokszor költségvonzata is van, ezért is örülök annak, hogy minél több kollégámnak tudok segítséget nyújtani.

Köszönetnyilvánítás

Köszönetemet szeretném kifejezni témavezetőimnek, Dr. Horváth Dezsőnek és Dr. Varga Dezsőnek, akik tanulmányaim, kutatásaim alatt mindvégig hatalmas tudással, segíteni akarással, empátiával támogatták munkámat és szinte családi, baráti kapcsolatot alakíthattam ki Velük.

Köszönöm a Doktori Iskola vezetőinek, Dr. Tél Tamásnak és Dr. Juhász Andrásnak, hogy tudásukkal, emberségükkel mindvégig segítették munkámat.

Köszönöm áldozatos munkáját Dr. Ferencz Mária Éva főorvos asszonynak, aki szaktudásával lehetővé tette, hogy befejezzem doktori tanulmányimat.

Köszönettel tartozom Dr. Lévai Péter Józsefnek, a MTA Wigner Fizikai Kutatóközpont főigazgatójának, hogy támogatott a kutatásalapú oktatási tevékenységem kipróbálásában, lehetőséget és munkát adott ennek gyakorlására.

Dr. Jarosievitz Beáta által juthattam el első alkalommal a részecskefizika fellegvárába és szereztem motivációt doktori tanulmányaim megkezdéséhez.

Köszönöm tanáromnak, Dr. Romhányi Zoltánának, hogy tudásával, emberségével évtizedeken keresztül figyelemmel kísérte és segítette tanulmányaimat.

Nem utolsó sorban köszönöm kedves családomnak, barátaimnak, hogy türelemmel és szeretettel kísérték végig ezt az élményekben gazdag, de nehézségekkel teli folyamatot.
Hivatkozások

A disszertáció téziseinek alapját képező publikációk:

A disszertáció téziseinek alapját képező előadások

https://indico.cern.ch/event/268114/session/0/contribution/39/attachments/479519/66315/olaheva_bevrf_20140815.pdf

https://indico.cern.ch/event/347862/contributions/814948/attachments/1140156/1632895/OlahEva_20150814.pdf

https://indico.cern.ch/event/505644/contributions/2211302/attachments/1323216/1985273/Bevezetes_a_reszecskefizikaba_20160815.pdf

https://indico.cern.ch/event/630360/contributions/2623830/attachments/1504269/234379/Bevezeto_a_Bevezetes_a_reszecskefizikaba_20170705.pdf

Doktori értekezés

https://www.youtube.com/watch?v=Sn9UtxpMZcA

https://www.youtube.com/watch?list=PLeNxi-TyRAb4GDN6v5B8MV3GwneWMP83n%B6ms%3DOAFIAVgL&v=TTAhcITQ5_4&mode=NORMAL&app=desktop

Irodalomjegyzék

[25] https://hu.wikipedia.org/wiki/Proporcionális_számláló (2018. 05.05.)
[26] Raics Péter, Mag- és részecskefizika, Egyetemi jegyzet, Debrecen,
https://www.kfki.hu/~csorgo/szeged/magfiz/12/00-AJANLOTT-IRODALOM-Raics-Peter-
Debrecen

[27] Pető Mária, Részecskefizika és asztrofizika a középiskolában, Doktori disszertáció, ELTE
TTK, Fizika Doktori Iskola, 2015.

[28] Horváth Árpád, Részecskefizika az oktatásban, Doktori disszertáció, Budapesti Műszaki

05.05.)

A2 könyvei,
http://www.tankonyvtar.hu/hu/tartalom/tamop412A/20110064_16_kiserleti_magfizika/ar0
1s07.html (2018. 03.21.)

https://ofi.hu/sites/default/files/attachments/mk_nat_20121.pdf

[33] Iskolakultúra, 26. évfolyam, 2016/3. szám DOI: 10.17543/ISKKULT.2016.3.70
http://www.iskolakultura.hu/ikultura-folyoirat/documents/2016/03/06.pdf

[34] http://www.emet.gov.hu/hatter_1/ut_a_tudomanyhoz/

[35] Barnaföldi, Benczédi, Hamar, Melegh, Oláh, Surányi, Varga, Kincskeresés kozmikus

[38] http://mta.hu/aktualis-palyazati-kiirasok/loreal-unesco-magyar-osztondij-a-nokert-es-a-
tudomanyert-2016-106339 (2018. 02.08.)
[39] https://indico.cern.ch/event/630360/timetable/ (2018. 05.19.)

[42] https://hu.wikipedia.org/wiki/B%C3%A9ta-boml%C3%A1s (2018. 01. 29.)

[51] A kulcskompetenciák fejlesztési lehetőségei pp.41.

[53] https://hu.wikipedia.org/wiki/CERN (2018. 03.28.)

[55] https://visit.cern/tours/guided-tours (2018. 03.28.)

Székesfehérvár https://www.kfki.hu/elftaisk/Anket13/anketprg.pdf (2018.01. 28.)

[59] Vass Vilmos, Interdisciplináris a NAT-evolúcióban, Debrecen, Kiss Árpád Archivum

(2018.01. 29.)

A nem saját készítésű ábrák elérhetőségei (2018. 05. 07.)

1. ábra http://www.naturphilosophie.co.uk/the-standard-model/ (2018. 05.18.)

2. ábra

3. ábra https://hu.wikipedia.org/wiki/Kvark (2018. 05.18.)

4. ábra https://hu.wikipedia.org/wiki/Kvark (2018. 05.18.)

5. ábra https://24.hu/app/uploads/2016/05/tabazat.jpg (2018. 05.18.)

6. ábra Trócsányi Zoltán, Hogyan tegyük láthatóvá a láthatatlant? Magyar tudomány,
2016/4/11.

http://www.matud.iif.hu/2016/04/11.htm (2018. 05.18.)

15. ábra http://gluon.particle.kth.se/TEACHING/laboratory/xray/xray_instr.html (2018. 05.18.)

41. ábra a 9. hivatkozás címlapja
http://nuklearis.hu/sites/default/files/10_1_2017_Majus.pdf (2018. 05.18.)

51. ábra http://www.hep.ucl.ac.uk/~jpc/all/ulthesis/node9.html és
http://inspirehep.net/record/1198154/plots (2018. 05.18.)
Mellékletek

1. számú melléklet: Kérdéssor a „Tréfál, Feynman Úr?” c. könyvhöz
2. számú melléklet: Kérdéssor a „Csábító erők, avagy a mindennapok fizikája” c. könyvhöz
3. számú melléklet: A diákklány kutatócsoport 2016/2017. évi munkanaplója
4. számú melléklet: Kísérletkészítő verseny pontozólapja
5. számú melléklet: Részecskefizika totó
1. Mivel keresett magának egy kis zsebpénzt 11-12 éves korában Feynman?
2. A szögfüggvények szokásos jelölése helyett mit használt? (írj legalább 1 példát!)
3. Milyen módszert talált ki a zöldbaba szelelésére?
4. A MIT-en milyen humán tárgyakat tanult?
5. Melyik egyetemen írta doktori disszertációját?
6. Milyen vitája volt egy szobafestővel?
7. Amatőr természetbúvárként milyen megfigyeléseket végzett? (írj legalább 1 példát!)
8. Milyen kísérletet végzett vérebként?
9. Hol segédkezett a „bombagyártásban”?
10. Mit csinált eközben a felesége?
11. Mire volt a legnagyobb szükség az atombomba készítésénél?
12. Milyen cselt eszelt ki a szálláshelyen a nők „becsempészésére”?
13. Mit cenząztak a „kísérleti telepen”?
14. Ír legalább két ismert fizikust, akivel élete során személyesen találkozott!
15. Jellemezd Feynmant pár szóval!
16. Miért találták Feynmant alkalmatlannak sorozáskor?
17. Mi volt a beceneve (így neveztette magát) Feynmannak?
18. Egy szerződés megírásakor legfeljebb hányszor volt hajlandó a nevét aláírni?
19. Milyen hangszeren tanult meg élete során játszani?
20. Szerinte mire kell a diákokat megtanítani?
2. számú melléklet

„OLVASÓS” FIZIKAVERSENY

CSÁBÍTÓ ERŐK, AVAGY A MINDENNAPOK FIZIKÁJA c. könyv

1. Miért „különleges Schrödinger macskája?"
2. Minden idők legszebb kísérletének mit választottak?
3. Kinek az uralkodása idején volt Arkhimédész udvari tudós?
4. Galileo Galilei hol és hogyan igazolta ejtési törvényét?
5. Egy tízszeresére nagyított „óriás nő” súlya hányszorosára változik?
6. A sci-fi filmekben, a világűrben sokat durrogtatnak, a valóságban ez miért nem lehetséges?
7. Hány fokon optimális a virslit főzni és miért?
8. Mi az a Perpetuum Mobile?
9. Mikor és milyen nemzetiségű tudós találta fel az első örökmozgót?
10. C. Huygens milyen elméletéről híres?
11. Mit kell tennünk ahhoz, hogy Miki-egér hangunk legyen?
12. Melyik csillag van (a Napon kívül) a legközelebb hozzánk?
13. Mit értünk „íkerparadoxon” alatt?
14. Mit könnyebb egy vékony csővel felszívni, a limonádét vagy a sangriát?
15. Miből fakad a Földön a Coriolis-erő?
16. Mi az oka annak, hogy nyáron melegebb van mit télen?
17. Miért tudnak repülni a repülők?
18. Egy űrhajóban mitől van súlytalanság?
19. Mi az a hármaspont?
20. Mi az a pillangóhatás
3. számú melléklet

MUNKANAPLÓ

Diáklány kutató csoport

Szeptember 7.
Megbeszélés, a csoport tagjainak kiválasztása, időpont egyeztetés (motivációs levelek elkészítése)

Szeptember 14.
Detektorok, gyorsítók előadás, beszélgetés, ismerkedés a tervezett projekttel

Szeptember 21.
Első alkalommal látogatás a Wigner Fizikai Kutatóintézetben, ahol megkerestük és felfedeztük a Rézsécse és Magfizikai Kutatóintézeten belül a Nagyenergiássz Fizika Osztály Detektorfejlesztő laboratóriumát. Megismerkedtünk Dr. Varga Dezsővel, aki a laboratórium vezető fizikusa.

Mentorunktól, Oláh Éva tanárnőtől előadást hallottunk a sokszálas, kozmikus müonok észleléseire alkalmas detektorokról, hiszen mi is ennek különböző típusait tervezzük majd megépíteni.

Megnéztük a műhelyt is, ahol a mechanikai munkálatokat végezzük, és az ipari fűrógépet is próbáltunk.

Végül próbaforrasztásokat végeztünk, és gyakoroltunk, hiszen ezt majd nagy mennyiségben kell csinálnunk.

Szeptember 28.
Ha már lányok vagyunk, elsőként a kutatómunkánk végzésére kijelölt szobát próbáltuk kitakarítani, kicsit rendet tenni, hogy a körülmények a detektorunk
megépítéséhez minél tisztábbak legyenek. Varga Dezsővel közösen megterveztük az első prototípust, amely egy 20cm x 10 cm-es, 16 vastag, és 16 vékony szálat tartalmazó kamra lesz. Felmértük milyen alkatrészekre lesz majd szükségünk hozzá, de némelyeket magunk kellett „legyártani”.

Elsőként a 20mm x 10mm-es plexi rudakból kellett lefűrészselni 11 cm-es darabokat (a végén lereszelni, csiszolni). Megtanultuk a satu kezelését (közben forgatónyomaték, és erőkar fogalmak is előkerültek:)), azt, hogy a plexi rudat egy papírlappal együtt kell befogni, ne sérüljön a rúd. Mivel a NYÁK (nyomtatott áramkör) lapokon előre elhelyezett lyukak vannak a majdani pozicionálás érdekében, ezzel teljesen azonos távolságban kellett 4 mm átmérőjű fúrófej segítségével lyukakat fúrnunk. Előre nagyon nehéznek tűnt, hiszen a sürlődás miatt a plexi megolvadt, és a keletkezett sorját gyorsan le kellett sörölni, nehogy a fúrófej belekerüljön a lyukba, visszaszilárdulás közben.

A kezdeti félénkségünk és bizonytalanságunk után, nagy kedvvel végeztük a mechanikai munkálatokat, megszerveztük ki melyik munkafázist végezze, és egy összehangolt csapatmunka alakult ki a végére.

Október 12.

Október 19.

Dórival és Vivivel szétszedtük azt a plexi dobozt, amit a Baár-Madados fiúk rosszul (nem volt egy szintbe a 4 oldalfal) ragasztottak össze, ráadásul pillanatragasztóval tették, így nem annyira tartós. Beállítottuk helyesen az oldalfalakat, és össze akartuk
ragasztani 2 komponensű ragasztóval, de azon kívül, hogy össze-vissza csúszkált, és minden tisza ragacsos lett, nem sikerült. Ekkor kaptunk egy kis szakmai segítséget:), plexit csak plexivel lehet (saját anyagával) megragasztani. Egy selejt plexirúdról le kellett reszelnünk kb. 20 ml-nyi port (kb. 1 órás munkával) és azt kellett feloldani 1 dl kloroformba. A ragasztás során az oldott plexi beépül a lapba, miközben a kloroform elpárolog.

Még fűrészeltünk pár 1x2x11 cm-es rudat, és kifúrtuk a rögzítésekhez.

November 16.

Ma a detektorok áramát mérő, úgynevezett nano ampermérő multiméterhez készítettünk nagyfeszültségű NYÁK (nyomtatott áramkör) paneleket. Mivel a detektorok működése 1600 V körüli feszültségen, és 50-100 nA áramerősségen üzemelnek, ehhez nagyon nagy ellenállást kell beforrasztani az áramkörbe. Ez 100 MΩ lenne, de ekkora méretű ellenállás nem kapható, ezért 10 db 10 MΩ-os ellenállás sorba kapcsolásával (hiszen ekkor az ellenállások összeadódnak ☺) kell előállítanunk. Két 10 MΩ-ost először összeforrasztottunk, majd utána a NYÁK-lemezre 5 db ilyen párt forrasztottunk a lehető leggazdaságosabb elrendezésben. Nem volt egyszerű a feladat, hiszen még nem vagyunk elég gyakorlottak sem a forrasztás technikájában, sem abban, hogy lehet ezeket a miniatür áramköri elemeket úgy megfognunk, hogy ne égesse meg a kezünket (a hővezetés itt is működik ☺). Ezt követően látogatást tettünk az egyik professzionális laborba is, ahol egy Mylar fóliát kellett teljesen simára kifeszíteni. Ez egy folpackhoz hasonló anyag, 30 μm vastagságú a vékony fémréteggel együtt, amivel azért vonják be, hogy vezetővé váljon. Ez a fólia egy olyan 32 szálas, kb. 15x15 cm-es, közel katódos detektorhoz kell, amelyben csak vékony szálak vannak kifeszítve (25 μm-es aranyozott wolfram), és az egyik katódot a Mylar fóliából készült teteje alkotja, a másikat egy réz NYÁK-lemez. Láttuk a vulkáni tevékenységet vizsgáló detektorrendszert tartó vasállványt is, amelyben az volt az érdekes, hogy 2-3 kamránként ólomlapokat kell elhelyezni a másodlagos müon sugárzás (ezek sokkal kisebb energiájúak, és nem adnak határozott, egyenes pályát, hanem eléggé szórnak) kiküszöbölésére, hiszen ez a mérés szempontjából zavaró hátter.

November 23.
Ma folytattuk a múltkor elkezdett NYÁK-lemezek forrasztását. Most be kellett forrasztanunk az egyenként 10 MΩ-os, úgynevezett védőellenállásokat, és a kondenzátorokat.

Ezután lementünk a „kínai” laborba, ahol egy nagyméretű detektorhoz szükséges műanyag lapokra kellett felragasztanunk az egéses ellendarabokat kétkomponensű ragasztóval, de ez most nem 5 perces volt, hanem 20 percig tudtunk dolgozni vele a megszilárdulás előtt.

Január 11.

Elkezdtek végre a várva várt kis detektor összeállítását.

Ezek 20x10 cm-esek, egy közös nyáklapra, mindkét oldalára 1-1 dobozt szeretnénk kialakítani.

A kamra oldalfalai itt is 2 cm magas plexi rudak, de azért, hogy ragasztás közben minél kevésbé csősszanak el az elemek, egy új módszer találtunk ki. A két rövidebb oldalfal plexi rúdjaik előzőleg 2 lyukat fúrtunk, azonos távolságban a nyáklemezen is úgy, hogy a megfelelő helyre kerüljenek az oldalfalak, és a hozzá való stiftek segítségével rögzíthetjük átmenetileg az alaplaphoz az oldalfalakat. A probléma csak az volt, hogy a lyuk a rúdon is ragasztós lett, emiatt, amikor a stifteket elhelyeztük benne, vigyázni kellett, hogy ne ragadjon végleg bele, mert ezek csak a ragasztás megkönnyítését szolgálják. Tehát 2 percenként kicsit meg kellett forgatnunk őket, kicsit kimozgatni, majd visszagondozni. Az első 5 percben viszont még nem szabad mozgatni, hogy a ragadás folyamatát ne szakítsuk meg. 2 kamrának az egyik oldalán lévő dobozait készítettük elő, a teljes száradásig 24 óra szükséges.

Február 22.

Ma nagyon sok mindennel tudtunk foglalkozni, kezdünk belejönni.

Először megragasztottuk a két fél ig elkészített detektorunk másik oldalait. a nehézség most is az volt, hogy 5-10 percig nagyon csúszkáltak az oldalfalak a lemezen, folyamatosan kontrollálni kellett. Közben Glenda egy professzionális 80x80-as MWPC detektorhoz kivezető 20 tüskés csatlakozókat forrasztott, minden kivezetést le kellett
forrasztani. Ma Glenda apukája is részt vett (segített a szemproblémám miatt fuvarozni a csajokat), és nagyon értékes munkát végzett, több tíz 40 tüskés csatlakozó minden egyes kivezetéséhez egy drótszalat forrasztott, amit előtte Dóri segített 3-4 tüskénként átfűzni.

Elérkeztünk végre a legizgalmasabb részhez is, elkezdhettük a száltekerést, a kb. 100 mikrométer vastagságú bronzszal felhasználásával. Először be kellett mérnünk, hogy melyik oldalon és melyik vályatoknál kell majd vezetnünk a szálat. Egy kis elektromos motor segítségével, amelyre tápegység segítségével kb. 8 voltos feszültséget kapcsoltunk, a szál haladási irányával ellentétes erő kifejtésének érdekében. Nagyon kellett figyelnünk, hogy a szálhoz abban a tartományban ne érjünk hozzá, amely a gáztérben lesz majd. A széleknél óvatosan, tiszta kézzel segíthettünk a szál megfelelő pozícióba való helyezéséhez. Időnként egy-egy biztonsági forrasztással rögzítettük a szálakat, majd a tekerés befejezésével a végponton is. Legközelebb kell mind a 16 kivezetésen mind a négy oldalon leforrasztani a szálakat, és utána egy sniccer segítségével levágni a föltesleges részeket. Majd a vékony, 25 mikrométeres aranyozott wolframszálat is fel kell tekernünk a detektorra. A wolfram biztosítja a szakítószilárdságot.

Március 1.

Ma forrasztottunk végre!!! A forrasztás előtt a pákát kb. 350 fokra kell felmelegíteni és önszálat kell előkészíteni. Az ón olvadáspontja jóval alacsonyabb, mint a NYÁK (réz) lemezé, ezért jó forraszanyag. Viszont mivel a forrasztás közben spriccelhet az ón, ezért a szálak fölé érdemes egy papírlapot helyezni, hogy ne kerüljön idegen anyag a gáztérbe.

Március 8.

Ma sniccerrel dolgoztunk. Megtanultuk azt is, hogy kell „élesre” letörni, és a szálak levágásához miként érdemes használni. A lappal kb. 45 fokos szöget bezárva, igazából nem előre-hátra húzogatva, hanem inkább egy erőteljes nyomással kell elvágni a szálakat. Viszont arra nagyon kell vigyázni, hogy közvetlenül a forr pótgyök mellett történjen a levágás, mert különben marad egy kis csúcsos száldarab. Még nem
tanultuk az iskolában, de most hallottunk ennek kapcsán az úgynevezett csúcshatásról. Most már jobban értjük a villámhárítók működési elvét is.

Ma még segítenünk kellett a 80x80-as nagydetektorok ragasztásában, forrasztásában is, nagyon nagy dolog, hogy a professzionális detektorok közelébe is engednek minket, ennyire bíznak bennünk, ezek szerint jól dolgozunk.

Április 5.

Ma először kicsit uncsibb feladatot kaptunk, plexi rudakat kellett izopropil alkoholis törlővel letisztogatnunk, mert a méretről vágás után még nagyon sok forgács, por maradt rajtuk. mi is most kétszer is végig töröltük őket, de még a detektorokba való beragasztásuk előtt úgy is még egyszer le kell törölgetni majd.

A mi kis detektorainkba ma a lezáró plexirudakat kellett beragasztanunk, utána pedig a lezáró NYÁK-lapot kellett ráagasztanunk. A plexirudakba korábban már a gázcso kivezetések számára 3mm-es lyukat kellett a 1 cm széles rúdba fúrnunk a műhelyben (fúrásban már nagyon jók vagyunk!) Utána kicseréltük a fúrőfejet 4mm-esre, azzal még kb. fél cm mélységgig felfúrtuk, hiszen a gázcsovünk is 4 mm átmérőjű. Ezzel a trükkel azt akartuk elérni, hogy a cső ne csússzon majd beljebb, viszont a gáz át tudjon áramolni. A végső lezárás után próbáltuk szabad szemmel megkeresni az esetleges lyukakat, és azokat még a kétkomponensű, 5 perces ragasztónkkal betömködni. Ugyan 5 percesnek mondjuk, mert kb. addig annyira folyékony, hogy még kenhető, de igazából a teljes ragadási ideje 24 óra. Ezért lesúlyozva otthagytuk a detektorunkat, majd jövő héten folytatjuk a munkát.

Április 12.

Ma az idegeinkre ment a leakhunter sípoló hangja!!! Ezzel a célszerszámmal próbáltuk a maradék réseket megkeresni. A detektorunkat gáz alá tettük, az argon (80%) - széndioxid (20%) keverékű gázt kb. 4-5 liter/óra áramlási sebességgel áramoltattuk. eközben, hiszen, ha van lyuk, akkor azon keresztül is ki kell jönne a gáznak, a leakhunterrel lassan pásztáztuk a ragasztások mentén a detektort. Az eszköz koncentráció változást mér, ha ez megváltozik, akkor éles sípolással jelzi.
Amikor megtaláltunk egy rést, akkor bejelöltük a helyét filctollal, utána újra, jó sok ragasztót odatéve befoltóztuk a lyukakat. A száradást követően újra gáz alá tetttük, most először kipróbáltuk a bubbler-rel, hogy buborékoztat-e az átáramlott gáz. Mert, ha igen, akkor már nem volt szükség a leakhunterrel vizsgálni, mert jól zárt a kamra.

Pechünkre az öt detektorból még mindig volt kettő, ami lyukas volt, de erre már nem volt időnk ma, hogy megkeressük a réseket.

Április 26.

Folytatódott a lyukkeresés, és láss csodát, kb. egy óra alatt sikerült mindet megtalálni, és így az összes detektorunkat résmentesen lezárni.

Elkezdhettük felforrasztani a kamrákra az elektronikai eszközöket, nagyfeszültségű kivezetéseket, kondenzátorokat, ellenállásokat. Előtte „kiképzést” kaptunk elektrotechnikából, megtanultuk, hogy az ellenállásokon a színes csíkok és a kondikon a számok mit jelentenek. Forrasztásban már nagyon jökk vagyunk, szerencsére sikerült a megfelelő helyekre tennünk az alkatrészeket!

Ezt követően „nullohmos” vezeték darabokkal minden lemezt, minden lemezzel több helyen is össze kellett kötni.

Ketten ma nem a detektorainkkal foglalkoztunk, gyárilag elkészített kis nyomtatott áramkör paneleket teszteltek. Sajnos 1-2 %-ban mindig vannak közöttük hibás darabok, de ezeket még a detektorokba való beépítésük előtt kell ellenőrizni, ha már a detektorokban vannak, sokkal nehezebb kiszűrni a hibát, hogy miért nem működik a detektor.

Május 10.

Befejeztük a felszerelvényezését a detektoroknak, egy mintadarab segítségével ellenőriztük, hogy minden alkatrész a megfelelő helyre került-e. Ezután megpróbáltunk minden összeköttetést egy helyre gyűjteni, a gázcső darabokat, a nagyfesz csatlakozókat, a trigger vezetékeket stb. és segítséggel ugyan, de a megfelelő helyekre csatlakoztatni. Nem volt egyszerű, a végén már a madzag-erdő között nehezen igazodtunk ki. Csak legközelebb tesszük gáz alá, mert kell neki egy kis
idő míg minden kamrát feltölti a lassan áramló gázvezeték és kimossa a gáztérből a levegőt.

A maradék időben ma kitakarítottuk a fiúk helyett a labort. Ugyan próbálunk tiszta körülményeket biztosítani, a mi laborunkban csak átvesszük papucsra az utcai cipőinket, kezet mosunk a munkálatok előtt és a beépítendő alkatrészeket és a munkafelületet használat előtt izopropil alkohollal áttöröljük. Ennek ellenére elég sok por jön be, pedig az ablakokat is mindig zárva tartjuk (légkondi van), ezt próbáltuk söpréssel és felmosással kicsit csökkenteni.

Május 17.

Hurrrral! Működik a tornyunk!!!! Mind az 5 detektorpár, tulajdonképpen 10 kamra, a 16 anódszálokhoz csatlakoztattott 16 égős LED-kártyával működött. Egymás után szólaltak meg a detektorok, a gáz beáramlásai helyétől kiindulva, majd kb. fél óra múlva track-ek, nyomvonalak lettek láthatók a LED-sorok által. A beérkező műonok ahogy ionizálják a gázt, a nagyfeszültség hatására elektronlavina formájában érkeznek a kiolvasó anódszállakhoz, majd elektromos jelként észleljük azokat. Másodpercenként a tenyerünkön kb. 1 műon részecske megy át, a mi detektoraink felülete kb. két tenyérnyi, de azt vettük észre, hogy szabálytalanul, de kb. másodpercnél láttunk egy track-et.

Május 24.

Ma voltunk ebben az évben utoljára, igazából már csak ketten voltunk a laborban, mert ketten épp a CERN-ben az első HSSIP programon vesznek részt.

Forrasztási feladatokat kaptunk, segíthettünk a nagydetektoroknál is, illetve kiolvasó kártyáakra kellett elektronikai alkatrészeket felforrasztanunk megadott mintadarab alapján.

Következő tanévben szeretnénk a megkezdett munkát folytatni.
4. számú melléklet

Kísérletkészítő és bemutató verseny

2016. november 30.

<table>
<thead>
<tr>
<th>NÉV</th>
<th>OSZ</th>
<th>CÍM</th>
<th>ÖTLET</th>
<th>LÁTVÁNY</th>
<th>FIZIKA</th>
<th>MAGYARÁZAT</th>
<th>ΣPONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.A.</td>
<td></td>
<td>Jeges virág</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.A.</td>
<td></td>
<td>Árvíz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B.</td>
<td></td>
<td>Buborék a buborékban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B.</td>
<td></td>
<td>Ezüst tojás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B.</td>
<td></td>
<td>Vulkán</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B</td>
<td></td>
<td>CD buborék</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B</td>
<td></td>
<td>Ezüst tojás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B</td>
<td></td>
<td>Titok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B</td>
<td></td>
<td>CD buborék</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.A</td>
<td></td>
<td>Az utolsó tojás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B</td>
<td></td>
<td>Mentsünk meg egy 10 forintost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.B</td>
<td></td>
<td>Lávalámpa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.B</td>
<td></td>
<td>Az olaj emulziói</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.D</td>
<td></td>
<td>Szökőkút</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.C</td>
<td></td>
<td>Elefánt fogkrém</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.A</td>
<td></td>
<td>Szívárvány</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.A</td>
<td></td>
<td>Széndioxiddal oltás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.A</td>
<td></td>
<td>Vízes meglepi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.B</td>
<td>A felrobbanó uzsonnás zacskó</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.D</td>
<td>Show só</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.CD</td>
<td>Párolgás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.D</td>
<td>Kísérlet vízzel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.B</td>
<td>Só-show kísérlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.B</td>
<td>Kísérlet a változó erőkarral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.B</td>
<td>Repülő teafilter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.NY B</td>
<td>Bumm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.B</td>
<td>Vigyázz, robban!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.A</td>
<td>Beszívja az üveg a tojást</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. számú melléklet

RÉSZECSEFIIZKA TOTÓ

OKOSABB VAGYOK, MINT EGY „RÉSZECSEFIIZKUS”?

☺ AKKOR INKÁBB TOTÓZZUNK! ☺

1. Minek a rövidítése az LHC?

2. Mire adták a 2013-as fizikai Nobel-díjat?

3. Állítsa erősségük szerint növekvő sorrendbe az alapvető kölcsönhatásokat!

4. Mit nevezünk bozonnak?

5. Írja fel a neutron béta-bomlásának reakcióegyenletét!

6. Az anyagi részecskéknek hányfajta családja van?

7. Mi az az 1 TeV?

8. Mik azok a fermionok?

9. Hogy nevezik az elektromágneses kölcsönhatás bozonját?

10. Mennyi az elektron, és mennyi a proton leptonszáma?

11. Az antiproton milyen kvarkokból épül fel?

12. Hányféle neutrínó létezik?
13. Miből épülnek fel a mezonok?

+1. A pozitronnak mennyi a leptontöltése?

Köszönöm a segítséget
Összefoglalás

Doktori értekezésemben a részecskefizika középiskolai oktatásának lehetőségeit mutatom be, kiegészítve nem hagyományos tanulási és tehetséggondozási módszerekkel a diákok, továbbá fizikatanárok számára. Részecskefizika témakör a Nemzeti Alaptantervben nem szerepel, némely iskola helyi tantervében fedezhetők fel csak nyomokban az adott témához kapcsolódó fogalmak, elnevezések. Ezzel szemben a részecskefizika korunk egyik legdinamikusabban fejlődő tudományága, naponta hallhatjuk eredményeit különféle beszámolókban. Tapasztalatom szerint a diákokat a klasszikus fizika törvényeinél sokkal jobban érdeklik a XX.-XXI. század felfedezései, de ahhoz alacsony matematikai alapokkal rendelkeznek, hogy ennek mélyebb értelmezését feladatokon keresztül begyakorolják.

Bebizonyítottam, hogy már középiskolás korú diákokat is be lehet vonni komoly kutatásokba, hasznos tevékenységeket folytatnak kutatóintézeti laboratóriumban és a munkafolyamatok közben szinte észrevétlenül tanulják a fizika törvényeit. Adott részfeladatok elvégzésekor saját maguk is rájönnek, hogy bizonyos háttértudás nélkül nem értik az általuk összeállított eszköz működési mechanizmusát.

A mérettartamánya alapján szabad szemmel láthatatlan, s így nehezen elképzelhető mikrovilág bemutatására kidolgoztam egy oktatási segédanyagot, amelyet főleg szakköri munkához és emelt szintű képzésekhez ajánlok, de fizikatanár kollégáimnak is nagy segítséget nyújt a mélyebb megértéshez.

A zene és a fizika kapcsolata régóta ismert, nekem is régóta szoros kapcsolatom van a zenével, így természetesen adódott, hogy magam is megmutassam, hogy a zene, jótékony hatása mellett a fizikaórák színesítésére és egyes fejezetek könnyebb megértéséhez is használható. Az általam tanított nem kiemelkedő képességű tanulóknál eredetlencsébe fellépő változás a motiválás, tehetségük kibontakoztatására egyéni oktatási módszereket fejlesztettem ki, ahol a cél mindig az volt, hogy minél több diák természettudományos attitűdjét tudjam pozitív irányba megváltoztatni. Fizika szakos kollégáim számára lehetőséget biztosítottam, hogy megismerkedjenek a kutatódiákok által is végzett feladatokkal, továbbképzések alkalmával mérőeszköz építhetnek és megtanulhassák a mikrorészecskék fizikájának különböző bemutatási lehetőségeit.

Az eddigi eredmények egyértelműen azt bizonyítják, hogy létjogosultsága van az általam bevezetett módszereknek, sok diákom pályávalozását befolyásolta.
Summary

In this thesis I present possibilities of teaching particle physics in high school, using non-traditional methods of education and talent care for both students and teachers. The National Curriculum has no particle physics among its topics, although a few schools have in their local curricula some of its concepts and terms. Nevertheless, particle physics is one of the most dynamically developing fields of science, we can hear its results in all kinds of media reports. In my experience the students are much more interested in the discoveries of the 20-th and 21-st centuries than in the classical laws of physics, but their mathematical knowledge is too limited for studying them via problem solving.

I have shown that high-school students can be involved in serious research via useful activities in research laboratories and during the work they learn the laws of physics without any special effort. While solving special problems they realize that without background knowledge it is impossible to understand the working mechanism of the apparatus they are building.

For the presentation of the microworld, which is invisible by eye because of its sizes and so it is hard to visualize I created a teaching material recommended for study circles and advanced teaching, but it could also help teacher colleagues for deeper understanding.

The relations between music and physics is well known, and I have close connections with music as well, so it was natural for me to use music to make the physics classes more colourful, and even to help making certain fields of physics more comprehensible. I have also developed individual teaching methods to raise interest of less gifted students in my classes, to motivate and help them to develop their talents, and the goal was always to improve the attitude of as many students as possible toward natural sciences. I gave opportunities to my teacher colleagues to get acquainted with the work done by the research students, during teaching sessions they could build themselves those measuring apparati and learn the demonstration possibilities of the physics of the microworld.

The results so far have shown that these methods are very useful, as they influenced the carriers of several of my former students.
ADATLAP
a doktori értekezés nyilvánosságra hozatalához

I. A doktori értekezés adatai
A szerző neve: Oláh Éva Mária
MTMT-azonosító: 10052597
A doktori értekezés címe és alcíme: Részecskefizika tanítása középiskolában
DOI-azonosító: 10.15476/ELTE.2018.127
A doktori iskola neve: Eötvös Loránd Tudományegyetem Természettudományi Kar Fizika Doktori
Iskola
A doktori iskolán belüli doktori program neve: Fizika Tanítása Doktori Program
A témavezető (1) neve és tudományos fokozata: Dr. Horváth Dezső, emeritus professzor, a fizikai
tudomány doktora
A témavezető (1) munkahelye: MTA Wigner Fizikai Kutatóközpont
A témavezető (2) neve és tudományos fokozata: Dr. Varga Dezső, tudományos főmunkatárs, PhD
A témavezető (2) munkahelye: MTA Wigner Fizikai Kutatóközpont

II. Nyilatkozatok
1. A doktori értekezés szerzőjeként
 a) hozzájárulok, hogy a doktori fokozat megszerzését követően a doktori értekezésem és a tézisek
 nyilvánosságra kerüljenek az ELTE Digitális Intézményi Tudástárban. Felhatalmazom a
 Természettudományi kar Dékáni Hivatal Doktori, Habilitációs és Nemzetközi Ügyek Csoportjának
 ügyintézőjét, hogy az értekezést és a téziseket feltöltse az ELTE Digitális Intézményi Tudástárba, és
 ennek során kitöltse a feltöltéshez szükséges nyilatkozatokat.
 b) kérem, hogy a mellékelten kérlemben részletezett szabadalmi, illetőleg oltalmi bejelentés
 közzéteteteléig a doktori értekezést ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE
 Digitális Intézményi Tudástárban;
 c) kérem, hogy a nemzetbiztonsági okból minősített adatot tartalmazó doktori értekezést a minősítés
 (dátum)-ig tartó időtartama alatt ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE
 Digitális Intézményi Tudástárban;
 d) kérem, hogy a mű kiadására vonatkozó mellékelt kiadó szerzőjénként tekintettel a doktori értekezést a
 könyv megjelenéséig ne bocsássák nyilvánosságra az Egyetemi Könyvtárban, és az ELTE Digitális
 Intézményi Tudástárban csak a könyv bibliográfiai adatait tegyék közzé. Ha a könyv a fókotazszerzést
 követően egy évig nem jelenik meg, hozzájárulok, hogy a doktori értekezésem és a tézisek
 nyilvánosságra kerüljenek az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban;
 e) kérem, hogy a mű kiadására vonatkozó mellékelt kiadó szerzőjénként tekintettel a doktori értekezést a
 könyv megjelenéséig ne bocsássák nyilvánosságra az Egyetemi Könyvtárban, és az ELTE Digitális
 Intézményi Tudástárban csak a könyv bibliográfiai adatait tegyék közzé. Ha a könyv a fókotazszerzést
 követően egy évig nem jelenik meg, hozzájárulok, hogy a doktori értekezésem és a tézisek
 nyilvánosságra kerüljenek az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban;

2. A doktori értekezés szerzőjeként kijelentem, hogy
 a) az ELTE Digitális Intézményi Tudástárba feltöltendő doktori értekezés és a tézisek saját eredeti,
 önálló szellemi munkám és legjobb tudomáson szerint nem sértem vele senki szerzői jogait;
 b) a doktori értekezés és a tézisek nyomtatott változatai és az elektronikus adathordozón benyújtott
 tartalmak (szöveg és ábrák) mindenben megegyeznek.
3. A doktori értekezés szerzőjeként hozzájárulok a doktori értekezés és a tézisek szövegének
 plágiumkereső adatbázisba helyezéséhez és plágiumellenőrző vizsgálatok lefuttatásához.

a doktori értekezés szerzőjének aláírása

133