Polikristályos szcintillátor anyagok előállítása és vizsgálata

Doktori (PhD) értekezés

Laczai Nikoletta

Eötvös Loránd Tudományegyetem, Természettudományi Kar, Kémia Doktori Iskola

Ismasztasa: Dr. Császár Attila, egyetemi tanár, D.Sc.

Analitikai, kolloid- és környezetkémia, elektrokémia doktori program

Programvezető: Dr. Kiss Éva, egyetemi tanár, D.Sc.

Témavezető: Dr. Benes László

tudományos főmunkatárs, Ph.D.

MTA Wigner Fizikai Kutatóközpont

Szilárdtestfizikai és Optikai Intézet

2016
Tartalomjegyzék

Tartalomjegyzék.. 2
Rövidítések jegyzéke .. 4
1. Bevezetés és célkitűzések .. 7
2. Irodalmi áttekintés .. 10
 2.1 Szcintillációs detektorok .. 10
 2.2. Cériummal (Ce\(^{3+}\)) adalékolt szervetlen szcintillátor anyagok ... 12
 2.3. \(\text{Y}_2\text{O}_3\)-\(\text{SiO}_2\) és \(\text{Lu}_2\text{O}_3\)-\(\text{SiO}_2\) rendszerben előforduló fázisok 14
 2.4. YSO, LSO és LYSO kristályok jellemzése .. 19
 2.4.1. Szerkezeti tulajdonságok .. 19
 2.4.2. Raman-spektroszkópiai tulajdonságok .. 24
 2.4.3. Lumineszcencia tulajdonságok ... 28
 2.4.4. Előállítási módszerek .. 30
 2.5. YSO minták Li és Na tartalmának elemanalitikai vizsgálata ... 34
3. Kísérleti rész ... 39
 3.1. Mintakészítés ... 39
 3.1.1. Különböző adalékanyag-tartalmú YSO:Ce minták... 39
 3.1.2. Különböző Ce\(^{3+}\) és Y\(^{3+}\)-tartalmú YSO és LYSO minták ... 41
 3.2. Alkalmazott mérőberendezések ... 42
 3.2.1. Termoanalitika ... 42
 3.2.2. Röntgen-pordiffrakció (XRD) ... 43
 3.2.3. Raman-spektroszkópia... 44
 3.2.4. Szilárdmintás HR-CS-GFAAS ... 44
 3.2.4.1. Felhasznált anyagok .. 47
 3.2.4.2. Nemzetközi hitelesített referencia anyagok elemzése 47
 3.2.5. HR-CS-FAAS mérési körülmények .. 48
 3.2.6. Pásztázó elektronmikroszkóp (SEM) .. 49
 3.2.7. Fotolumineszcencia mérés.. 49
4. Eredmények és kiértékelésük ... 51
 4.1. Előállítási eljárás optimalizálása ... 51
4.1.1. Raman-spektroszkópia ... 51
4.1.2. Röntgen-pordifferenciós vizsgálatok 56
4.1.3. Fotolumineszcencia mérések .. 59
4.1.4. Termoanalitikai vizsgálatok ... 64
4.1.5. Morfológiai vizsgálatok ... 65
4.1.6. Összegzés ... 69

4.2. SS-HR-CS-GFAAS módszerek kidolgozása YSO minták Li és Na tartalmának meghatározására .. 71
4.2.1. Mintamennyiség optimalizálás és elemzővonal választása szilárdmintás elemzéshez ... 71
4.2.2. Grafitkemence hevítési program optimalizálása 71
4.2.3. Atomizációs tranziensek .. 73
4.2.4. Módosítóbevonatok hatása ... 78
4.2.5. Kalibráció és elemzési eredmények 78

4.3. Fotolumineszcencia tulajdonságok vizsgálata ... 83
4.3.1. Különböző Ce$^{3+}$-tartalmú YSO minták 83
4.3.2. Különböző Y$^{3+}$- és Ce$^{3+}$-tartalmú LYSO minták 89

5. Doktori értekezés téziséi .. 96
6. Összefoglalás .. 98

7. Summary ... 101

Köszönetnyilvánítás ... 104
Saját közleményeim ... 105
IRODALOMJEGYZÉK .. 105
A dolgozatban használt, nemzetközileg elfogadott szakkifejezések rövidítéseinek magyarázata angolul és magyarul

AA:
- atomic absorption
- atomabszorció

AAS:
- atomic absorption spectrometry
- atomabszorciós spektrometria

BG:
- background absorbance
- háttérabszorbancia

CCD:
- charge coupled device
- töltés-csatolt fotodetektor

CRM:
- certified reference material
- hitelesített referencia anyag

DTA:
- differential thermoanalytical methods
- differenciális termoanalitikai módszerek

ETV-ICP-MS:
- electrothermal vaporization inductively coupled plasma mass spectrometry
- elektrotermikus elpárologtatóval kapcsolt inductív csatolású plazma tömegspektrometria

FAAS:
- flame atomic absorption spectrometry
- lángatomabszorciós spektrometria

FTIR:
- Fourier-transform infrared spectroscopy
- Fourier-transzformációs infravörös spektroszkópia

GFAAS:
- graphite furnace atomic absorption spectrometry
- grafitkemencés atomabszorciós spektrometria
HR-CS-AAS: high-resolution continuum source AAS
nagyfelbontású, folytonos színképű fényforrást alkalmazó AAS

HR-CS-GFAAS: high resolution continuum source GFAAS
nagyfelbontású, folytonos színképű fényforrást alkalmazó GFAAS

JCPDS: Joint Committee on Powder Diffraction Standards
(1978-ban átnevezté ICDD: International Centre for Diffraction Data)
Nemzetközi röntgen-porddiffakciós referencia-adatbázis

LDA: liquid dosing accessory
folyadék adagoló egység

LOD: limit of detection
kimutatási határ

LPS: lutetium pyrosilicate (Lu$_2$S$_2$O$_7$)
lutécium-piroszilikát

LSO: lutetium orthosilicate (Lu$_2$SiO$_5$)
lutécium-ortoszilikát

NBO: non-silicon bonded oxygen ion
nem szilíciumhoz kötődő oxigén atom

PL: photoluminescence
fotolumineszcencia

PMT: photomultiplier tube
fotoelektron-sokszorozó

RT: room temperature
szobahőmérséklet
SEM: scanning electron microscope
pásztázó elektronmikroszkóp

SS-GFAAS: solid sampling GFAAS
szilárdmintás GFAAS

THGA: transversely heated graphite atomizer
keresztfűtésű (oldalain fűtött) grafitkemence

XRD: X-ray powder diffraction
röntgen-pordiffraktométer

YPS: yttrium pyrosilicate (Y₂Si₂O₇)
ittrium-piroszilikát

YSO: yttrium oxyorthosilicate (Y₂SiO₅)
ittrium-oxiortoszilikát
1. Bevezetés és célkitűzések

energijáujú \(\gamma \)-fotont. A kristálytükben keletkező fényfelvillanásokat alakítja digitális jellé a rendszer, két pozícióérzékeny fotoelektron-sokszorozó cső segítségével. A detektor felbontása nagyban függ a kristálytük méretétől (~néhány mm) és azok minél sűrűbb (több tízezer darab/modul) elhelyezkedésétől [2]. Az elmúlt évtizedben a szervetlen szcintillátorok fejlesztése a reneszánszát élté. A legelterjedtebb szcintillátor anyagok a különböző ritka–fém–oxiortoszilikátok, melyek közös jellemzője a \(\gamma \)-foton elnyelési hatáskeresztmetszetet kedvezően befolyásoló nagy atomsűrűség és a nagy rendszámú atomok jelenléte. A Ce\(^{3+}\)-mal adalékolt lutéciump oxidatív szcintillátor, - a lutéciump–oxiortoszilikát (Lu\(_2\)SiO\(_5\), LSO), - manapság az egyik legjobb jellemzőkkel rendelkező detektoranyag [3].

Mivel a LSO egykristály növesztésének költségét jelentősen megemeli a kiindulási anyagok magas olvadáspontja (~2000 °C) és ára, ezért elterjedt az ittriumionnal részlegesen helyettesített lutéciump–ittrium–oxiortoszilikát (Lu\(_2\),\(x\)Y\(_x\)SiO\(_5\), LYSO) kristály használata is. A LYSO tulajdonságait nagymértékben befolyásolja a kristályrács Lu/Y aránya. Gyakorlati tapasztalatok alapján x<0,4 értékig a LYSO is kiváló fényhozammal és kedvező lecsengési idővel rendelkezik.

Az ipari felhasználás által diktált költségcsökkentés további lehetséges módja a polikristályos formában előállított kerámia anyagok használata. Az oxiortoszilikátok előállítása a hagyományos szilárdfázisú reakcióval nehéz, mert szintézishőmérsékletük magas. Ezért a szakirodalom hidrotermális és szol–gél módszereket, folyadékfázisú szinterelést, valamint mechanokémiai eljárást ajánló preparatív célokra. Az eddig LSO, LYSO:Ce előállításával kapcsolatban megjelent tanulmányokban elsősorban alapkutatási feladatokat oldottak meg, nem pedig az ipar számára legmegfelelőbb technikákat dolgozták ki. Ezért munkám során arra törekedtem, hogy az ezekre az anyagokra jellemző jó tulajdonságok megtartása mellett költséghatékony előállítási módszert dolgozzak ki. Kutatásom célja orvosdiagnosztikai képkockatáshoz és nukleáris alkalmazásokhoz megfelelő, beágyazott polikristályos szcintillátor készítésére alkalmas fénypor, a Ce\(^{3+}\)-iónnal aktivált LYSO C2/c típusú fázisának előállítása volt, az eddig elterjedt, egykristályból megmunkálással nyert kristálytűkön alapuló technológiák helyettesítésére.

Mivel a kiindulási anyagok beszerzési ára igen magas, különösen a Lu\(_2\)O\(_3\) esetében, így egy jól átgondolt munkamenettel optimalizálhatók, költségkimelővé tehetők a módszerköltség változás lépései. Az említett szempontokat azonban előbb tartva, először a gazdarács, vagyis az ittrium–oxiortoszilikát (Y\(_2\)SiO\(_5\), YSO) szobahőmérsékleten metastabil, magas hőmérsékletű C2/c típusú fázisát állítottam elő. Elsődleges feladatom az előkísérleteket követően, a kiválasztott előállítási módszer optimalizálása volt. Megvizsgáltam a különböző
hőkezelési programok alkalmasságát, másrészt különböző adalékanyagoknak (LiF, Li₂B₄O₇ (lítium-tetraborát, LTB), LiBO₃-Li₂B₄O₇ eutektikuma (~53,7 mol% B₂O₃ tartalomnál), NaCl és NaF) és azok koncentrációjának a fázisisztaságra gyakorolt hatását. Következő lépésként tanulmányoztam az aktivátor adalék (Ce³⁺) koncentrációjának függvényében a lumineszcencia intenzitásban bekövetkező változásokat. Végül vizsgáltam a különböző Y³⁺- és Ce³⁺-tartalmú LYSO (Lu₂₋ₓYₓSiO₅) minták tulajdonságait.

A polikristályos kerámiák szintézisét gyakran segítik olvadékképző adalékanyag (elsősorban alkáli-halogenidek) kiindulási anyagokhoz adagolásával és magas hőkezelési hőmérséklet (>1200 °C) alkalmazásával, melyen az adalékanyagok szinte teljesen kipárolognak. Az adalékanyagokból a gazdarácsba beépülő Li⁺/Na⁺ ionok pedig növelhetik a lumineszcencia intenzitást. Következésképpen, ezen komponensek pontos mennyiségének meghatározása kiemelten fontos az előállítási eljárás optimalizálása, illetve a kristályfizikai/kémiai információk értelmezése szempontjából. Mivel a polikristályos YₛSiO₅:Ce minták kis mintamennyiségben készültek (~250 mg sarzsonként) laboratóriumunkban, így a kémiai elemzéshez csupán néhány milligrammnyi minta állt rendelkezésre. Éppen ezért, nagy érzékenységű és kellően szelektív elemanalitikai módszert kellett kidolgozni és alkalmazni. Az oldatos mintabevitelen alapuló technikák a szilárd (por) minta feltárásával/feloldásával járnak, amely műveletek magukban hordozzák - a használt vegyszerek és laboreszközök általi mintaszennyeződés esélyét, miközben a minta higitása rontja a kimutatási képességet. A vázolt problémákra a szilárdmintás technikák nyújthatnak megoldást. Ezért a porított YSO:Ce minták adalékanyag (Li és Na) tartalmának pontos mennyiségi meghatározására szilárdmintás grafítkemencés atomabsorpciós spektrometriás módszereket dolgoztam ki és alkalmaztam. A preparatív kémiai eljárásoknál azok minden műveleti fázisában minősítettem a kapott köztitermékeket. A fázisátalakulásokat és kémiai reakciókat a hőmérséklet függvényében termoanalitikai mérésekkel követtem nyomon. A különböző munkafolyamatok után nyert termékek fázisazonosságát és fázisisztaságot röntgen-pordiffrakcióval és Raman-spektroszkópiával ellenőriztem, a kapott spektrumokat összevetve az irodalomban szereplőkkel, esetenként standardként használt porított egykristályok spektrumaival. A minták szemcseméretének, illetve morfológiájának tanulmányozására pázsztázó elektronmikroszkópos (SEM) felvételeket készítettemünk. Az aktivátor (Ce³⁺) koncentrációjának a preparált polikristályos minták optikai tulajdonságára kifejtett hatását pedig fotolumineszcencia mérésekkel követtem nyomon.
2. Irodalmi áttekintés

2.1. Szcintillációs detektorok

A szcintillátoroknak alapvetően két fő típusát különböztetjük meg. A lineáris és nagy fényhozamú, nagy sűrűségű, de viszonylag lassú szervetlen szcintillátorok \(\gamma \)-spektroszkópiai alkalmazásoknál, míg a kisebb fényhozamú, nem lineáris, de jóval gyorsabb szerves szcintillátorok \(\beta \)-spektroszkópiánál és gyors neutronok detektálásánál előnyösek.

A szervetlen szcintillátor kristályok átlátszó szigetelő anyagok, melyekben az ionizáló sugárzás gerjesztésének hatására elektronok jutnak a vegyértéksávból a vezetési sávba. A fénykibocsátásnak egy egyszerűsített (sematikus) leírása látható az 1. ábrán. A tiltott sáv szélessége nagyobb, mint 3 eV, ezért az ennek megfelelő energiájú fotonok elnyelődnek a kristályban. Ahhoz, hogy a keletkező foton kijusson a kristályból, szennyező (aktivátor) anyag beépítése szükséges. Megfelelő szennyezők ugyanis olyan módon perturbálhatják a kristály rácsszerkezetét, hogy lokálisan újabb energianívók jelennek meg a vezetési sáv alatt, valamint a vegyértéksáv fölött, így a tiltott sáv leszűkül. Ilyen esetben az elektron-lyuk párok a kristályban vándorolva könnyen egy ilyen szennyezőnél köthetnek ki, mert ez energetikailag kedvezőbb. Ezért a relaxáció során a tiltott sáv szélességénél kisebb energiájú foton bocsájtódik ki, melyre a kristály csak korlátozottan elnyelő, így az kijut a kristályból. Egy másik lehetséges folyamatban, az elektron-lyuk pár egy gyengén kötött rendszert, ún. excitont alkot. Ennek az energiaszintje szintén kisebb, mint a gerjesztési energia (\(E_g \)), és bomlásakor látható fényt bocsájt ki (1. ábra). Tiszta kristályban excitonok csak alacsony hőmérsékleten jöhetnek létre, szobahőmérsékleten ehhez a folyamatohoz aktivátorra van szükség.
1. ábra Sávszerkezet szvertelen szcintillációs kristályban és a szcintilláció kialakulása [4]

Besugárzás hatására egy ionizáló részecske 10^{-9} s-on belül létrehozza az elektron-lyuk párokat, ezután azonban a fotonok kibocsátása a fenti folyamatokra jellemző, hosszabb időskálán történik. Ezért a fénykibocsátás intenzitásának időbeli alakulása ($I(t)$) exponenciális függvényt írható le:

$$I(t) = I_0 \exp(-t/\tau)$$

ahol τ a fényemisszió élettartama, I_0 a kezdeti fény (emissziós) intenzitás ($t=0$ s-nál), és t az idő. Előfordulhat, hogy az elektron-lyuk pár olyan állapotokba kerül (ún. elektroncsapda), amelyek között nincsen megengedett átmenet, így rekombináció nem jöhet létre. Az elektron-lyuk párak ilyen metastabil állapotokból a hőmozgás hatására bekövetkező kis gerjesztés után tudnak kikerülni, azaz így következik be a relaxáció. Ez bizonyos időbe telik, ezért az ilyen kristályokban egy sokkal lassabban bomló komponens is megjelenhet a fénykibocsátásban, amit utánvilágításnak ("afterglow") nevez a szakirodalom. Ezt okozhatják rácshibák, vagy nem kivánt szennyezők beépülése is [5, 6, 7].
2.2. Cériummal (Ce$^{3+}$) adalékolt szervetlen szcintillátor anyagok

Számos szcintillátor anyagot fejlesztettek ki az utóbbi évtizedekben, azonban egyetlen anyag sem teljesíti egyidejűleg az összes kívánt kritériumot, ezért az alkalmazás célját figyelembe véve, a legfontosabb szempontok szerint kell kiválasztani a legalalkalmasabb szcintillátort. A szcintillátorknak felhasználási területük alapján más és más követelményeknek kell megfelelniük, a fényhozam, lecsengési idő, szcintillátor effektív rendszáma (Z_{eff}), fényemisszió hullámhossza, robosztusság és a sugárzástűrés figyelembevételével. Nyilvánvaló, hogy egyéb jellemzőknek is megfelelőnek kell lenni.

Ilyenek a kristály áteresztőképesség, a kristály mérete, megmunkálhatósága, higroszkóposága, illetve az ára [7, 8].

Manapság PET berendezésekben a leggyakrabban használt szcintillátor anyag a bizmut-germanát (Bi$_4$Ge$_3$O$_{12}$, BGO). Ez a szcintillátor anyag azonban számos hátránnyal rendelkezik, például, - ahogy az 1. táblázatból is kitűnik, - gyenge fénykihozatal (a NaI(Tl)nak csupán 15%-a), lassú lecsengési idő (300 ns), és hosszú utánvilágítási idő. Ezzel szemben a LYSO kristály kiváló fényhozamú és jó energiafelbontó-képességű. Emellett nagy sűrűségű anyag, amely gyors lecsengési idővel, megfelelő töreksutatóval és optimális emissziós hullámhosszal rendelkezik. Ahogy az 1. táblázatból is látszik, a LYSO gyorsabb és hatékonyabb az abszorbeált γ-sugárzás fényével való átalakításában, mint a BGO és a gadolinium-oxiortoszilikát ($\text{Gd}_2(\text{SiO}_4)_2\text{O}$, GSO) [9].

A cériummal (Ce$^{3+}$) adalékolt ritkaöldőfém (RE)-oxiortoszilikátokat (RE$_2\text{SiO}_5$) nagy tudományos érdeklődés övezi, mint potenciális jelölteket katódllumineszcens, valamint szcintillátorkhoz alkalmas fényporok alkalmazási területen. Ezek a kristályok hatékony lumineszcenciát mutatnak a stabil és merev szilikát gazdarácsnak, valamint a Ce$^{3+}$ sugárzási átmenetei (5d→4f) révén elérhető, gyors és intenzív fénykibocsátásnak köszönhetően [10, 11, 12, 13, 14, 15, 16]. Ilyen Ce$^{3+}$-mal adalékolt szilikátozók, mint például a Lu$_2\text{SiO}_5$ (LSO), GSO, és Y$_2(\text{SiO}_4)_2$ (YSO) jól teljesíti a γ-sugárzás észlelésére képes szcintillátorokra vonatkozó követelményeket, azaz nagy sűrűséggel, effektív rendszámmal, szcintillációs fényhozammal és gyors lecsengési idővel rendelkeznek. Különösen kiváló szcintillációs tulajdonságokat mutat a Ce$^{3+}$-mal adalékolt Lu$_2\text{SiO}_5$, amit az elmúlt években széles körben vizsgáltak [15, 17, 18, 19]. Előnyei, a nagy fényhozam, rövid szcintillációs lecsengés (40 ns) és a nagy sűrűség (7,4 g/cm3), így ez az a kristály, amit manapság szcintillátorkban leginkább használnak. Egy olcsóbb izomorf anyagot, a Ce$^{3+}$-mal adalékolt YSO-t szintén potenciális oxid-alapú fényporként jegyeznek, bár tulajdonságai (kisebb fényhozam, hosszabb szcintillációs
lecsengés, és kisebb sűrűség) gyengébbek, mint a Ce:LSO-nak [15, 20, 21, 22]. Ígéretesebb anyagnak bizonyult a LSO-YSO szilárd oldata, a cériummal adalékolt LYSO (Lu_2_xY_xSiO_5:Ce). Utóbbi, - az x<0,4 koncentráció-tartományban, - hasonlóan jó fényhozammal és kristálysűrűséggel rendelkezik, bár egy kicsit hosszabb lecsengési idejű (50 ns), mint az LSO. A kristálynövesztési eljárás során a LYSO számtalan előnyét jegyezték fel. Először is a LYSO:Ce kissé alacsonyabb olvadáspontú (2150 °C helyett 2100 °C), kevesebb mennyiségű lutécium-oxid kiindulási anyagra van szükség, amely drágább, mint az ittrium-oxid, ezáltal csökken az előállítás költsége. Továbbá, kisebb viskozitású az olvadéka, amely csökkenti a ritkaöldőfém-oxid zárványok kialakulásának esélyét, így az ezekből a LYSO-ban kialakuló optikai szórási központok koncentrációja is lecsökken [17, 23, 24].

1. táblázat Napjainkban legelterjedtebb szcintillátor anyagok főbb tulajdonságai
[9, 25, 26, 27, 28, 29, 30]

<table>
<thead>
<tr>
<th></th>
<th>Lu_2_xY_xSiO_5:Ce (LYSO, X=0,2)</th>
<th>LPS:Ce</th>
<th>LSO:Ce</th>
<th>YSO:Ce</th>
<th>GSO:Ce</th>
<th>BGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecsengési idő (ns) (Gyors/lassú arány)</td>
<td>41/38</td>
<td>40/70</td>
<td>60/600</td>
<td>60/300</td>
<td>7/1</td>
<td>1/10</td>
</tr>
<tr>
<td>Emisszió hullámhossza (nm)</td>
<td>397</td>
<td>380</td>
<td>420</td>
<td>420</td>
<td>440</td>
<td>480</td>
</tr>
<tr>
<td>Törésmutató (az emisszió maximumán)</td>
<td>1,81</td>
<td>1,74</td>
<td>1,82</td>
<td>1,8</td>
<td>1,85</td>
<td>2,15</td>
</tr>
<tr>
<td>Sűrűség (g/cm^3)</td>
<td>7,1</td>
<td>6,2</td>
<td>7,35</td>
<td>4,45</td>
<td>6,71</td>
<td>7,13</td>
</tr>
<tr>
<td>Z_{eff}</td>
<td>65</td>
<td>64</td>
<td>66</td>
<td>35</td>
<td>58</td>
<td>73</td>
</tr>
<tr>
<td>Energia felbontás 662 keV (%)</td>
<td>8,2</td>
<td>10</td>
<td>10,6</td>
<td>9,4</td>
<td>7,0</td>
<td>9,0</td>
</tr>
<tr>
<td>Fényhozam (1000 ph/MeV)</td>
<td>33</td>
<td>26</td>
<td>27</td>
<td>24</td>
<td>12,5</td>
<td>8,6</td>
</tr>
</tbody>
</table>
2.3. Y$_2$O$_3$-SiO$_2$ és Lu$_2$O$_3$-SiO$_2$ rendszerben előforduló fázisok

Az Y$_2$O$_3$-SiO$_2$ és Lu$_2$O$_3$-SiO$_2$ rendszer fázisdiagramját és a fázisok közti kapcsolatok részletes leírását Toropov és Bondar “Phase Diagrams of Ceramics” című munkája tartalmazza [31] (2. és 3. ábra). A szerzők az 1:1, 2:3 és 1:2 molarányú Y$_2$O$_3$:SiO$_2$ összetételeket különböztették meg, melyek az Y$_2$O$_3$-SiO$_2$ rendszerben 1980 °C-on, 1950 °C-on kongruensen, és 1775 °C-on inkongruensen olvadnak. A Lu$_2$O$_3$-SiO$_2$ rendszerben alacsonyabb hőmérsékleteken, 1950 °C-on, 1920 °C-on és 1855 °C-on kongruensen olvadnak. A minimum eutektikus hőmérsékletet 1660 °C-nál találták (újabb kutatások szerint 2150 °C [32]) 72 mol% SiO$_2$, 28 mol% Y$_2$O$_3$/Lu$_2$O$_3$ összetétnél. Későbbi kutatások Toropov és Bondar eredményeivel egyetértésben az 1:1 és 1:2 összetétel létezését igazolták, valamint kiegészítették az Y$_2$Si$_2$O$_7$ polimorfok kutatásaival; azonban a 2:3 összetétel létrejöttét cáfolták, melyet szerintük +1 és +2 oxidációs fokú ionok stabilizálnak [38].

![2. ábra](image-url) Lu$_2$O$_3$-SiO$_2$ rendszer fázisdiagramja (az 1, 2, és 3 jelölésű nyilak az ortoszilikát létezési tartományait jelzik) [33]
Az Y$_2$O$_3$-SiO$_2$ és Lu$_2$O$_3$-SiO$_2$ rendszerben előforduló fázisok a következők:

a) Diszilikátok (piroszilikátok)

A ritkaöldőm-diszilikátok (piroszilikátok, RE$_2$Si$_2$O$_7$; RE$_2$O$_3$:SiO$_2$ arány: 1:2) a polimorfia tipikus példájául szolgálnak, melyet a ritkaöldőmek ionsugara és a szintézis hőmérséklete befolyásol [35, 36]. A szakirodalom összesen hétféle polimorf ittrium-diszilikát módosulatról számol be, nevezetesen az α, β, γ, δ, ε, ζ és η [37, 38]. Ezen formák a hőmérséklet 1225 °C-ról 1535 °C-ra növelésével a stabil α-ból β-vá (1225°C), majd γ-vá (1445°C) és végül δ fázissá (1535°C) rekonstruktív átalakulással jönnek létre (4. ábra) [37].
Az ε formához hidrotermális úton juthatunk viszonylag alacsony hőmérsékleten (~365 °C) [40]. Az η-Y_{2}Si_{2}O_{7} 1350 °C-on és 6 GPa nyomáson stabil forma [37]. A polimorfok a polimerizáció mértékében, az [SiO_{4}]^{4-} tetraéder elhelyezkedésében, és/vagy az ittrium koordinációs számában térnek el egymástól. Az α β, γ, δ, ε és ζ fázisok a szoroszilikátok közé sorolhatóak, ahol két [SiO_{4}]^{4-} tetraéder összekapcsolódásával [Si_{2}O_{7}]^{6-} csoportok jönnek létre. Az α- és η-formák az úgynevezett elszigetelt [SiO_{4}]^{4-} tetraédert és Si_{3}O_{10} trimereket is tartalmazó szilikátkohoz tartoznak. Koordinációs számuk 6 (β és γ), 7 (δ és ζ), vagy 8 (α és η formákban) lehet [41].

A lutécium-piroszilikátok az alkalmazott szintezishőmérséklet függvényében kétfélé szerkezetben kristályosodhatnak ki. Az α (másnéven B) fázis alacsony hőmérsékleten (~1000 °C) stabil fázis, míg a β (másnéven C) fázis magas hőmérsékleten jelenik meg (1500 °C) [35, 36, 42]. Ez utóbbi monoklin, C2/m tércsoportú kristály [43]. Torzult hexagonális szerkezetűnek tekinthető, mely oxigénionokat tartalmazó, lutéciumionok alkotta oktaéderekből és szilíciumionok alkotta tetraéderekből tevődik össze. Ebben háromfélé oxigent különöztethetünk meg: az első (O1) a lutéciumhoz nem kapcsolódó, két szilícium közti oxigén. A másik két oxigén (O2 és O3) a [Si_{2}O_{7}]^{6-} egység végoxigénjei és a lutécium környezetéhez tartoznak. A kristály csupán egy, - a lantánion adalékolás szempontjából fontos, - kristályhellyel rendelkezik [44, 45].

Ásványi (nem tiszta/hidratált) piroszilikát formák:

Thalenit

A thalenit természetesen megjelenő piroszilikát forma, melyről Ito és Johnson [38] bebizonyította, hogy 1050 °C-on β-piroszilikáttá (β-Y_{2}Si_{2}O_{7}) alakul, majd 1465 °C-nál továbbalakul γ-piroszilikáttá (γ-Y_{2}Si_{2}O_{7}). A kiindulási ásvány kémiai analízise során megállapították az 1:2 Y_{2}O_{3}-SiO_{2} arányú hidratált ittrium-szilikát fázis Y_{3}Si_{1}O_{10}(OH), azaz Y_{3}Si_{2}O_{7} \frac{1}{3}H_{2}O szerkezetét, amely monoklin, tércsoportja P2_{1}/n [46].

Ittrialit és y-fázis

Az ittrialit egy M_{2}Si_{2}O_{7} általános formulával leírható ásvány, ahol M túlnyomórészt ittriumot jelent, de tartalmazhat tóriumot, ritkaöldélemeket és +2-es oxidációfokú ionokat is. 1000 °C-on az γ-Y_{2}Si_{2}O_{7} diszilikát formát azonosították, 1200 °C-on pedig monoklin P2_{1}/m kristályoszerkezetű α-Y_{2}Si_{2}O_{7} keletkezik belőle. Az y-fázis (Y_{8}Si_{6}O_{21}) legfontosabb jellemzője, hogy szennyezők jelenléte stabilizálja RY_{5}Si_{6}O_{21}formában; (ahol R= H^{+}, Na^{+}, Mg^{2+}, Mn^{2+}, Fe^{2+}, Fe^{3+}, Al^{3+}, Th^{4+}, vagy Zr^{4+}) [38].
z-fázis

Valószínűleg a thalenit hidroxil csoportjának elvesztésével keletkező, 1030 °C-on stabil fázis (JCPSD (Joint Committee on Powder Diffraction Standards) kártyaszáma: 21-1459), mely attól az Y₂Si₂O₇·H₂O arányban különbözik [46].

b) 2Y₂O₃·3SiO₂ összetétel

A szilícium-oxiapatit (Y₄.₆₇(SiO₄)₃O, (2.34Y₂O₃·3SiO₂) apatit) kikristályosodása kationhiányos hexagonális kristályrendszerben történik, tércsoportja P6₃/m [47]. Szerkezetére jellemző speciális tulajdonság, hogy rendelkezik nem szilíciumhoz kötődő (“szabad”, non-bonded oxygen, NBO) oxigénatomokkal, melyek nem a tetragonális SiO₄ szerkezethez tartoznak. Ez a szerkezet két különböző ittrium hellyel rendelkezik, melyek 9-es és 7-es koordinációs számúak. A nem szilíciumhoz kötődő oxigénatomok a hexagonális tengellyel párhuzamosan futó láncon a 7-es koordinációs számú ittrium atomok alkotta háromszög alakú üregbe illeszkednek (klasszikus apatit struktúrákban F és OH pozícióként ismert helyek). A kationhiányos apatit szerkeze rendkívül jól tűri a kation-anion szubsztitúciót, valamint a kation-/anionhiányt [48].

c) 1:1 RE₂O₃·SiO₂ összetétel (ortoszilikátok)

Mivel doktori munkám egyik fő célja X2-fázisú ortoszilikátok előállítása volt, így az YSO, LSO és LYSO szerkezeti, Raman-spektroszkópiai és lumineszcencia tulajdonságait, illetve a lehetséges előállítási módszereket külön alfejezetben foglaltam össze (2.4. alfejezet). A fentebb írtakat összefoglalva külön táblázatokkal szemléltetem, példaként az Y₂SiO₅ előállítása során, az Y₂O₃/SiO₂/LiYO₂ porkeverék esetében a különböző hőkezelési hőmérsékleteken azonosított fázisokat (2. táblázat), illetve az adott hőmérsékleteken lezajló reakciókat (3. táblázat).
2. táblázat Y\textsubscript{2}O\textsubscript{3}/SiO\textsubscript{2}/LiYO\textsubscript{2} porkeverék különböző hőkezelési hőmérsékleteken azonosított fázisai [49]

<table>
<thead>
<tr>
<th>Hőmérséklet</th>
<th>Azonosított fázisok</th>
</tr>
</thead>
<tbody>
<tr>
<td><830 °C</td>
<td>Y\textsubscript{2}O\textsubscript{3}, amorf SiO\textsubscript{2}, kvarc</td>
</tr>
<tr>
<td>830-840 °C</td>
<td>Y\textsubscript{2}O\textsubscript{3}, amorf SiO\textsubscript{2}, kvarc, Y\textsubscript{4.67}(SiO\textsubscript{4})\textsubscript{3}Oa</td>
</tr>
<tr>
<td>840-980 °C</td>
<td>Y\textsubscript{2}O\textsubscript{3}, amorf SiO\textsubscript{2}, kvarc, Y\textsubscript{4.67}(SiO\textsubscript{4})\textsubscript{3}Oa, X\textsubscript{1}-Y\textsubscript{2}SiO\textsubscript{5}a,b, Y\textsubscript{3}Si\textsubscript{5}O\textsubscript{7}a</td>
</tr>
<tr>
<td>980-1025 °C</td>
<td>Y\textsubscript{4.67}(SiO\textsubscript{4})\textsubscript{3}O, Y\textsubscript{2}O\textsubscript{3}, Y\textsubscript{2}SiO\textsubscript{5}, γ-Y\textsubscript{2}Si\textsubscript{2}O\textsubscript{7}a</td>
</tr>
<tr>
<td>1025-1450 °C</td>
<td>Y\textsubscript{2}SiO\textsubscript{5}, Y\textsubscript{4.67}(SiO\textsubscript{4})\textsubscript{3}O, Y\textsubscript{2}O\textsubscript{3}</td>
</tr>
<tr>
<td>1500 °C és hőntartás</td>
<td>Y\textsubscript{2}SiO\textsubscript{5}</td>
</tr>
</tbody>
</table>

\[abc- nyomokban van jelen.\]

3. táblázat Az Y\textsubscript{2}SiO\textsubscript{5} előállítása LiYO\textsubscript{2}, adalékanyaggal, szilárd-folyadék módszer esetében, a különböző hőkezelési hőmérsékleteken lezajló reakciók összefoglalása [49]

<table>
<thead>
<tr>
<th>Hőmérséklet</th>
<th>Várható reakciók</th>
<th>Reakció valószínűsége</th>
</tr>
</thead>
<tbody>
<tr>
<td><830 °C</td>
<td>Y\textsubscript{2}O\textsubscript{3} és SiO\textsubscript{2}</td>
<td>nem lépnek reakcióba</td>
</tr>
<tr>
<td>830-980 °C</td>
<td>2,335Y\textsubscript{2}O\textsubscript{3} + 3SiO\textsubscript{2} \rightarrow Y\textsubscript{4.67}(SiO\textsubscript{4})\textsubscript{3}O</td>
<td>nyomokban</td>
</tr>
<tr>
<td></td>
<td>Y\textsubscript{2}O\textsubscript{3} + SiO\textsubscript{2} \rightarrow X\textsubscript{1}-Y\textsubscript{2}SiO\textsubscript{5}</td>
<td>elhanyagolható</td>
</tr>
<tr>
<td></td>
<td>Y\textsubscript{2}O\textsubscript{3} + 2SiO\textsubscript{2} \rightarrow Y\textsubscript{2}Si\textsubscript{2}O\textsubscript{7}</td>
<td>elhanyagolható</td>
</tr>
<tr>
<td>980 °C</td>
<td>Li-Y-Si-O folyadék fázis kialakulása</td>
<td>túlnyomó részlet</td>
</tr>
<tr>
<td>980-1025 °C</td>
<td>2,335Y\textsubscript{2}O\textsubscript{3} + 3SiO\textsubscript{2} \rightarrow Y\textsubscript{4.67}(SiO\textsubscript{4})\textsubscript{3}O</td>
<td>túlnyomó részlet</td>
</tr>
<tr>
<td></td>
<td>Y\textsubscript{2}O\textsubscript{3} + SiO\textsubscript{2} \rightarrow X\textsubscript{1}-Y\textsubscript{2}SiO\textsubscript{5}</td>
<td>kisebb részben</td>
</tr>
<tr>
<td></td>
<td>Y\textsubscript{2}O\textsubscript{3} + 2SiO\textsubscript{2} \rightarrow Y\textsubscript{2}Si\textsubscript{2}O\textsubscript{7}</td>
<td>nyomokban</td>
</tr>
<tr>
<td>1025-1450 °C</td>
<td>Y\textsubscript{2}SiO\textsubscript{5}+Y\textsubscript{2}O\textsubscript{3} \rightarrow 2Y\textsubscript{2}SiO\textsubscript{5}</td>
<td>túlnyomó részlet</td>
</tr>
<tr>
<td></td>
<td>2/3Y\textsubscript{4.67}(SiO\textsubscript{4})\textsubscript{3}O + 4/9Y\textsubscript{2}O\textsubscript{3} \rightarrow 2Y\textsubscript{2}SiO\textsubscript{5}</td>
<td>kisebb részben</td>
</tr>
<tr>
<td>1450-1500 °C és hőntartás</td>
<td>2/3Y\textsubscript{4.67}(SiO\textsubscript{4})\textsubscript{3}O + 4/9Y\textsubscript{2}O\textsubscript{3} \rightarrow 2Y\textsubscript{2}SiO\textsubscript{5}</td>
<td>túlnyomó részlet</td>
</tr>
</tbody>
</table>
2.4. YSO, LSO és LYSO kristályok jellemzése

2.4.1. Szerkezeti tulajdonságok

A ritkaáldozati-oxiortoszilikátok esetében (RE₂SiO₅, ahol RE=+3-as oxidációfokú ritkaáldozat, pl. La, Y, vagy Sc) a helyes képlet a RE₂(SiO₄)O, mivel ez jelzi a két különböző típusú aniont: az [SiO₄]⁴⁻ tetraéder komplex ionát és egy további, nem szilíciumhoz kötődő oxigént (NBO). A RE₂(SiO₄)O vegyületek kristályszerkezete a RE³⁺ ionrádiusának függvénye. Az ilyen típusú szilikátok kikristályosodása nagyobb ionrádiuszú RE esetében P2₁/c térsíkosítú X1-fázisban (monoklin rendszer, prizmás osztály), míg kisebb ionrádiuszú RE-mel C2/c térsíkosítú X2-fázisban megy végbe. A lantántól (La) a terbiumig (Tb) haladva X1-fázisúak a szilikátok, míg a diszpróziumtól (Dy) a lutécium (Lu) felé haladva, beleértve a szkandiumot (Sc) is, jellemzően X2-fázisú szilikátok képződnek [50, 51].

<table>
<thead>
<tr>
<th>Koordinációs szám</th>
<th>X1-fázis</th>
<th>X2-fázis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1 hely</td>
<td>A2 hely</td>
</tr>
<tr>
<td>Szilíciumhoz és</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ritkaáldzfémhez kötött</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>oxigénatomok száma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Csak ritkaáldzfémhez kötött oxigénatomok száma (NBO)</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

4. táblázat Ritkaáldzfémek koordinációsszámai az oxiortoszilikátokban [10]

5. ábra Az X₁-Y₂SiO₅ A₁ és A₂ helyei [10]

6. ábra Az X₂-Y₂SiO₅ B₁ (Y₁) és B₂ (Y₂) helyei [55]
A lutécium-oxiortoszilikát (Lu₂SiO₅, LSO) C2/c térsoroportú, monoklin kristály [57, 58]. Az LSO szerkezete négy különböző típusú oxigénatomot (O₁–O₄) tartalmazó, önálló [SiO₄]⁴⁻ tetraéderekből és a c-tengely mentén végigfutó, csúcspontjaiknál kapcsolódó, kissé torzult O₅-Lu₄ tetraéderekből tevődik össze, melyekhez [SiO₄]⁴⁻ tetraéderek is kötődnek. Az O₅ oxigénatomok NBO atomok.

Az lutéciumionok és az aktivátor ionok két kristálytani helyre épülnek be (B₁, B₂) C pontszimmetriával és 7-es (B₁), illetve 6-os (B₂) koordinációs számmal (8. ábra) [59, 60].

Számos tanulmány is végeztek annak érdekében, hogy feltárják a LYSO, LSO és YSO kristályok jellemzői közti hasonlóságot, illetve különbséget. Az 5. táblázat a szakirodalmi kötőhosszakat és cellaparamétereket tartalmazza. A feltüntetett adatok azt demonstrálják, hogy a ritkaüldöző ionrádiusza hatást gyakorol a szerkezeti tulajdonságokra. Jól látható, hogy a rendszám növekedésével a RE-O kötés rövidebb lesz, ugyanis a rendszám növekedésével az ionrádiusz, illetve a kötőhossz is csökken, a cellaparaméterek értékei pedig az ionrádiusz nagyságával nőnek.
8. ábra Kation hely (RE$^{3+}$) poliéder (felső kép) és az O5-Lu$_4$ tetraéder az Lu$_2$SiO$_5$ elemi cellájában (alsó kép) [45, 59].
5. táblázat LSO, LYSO és YSO jellemző kötéshosszai (Å) és cellaparaméterei [22, 51, 57, 61] (ahol a és b azonos koordinációs számú, de különböző atomokat jelöl).

<table>
<thead>
<tr>
<th></th>
<th>LSO<sup>a</sup></th>
<th>LYSO</th>
<th>YSO<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>14,2774</td>
<td>14,2583</td>
<td>14,371</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6,6398</td>
<td>6,6425</td>
<td>6,710</td>
</tr>
<tr>
<td>c (Å)</td>
<td>10,2465</td>
<td>10,2605</td>
<td>10,388</td>
</tr>
<tr>
<td>β (deg)</td>
<td>122,224</td>
<td>122,18</td>
<td>122,17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lu1-O1<sup>a</sup></th>
<th>Lu1-O1<sup>b</sup></th>
<th>Lu1-O1<sup>c</sup></th>
<th>Y1-O1<sup>a</sup></th>
<th>Y1-O1<sup>b</sup></th>
<th>Y1-O1<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,2561</td>
<td>2,2949</td>
<td>2,3432</td>
<td>2,2441</td>
<td>2,4241</td>
<td>2,3344</td>
</tr>
<tr>
<td></td>
<td>Lu1-O2<sup>a</sup></td>
<td>Lu1-O2<sup>b</sup></td>
<td>Lu1-O2<sup>c</sup></td>
<td>2,5805</td>
<td>Y1-O2<sup>a</sup></td>
<td>Y1-O2<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>2,6163</td>
<td>2,3301</td>
<td>2,2756</td>
<td>2,2892</td>
<td>2,486</td>
<td>2,604</td>
</tr>
<tr>
<td></td>
<td>Lu1-O3</td>
<td>Lu1-O3</td>
<td>Y1-O3</td>
<td>2,1598</td>
<td>Y1-O3</td>
<td>Y1-O3</td>
</tr>
<tr>
<td></td>
<td>Lu1-O5<sup>a</sup></td>
<td>Lu1-O5<sup>b</sup></td>
<td>Y1-O5<sup>c</sup></td>
<td>2,1598</td>
<td>2,1608</td>
<td>2,199</td>
</tr>
<tr>
<td></td>
<td>Lu1-O5<sup>b</sup></td>
<td>Lu1-O5<sup>c</sup></td>
<td>Y1-O5<sup>d</sup></td>
<td>2,3432</td>
<td>2,3444</td>
<td>2,373</td>
</tr>
<tr>
<td></td>
<td>Lu2-O2</td>
<td>Lu2-O2</td>
<td>Y2-O2</td>
<td>2,2346</td>
<td>2,3204</td>
<td>2,283</td>
</tr>
<tr>
<td></td>
<td>Lu2-O3</td>
<td>Lu2-O3</td>
<td>Y2-O3</td>
<td>2,2378</td>
<td>2,1965</td>
<td>2,275</td>
</tr>
<tr>
<td></td>
<td>Lu2-O4<sup>a</sup></td>
<td>Lu2-O4<sup>b</sup></td>
<td>Y2-O4<sup>c</sup></td>
<td>2,2378</td>
<td>2,2358</td>
<td>2,280</td>
</tr>
<tr>
<td></td>
<td>Lu2-O4<sup>b</sup></td>
<td>Lu2-O4<sup>c</sup></td>
<td>Y2-O4<sup>d</sup></td>
<td>2,2356</td>
<td>2,2091</td>
<td>2,287</td>
</tr>
<tr>
<td></td>
<td>Lu2-O5<sup>a</sup></td>
<td>Lu2-O5<sup>b</sup></td>
<td>Y2-O5<sup>c</sup></td>
<td>2,1652</td>
<td>2,0579</td>
<td>2,203</td>
</tr>
<tr>
<td></td>
<td>Si-O1</td>
<td>Si-O1</td>
<td>Si-O1</td>
<td>1,6242</td>
<td>1,6149</td>
<td>Si-O1</td>
</tr>
<tr>
<td></td>
<td>Si-O2</td>
<td>Si-O2</td>
<td>Si-O2</td>
<td>1,6395</td>
<td>1,5672</td>
<td>Si-O2</td>
</tr>
<tr>
<td></td>
<td>Si-O3</td>
<td>Si-O3</td>
<td>Si-O3</td>
<td>1,6138</td>
<td>1,5716</td>
<td>Si-O3</td>
</tr>
<tr>
<td></td>
<td>Si-O4</td>
<td>Si-O4</td>
<td>Si-O4</td>
<td>1,6214</td>
<td>1,6156</td>
<td>Si-O4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Y1-O1<sup>a</sup></th>
<th>Y1-O1<sup>b</sup></th>
<th>Y1-O1<sup>c</sup></th>
<th>Y1-O1<sup>d</sup></th>
<th>Y1-O1<sup>e</sup></th>
<th>Y1-O1<sup>f</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,2561</td>
<td>2,2949</td>
<td>2,3432</td>
<td>2,2441</td>
<td>2,2856</td>
<td>2,287</td>
</tr>
<tr>
<td></td>
<td>Y1-O2<sup>a</sup></td>
<td>Y1-O2<sup>b</sup></td>
<td>Y1-O2<sup>c</sup></td>
<td>Y1-O2<sup>d</sup></td>
<td>2,7564</td>
<td>2,6029</td>
</tr>
<tr>
<td></td>
<td>Y1-O3</td>
<td>Y1-O3</td>
<td>Y1-O3</td>
<td>Y1-O3</td>
<td>2,3889</td>
<td>Y1-O3</td>
</tr>
<tr>
<td></td>
<td>Y1-O5<sup>a</sup></td>
<td>Y1-O5<sup>b</sup></td>
<td>Y1-O5<sup>c</sup></td>
<td>Y1-O5<sup>d</sup></td>
<td>Y1-O5<sup>e</sup></td>
<td>Y1-O5<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>2,2561</td>
<td>2,2949</td>
<td>2,3432</td>
<td>2,2441</td>
<td>2,2856</td>
<td>2,287</td>
</tr>
<tr>
<td></td>
<td>Y2-O2</td>
<td>Y2-O2</td>
<td>Y2-O2</td>
<td>Y2-O2</td>
<td>2,3204</td>
<td>Y2-O2</td>
</tr>
<tr>
<td></td>
<td>Y2-O3</td>
<td>Y2-O3</td>
<td>Y2-O3</td>
<td>Y2-O3</td>
<td>2,1965</td>
<td>Y2-O3</td>
</tr>
<tr>
<td></td>
<td>Y2-O4<sup>a</sup></td>
<td>Y2-O4<sup>b</sup></td>
<td>Y2-O4<sup>c</sup></td>
<td>Y2-O4<sup>d</sup></td>
<td>2,2358</td>
<td>Y2-O4<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>Y2-O4<sup>b</sup></td>
<td>Y2-O4<sup>c</sup></td>
<td>Y2-O4<sup>d</sup></td>
<td>Y2-O4<sup>e</sup></td>
<td>2,2091</td>
<td>Y2-O4<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>Y2-O5<sup>a</sup></td>
<td>Y2-O5<sup>b</sup></td>
<td>Y2-O5<sup>c</sup></td>
<td>Y2-O5<sup>d</sup></td>
<td>2,1652</td>
<td>Y2-O5<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>Y2-O5<sup>b</sup></td>
<td>Y2-O5<sup>c</sup></td>
<td>Y2-O5<sup>d</sup></td>
<td>Y2-O5<sup>e</sup></td>
<td>2,0579</td>
<td>Y2-O5<sup>f</sup></td>
</tr>
</tbody>
</table>

23
2.4.2. Raman-spektroszkópia tulajdonságok

A lantanoidák és aktinoidák csoportjába tartoznak azok az elemek, amelyek a kívülről számított harmadik (n-2) elektronhéjukban f-elektronokat is tartalmaznak. Az f-mező elemeinek is nevezzük őket. Igaz, hogy az ittrium átmenetifém, mégis kémiai viselkedése hasonló a lantanoidákhoz, így a ritkaöldőfémek közé sorolják. [62]. Mivel a fématomok tömege viszonylag nagy, a fém-fém vegyértékrezgés sávjai általában 300-1000 cm\(^{-1}\) közötti tartományban jelennek meg. Ismeretes, hogy a fém-fém rezgések intenzív sávokat adnak a Raman-spektrumban, ami elsősorban a rezgés során a fém-fém kötés polarizálhatóságában bekövetkező jelentős változásnak köszönhető [63, 64]. Mivel a rezgési spektrumban talán a legkarakterisztikusabb, és a szakirodalomban is a leggyakrabban tárgyalt a fém-fém vegyértékrezgés, így a ritkaöldőfém-ortoszilikátok vizsgálataihoz is kiválóan alkalmas az Raman-spektroszkópia.

Az X1-fázisú YSO monoklin, P2\(_1\)/c térerősítő kristály, melyet A-típusú szerkezetként is említ a szakirodalom. A ritkaöldőfém-oxiortoszilikátok másik, ún. B-típusú szerkezetet leírható csoportjába az LSO, LYSO és az X2-fázisú YSO monoklin, C2/c térerősítő kristályok sorolhatóak. Mindkét szerkezetben találhatóak [SiO\(_4\)]\(^{4-}\) tetraéderek. Mind az A-, mind pedig a B-típusú kristályos szerkezetben az összes atomi pozíció C1 pontszimmetriájú. A szabad [MO\(_4\)]\(^+\) tetraéderes komplex pedig T\(_d\) szimmetriához rendelhető [65]. A csoportelméleti megfontolások alapján ezen komplexek normálrezgései a következő módon rendelhetők a pontcsoport irreducibilis reprezentációihoz [66]:

\[
\Gamma = A_1(\upsilon_1) + E(\upsilon_2) + F_2(\upsilon_3) + F_2(\upsilon_4) + F_1(\upsilon_{\text{fr.}}) + F_2(\upsilon_{\text{trans}}) \tag{2}
\]

A \(\upsilon_1-\upsilon_4\) rezgések a belső, míg a szabad forgási \(\upsilon_{\text{fr.}}\) és a transzlaációs \(\upsilon_{\text{trans}}\) rezgések az [MO\(_4\)]\(^+\) komplexek külső oszcillációinak megfelelő vázrezgései. A 6. táblázat a szerkezeti elemek, vagyis a [SiO\(_4\)]\(^{4-}\) csoportok, kétféle ritkaöldőfém (RE) pozíció (I, II), és a megfelelő szilíciumhoz nem kötődő (NBO) O\(^2-\) rezgési módusait és szimmetriáit mutatja be.
6. táblázat RE$_2$SiO$_5$ (A és B típusok) szerkezeti elemeinek rezgési módusai és szimmetriái [66]

<table>
<thead>
<tr>
<th>Szerkezeti helyek</th>
<th>Szabad ion szimmetriák</th>
<th>Rácshely szimmetria</th>
<th>Faktorcsoport</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C$_1$</td>
<td>C$_{2h}$</td>
</tr>
<tr>
<td></td>
<td>A$_1$(v$_1$)</td>
<td>A</td>
<td>A$_g$ + B$_g$ + A$_u$ + B$_u$</td>
</tr>
<tr>
<td></td>
<td>E(v$_2$)</td>
<td>2A</td>
<td>2 (A$_g$ + B$_g$ + A$_u$ + B$_u$)</td>
</tr>
<tr>
<td></td>
<td>F$_2$(v$_3$)</td>
<td>3A</td>
<td>3 (A$_g$ + B$_g$ + A$_u$ + B$_u$)</td>
</tr>
<tr>
<td>[SiO$_4$]$^{4-}$</td>
<td>F$_2$(v$_4$)</td>
<td>3A</td>
<td>3 (A$_g$ + B$_g$ + A$_u$ + B$_u$)</td>
</tr>
<tr>
<td>(T$_d$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F1(v${f.r}$)</td>
<td>3A</td>
<td>3 (A$_g$ + B$_g$ + A$_u$ + B$_u$)</td>
</tr>
<tr>
<td></td>
<td>F2(v${trans}$)</td>
<td>3A</td>
<td>3 (A$_g$ + B$_g$ + A$_u$ + B$_u$)</td>
</tr>
<tr>
<td>RE$^{3+}$(I)</td>
<td>-</td>
<td>3A</td>
<td>3 (A$_g$ + B$_g$ + A$_u$ + B$_u$)</td>
</tr>
<tr>
<td>RE$^{3+}$(II)</td>
<td>-</td>
<td>3A</td>
<td>3 (A$_g$ + B$_g$ + A$_u$ + B$_u$)</td>
</tr>
<tr>
<td>O$^{2-}$ (5)</td>
<td>-</td>
<td>3A</td>
<td>3 (A$_g$ + B$_g$ + A$_u$ + B$_u$)</td>
</tr>
</tbody>
</table>

A C$_2$/c térszoportú kristály normálrezgéseihez tartozó irreducibilis reprezentációi a következők:

$$\Gamma = 24A_g + 24B_g + 24A_u + 24B_u$$ \hspace{1cm} (3)

ahol az A$_g$ és B$_g$ Raman-aktiv, míg az A$_u$ és B$_u$ IR-aktiv rezgési módusok [66]. A Raman-aktív fonon módusok azonosítását segíti, hogy a v$_1$–v$_4$ rezgések valamelyest elkülönülnek. Ez figyelhető meg a 9. ábrán, ahol a GSO az X1-fázisú, míg az LSO a X2-fázisú kristályokat példázza.
9. ábra

Mg$_2$SiO$_4$, Gd$_2$SiO$_5$, Yb$_2$SiO$_5$, és Lu$_2$SiO$_5$ polikristályos minták polarizálatlan Raman-spektrumai (300 K-en mérve), ahol ν_1–ν_4 a szabad [SiO$_4$]$^{4-}$ tetraéder belső rezgési módusait, ν_{ext} pedig a külső rezgési módusait jelöli [66].

A C2/c tércsoport A_g és B_g módusai a különböző polarizáció konfigurációk segítségével különböztethetőek meg. A feltétel könnyen megvalósítható a szórás geometria és a polarizáció konfigurációk megfelelő kiválasztásával: x (zz) x szórás geometriában az A_g módusok, míg x (yz) x szórás geometriában, a Raman-spektrumban, csak a B_g módusok látszanak [17].

7. táblázat

Adalékolatlan LSO, LYSO, és YSO kristályok Raman-rezgései (mértékegység: cm$^{-1}$) [17, 67]

<table>
<thead>
<tr>
<th></th>
<th>LSO (300 K)</th>
<th>LYSO (300 K)</th>
<th>YSO (77 K)</th>
</tr>
</thead>
</table>

* - Az azonosításokhoz használható főbb rezgési módusok
A LYSO, LSO és YSO kristályok Raman-spektrumai három fő tartományra oszthatóak: az alacsony hullámszámtartományban a RE-RE vegyértékrezgések, a 300-600 cm\(^{-1}\) a RE-O, míg a 600-1000 cm\(^{-1}\) hullámszámtartományban a Si-O rezgési sávok találhatóak [51]. Ezek között számos kombinációs sáv található azonosításra, amelyeket empirikus alapon használunk fel.

A ritkafélfém-szilikátok Raman-spektrumának legfontosabb része a 880-940 cm\(^{-1}\) hullámszámtartomány, hiszen az alacsony hullámszámtartományban a rezgési sávok átfedése, kiszélesedése miatt a kiejtékelés nehéz. Habár a különböző kationok közvetlenül nincsenek hatással a kvázi-elszigetelt \[SiO_4\] tetraéder szerkezetére, a nyújtási rezgések kisebb frekvenciák felé való eltolódása figyelhető meg, amennyiben a lutéciumionokat ittriumionok helyettesítik. Eszerint, a LSO és LYSO kristályok Raman-spektrumában, - \(A_g \times (zz)x\) szórás geometria alkalmazásakor, - a szimmetrikus \(v_1\) nyújtási rezgési módus 891 cm\(^{-1}\)-nél, miközben YSO kristálynál 887 cm\(^{-1}\)-nél jelenik meg. Az antiszimmetrikus \(v_3\) nyújtási-rezgési módusban Raman sávja LSO és YSO kristály esetében 914 cm\(^{-1}\)-nél, míg YSO kristálynál 906 cm\(^{-1}\)-nél található. Az oxigénatomok közvetlenül kapcsolódnak az RE\(^{3+}\)-ionokhoz, ezért a RE-O kötéstávolság megnövekedése, vagy a RE\(^{3+}\)-ionok ionrádiuszai közötti különbség idéz elő változásokat a Si-O átlagos kötéstávolságban. Magasabb frekvenciákon, 950-970 cm\(^{-1}\) közötti régiókban, legalább három sáv részleges átfedésben van, melyek \(v_3\) hajlítási rezgési módushoz rendelhetőek, míg \(v_2\) és \(v_4\) kisebb intenzitásúak és eltolódnak alacsonyabb frekvenciák felé, azonban ezek nehezen észlelhetőek [17, 68].

A 300-600 cm\(^{-1}\) tartományban az RE-O rezgési sávok figyelhetők meg. Az RE-O rezgések tanulmányozása különböző molekuláris szerkezetek szerint, a két RE\(_1\) és két RE\(_2\) hely alapján lehetséges: torzult a RE\(_1\)-O\(_7\) és RE\(_2\)-O\(_6\) oktaéder, vagy az O-RE\(_4\) tetraéder. A különböző struktúrák az alacsony szimmetria miatt a torzult oktaéderek és tetraéder nehezen megkülönböztethető. Éppen ezért érdemes úgy tekinteni ezeket, mint a c-tengely irányában, két tetraéder által alkotott, egymással kapcsolódó RE\(_6\)O\(_2\) „molekulát”, amelyek oxigénionokon keresztül kapcsolódnak az [SiO\(_4\)]\(^{4+}\) tetraéderekhez. Az összekapcsolt \(X_2Y_6\) oktaéder molekulának 18 belső normál rezgési módusa van, amely a következőképpen reprezentálható [63]:

\[
4A_g + A_u + 2B_{1g} + 3B_{1u} + 2B_{2g} + 2B_{2u} + B_{3g} + 3B_{3u}
\]

ahol az \(A_g\) és \(B_g\) rezgési módusok (4+5) Raman-aktívak és polarizált mérésekkel könnyen megkülönböztethetőek. Ezek a kristály Raman-spektrumának 300-450 cm\(^{-1}\) és 500-650 cm\(^{-1}\)
közötti spektrumtartományaiban találhatóak. Az összekapcsolt X_2Y_6 „molekula” A_g szimmetriához tartozó Raman csúcsai 338, 376, 402, és 541 cm$^{-1}$-nél; míg a B_g szimmetriához rendelhetőek 356, 408, 435, 514, 560, illetve 585 cm$^{-1}$-nél jelentkezik [17].

2.4.3. Lumineszcencia tulajdonságok

Az Y_2SiO_5:Ce ionizáló besugárzás hatsára kék fényt emittál [10]. Az Y_2SiO_5:Ce szintézise során az 1,034 Å ionsugarú Ce$^{3+}$ aktivátor ionok viszonylag könnyen helyettesíthetnek Y$^{3+}$-ionokat (ionsugara 0,893 Å) [69], amelyek a C2/c térközpontú, monoklin kristály gazdarácsában két különböző kristálytani helyen lelhetők fel (lásd 4. táblázat) [10, 70]. A ritkaöldőfém fényforrásokat tipikus lumineszcenciának köszönhető, ahol elektron-lyuk párok jöttek létre a lumineszcencia centrumokban, rekombinálódásukkal pedig fotonokat emittálnak. [71]. Az YSO:Ce fénykibocsátása a Ce$^{3+}$ 5d gerjesztett állapotból a 4f alapállapotba bekövetkező elektronátmennetének köszönhető. A lumineszcencia spektrumok jellemzően duplasávos szerkezetűek, az alapállapot szerinti felhasadás következményeként ($^2F_{5/2}$, $^2F_{7/2}$) [72]. Az X1-fázisú YSO minták gerjesztési spektruma két sávra bontható: egy gyenge 285 nm-nél jelentkező és egy intenzív 365 nm-nél lévő sávra. A 365 nm-es gerjesztőfénnyel csak az A1 helyen levő Ce$^{3+}$ emissziója figyelhető meg [10, 16, 73]. X2-fázisú YSO esetében a gerjesztési spektrum általában három gerjesztési sávra bontható: 270 nm-es, 300 nm-es és intenzív 360 nm-es sávokra [74, 75, 76]. Ezek a gerjesztési sávok mindkét ritkaöldőfém helyet gerjesztik (B1 és B2). Léteznek csak a B1 (180 nm-en, 210 nm-en, és 260 nm-en), illetve csak a B2 helyeket (190 nm-en és 320 nm-en) gerjesztő hullámhosszak is [55]. Fényemisszió az 5d-4f átmenetek köszönhető, ami 380-475 nm hullámhossz-tartományban dupla vállú sávot eredményez. Ez a felhasadás körüliől 0,25 eV (~2000 cm$^{-1}$) energiakülönbséget mutat [17]. Továbbá, az emissziós sávok a rövidebb hullámhosszak felé tolódnak el, amikor a gazdarács X1-fázisból átalakul X2-fázissá. A gazdarács kristályszerkezetében bekövetkező változás különböző Ce$^{3+}$ helyeket eredményez, ez pedig az 5d gerjesztett állapotra is hatással van [77].

Az LSO és LYSO C2/c térközpontú, monoklin kristályok, amelyekben a kisebb ionrádiuszú lutéciumionoknál (Lu$^{3+}$, r=0,85 Å) [69] nagyobb ionrádiuszú aktivátor ionok, vagy a szintén nagyobb ionrádiuszú Y$^{3+}$-ionok, 7-es (B1), illetve 6-os (B2) koordinációs számú kristálytani helyre épülnek be. Az LSO, vagy LYSO gazdarácsában a kisebb ionrádiuszú Lu$^{3+}$ helyettesítése a nagyobb ionrádiuszú Ce$^{3+}$, vagy Y$^{3+}$-ionnal rácstorzuláshoz vezet, valamint, - szintén az ionrádiusok közti különbségből adódóan, - a fotolumineszcencia
(PL) spektrumok eltolódta az alacsonyabb energiatartományok felé [78, 79]. Mind a B1, mind pedig a B2 helynek van két olyan oxigénatomja, melyek csak lutéciumhoz kötöttek. LSO kristály esetében 264 nm-es, vagy 296 nm-es gerjesztő fény használatával B1 helyekhez tartozó, míg 358 nm-es fényel a B1 és B2 helyekhez tartozó emissziós sávok (392 nm, 420 nm és 452 nm) egyszerre gerjesztődnek [15, 80]. LYSO kristály esetében az LSO kristálytal szinte megegyező eredményeket kaptak, ugyanis 264 nm-es, 295 nm-es, illetve 358 nm-es gerjesztő fény használatával B1 helyhez tartozó emissziós sávok (391 nm és 420 nm), illetve a B2 helyhez tartozó emissziós sávok (~460 nm) [58, 78] jelentek meg. Az egyetlen eltérés az Y^{3+}-ionok LSO gazdarácsba beépülésekor lép fel. Ilyenkor ugyanis az összes RE helyhez képest az Y^{3+}-tartalom emelésével a B2 helyek betöltöttségi aránya is növekedni kezd. A három RE^{3+}-ion közül (Y^{3+}, Lu^{3+} és Ce^{3+}) a legkisebb elektronegativitású és az aktivátor ionnál kisebb ionrádiúszú Y^{3+}-ionok a kisebb, 6-os koordinációs helyen (B1) szemben szívesebben épülnek be a 7-es koordinációs számú (B1) helyre [57, 78, 79].

A cériummal adalékkolt RE_{2}SiO_{5} (RE: Lu, Y, Gd) ortoszilikátok tulajdonságait nagy mértékben befolyásolják a különböző előállítási körülmények [81, 82]. Különösen érvényes ez Czochralski-módszerrel növészett, Ce^{3+}-mal adalékkolt szilikátok szcintillációs tulajdonságaira. A kristálynövésztest magas hőmérsékleten (2000 °C felett) és inert atmoszférában (általában Ar) végzik, ami oxigénvakanciák kialakulását okozza [83, 84]. A töltött oxigénvakanciák elektroncsapda centrumok és késleltetik a szilikát gazdarács Ce^{3+} lumineszcens centrumaiból érkező energiatranszfert [30]. Az oxigénvakanciák nem kötött (lokalisált) láncot alkotnak a lumineszcens centrumok között, ami a kristály nagy utánvilágítását eredményez és csökkenti a szcintilláció hatásfokát [59, 85]. Az oxigén vakanciák koncentrációja csökkenthető megfelelő olvadékképző adalékkanyagok használatával; így a lumineszcens és szcintillációs tulajdonságokat erősen befolyásolják az alkalmazott olvadékképző adalékkanyagok [81, 86]. Emellett alacsony hőmérsékletű, levegőn végzett hőkezeléssel (950-1050 °C) is igyekeztek már lecsökkenteni az oxigén vakanciák menyiségét [85].
2.4.4. Előállítási módszerek

Kétkomponensű \(\text{Y}_2\text{O}_3\)-Si\(\text{O}_2\) és Lu\(\text{O}_3\)-Si\(\text{O}_2\) kongruens olvadáspontú ortoszilikátok (\(\text{Y}_2\text{SiO}_5\), Lu\(\text{SiO}_3\)) és diszilikátok (\(\text{Y}_2\text{Si}_2\text{O}_7\), Lu\(\text{Si}_2\text{O}_7\)) olvadékból egykristály formában Czochralski-módszerrel állíthatók elő [33].

A Czochralski-módszer a legrégibb olvadékos eljárás egykristályok előállítására. Az eljárás lényege, hogy a növeszténi kivánt kristály azonos összetételű olvadékából orientált magra egykristályt növesztenek. A növesztés során a magot állandó sebességgel forgatják és húzzák. Fontos megemlíteni, hogy LYSO elegy kristályok növeszteésekor az LSO és YSO korláttalul elegyedik, az Y effektív megoszlási hányadosa, \(k_{\text{eff}}(\text{Y}/\text{LYSO})=0.979\). Ugyanakkor a Ce\(^{3+}\) beépülési aránya viszonylag alacsony, \(-k_{\text{eff}}(\text{Ce}^{3+}/\text{LYSO})=0.21-0.34\), így jelenléte lényegében nem befolyásolja a rácsállandót. Az alkalmazott magas növesztési hőmérsékleten a Si\(\text{O}_2\) már párolog, a növesztett kristály nem lesz sztöchiometrikus (10. ábra) [87]. A Czochralski-módszernél az egykristályok növesztése a magas olvadási hőmérsékletek miatt induktív fűtésű kemence-rendszerekben, iridium tégelyből N\(_2\), vagy Ar atmoszféra alatt valósítható meg. A módszer egyik nagy hátránya, hogy az LSO kristály magas olvadáspontja (2050 °C) nagyon közel esik ahhoz a hőmérséklethez, ahol az iridium tégelyek eltörnek [32, 87, 88, 89, 90, 91].

Az Y–Si–O, illetve Lu–Si–O porok előállítására többféle módszer létezik, melyek közül a szilárd fázisú reakciók, szol-gél, hidrotermális, szilárd-folyadék reakciók, és a folyadékfázisú szinterelési módszerek a legelterjedtebbek.

Szilárd fázisú reakcióról a kiindulási anyagok oxid porait alaposan összekeverik, szinterelés előtt esetleg golyósmalomban örlík. Ezt követően magas hőmérsékleten (általában 1300-2200 °C között) hosszú hőkezelési időt (néhány száz órát) alkalmaznak, mely után újraörlík, vagy mozózában porítják a mintát. A módszer hátránya közé sorolható, hogy a végtermék inhomogén, nagyobb méretű szemcsék képződnek, és a kialakuló kristályhíbbák pedig rontják a lumineszcencia hatékonyságot [39, 92, 93, 94]. Gyakori probléma a nem megfelelő fázisztisztaság, ami leggyakrabban az előállítandó ortoszilikát fázis mellett oxipatit és piroszilikát képződésének és elreagálatlan \(\text{Y}_2\text{O}_3/\text{Lu}_2\text{O}_3\) és Si\(\text{O}_2\) megjelenésének felel meg [92, 95]. A parazita fázisok kialakulását segíti az \(\text{Y}_2\text{O}_3\) és a Si\(\text{O}_2\) szemcsék közötti lassú diffúzió [39, 96], továbbá a hűtési eljárás során bomlástermékként képződhetnek alacsony hőmérsékletű polimorfok is.
Szol-gél módszernél általában Y(NO_3)_3 és/vagy Lu(NO_3)_3 és tetraetil-ortoszilikát (TEOS) prekurzorok keverékét pár napig, vagy hétig tartó gélesedést követően, viszonylag alacsony szintézishőmérsékleten (>1050 °C) hőkezelik. Ezzel az inhomogenitás kérdése megoldható, a keletkező szemcseméret kontrollálható, emellett oleső eljárásnak mondható, hiszen csökkentett hőmérsékleten zajló, kis energiaigényű eljárás. Azonban éppen az alkalmazott alacsony szintézishőmérséklet miatt ennél a módszernél metastabil fázis is képződik (~1150 °C-on), ha túl hosszú ideig tart a hőkezelés. Ilyenkor kismértékű szerkezeti átrendeződés játszódnak le, az önálló [SiO_4]^{4-} tetraéder jelenléte pedig sokkal inkább az apatit, mintsem a termodinamikailag stabilabb orto-, vagy diszilikátok kristályosodásának kedvez. További hátrány, hogy a drága prekurzorok miatt nagy mennyiségű kristály előállítására nem alkalmas [73, 80, 97, 98, 99].

A hidrotermális (HT) módszer széles körben alkalmazott a nanofázisú anyagok szintézisénél. Noha a HT reakciók 100-1000°C közti hőmérsékleten és 1 atm nyomástól egészen néhány ezer atm nyomásig végbehetnek, a legtöbb hidrotermális eljárás a víz szuperkritikus hőmérsékletéhez (374 °C) igazodik. Főbb előnyei közé sorolható, hogy kis oldószer igényű, ezért kismértékű a minta elszennyeződés veszélye, valamint a szintézishez alkalmazott nagy nyomáson és hőmérsékleten a kémiai reakciók sebessége is a többszörössére nő. Általában itt is Y(NO_3)_3 és/vagy Lu(NO_3)_3 és tetraetil-ortoszilikát (TEOS) prekurzorok keverékéből indulnak ki, azzal a különbséggel, hogy a szintézis autoklávban, vagy hidrotermális bombában, nyomás alatt zajlik 170-365 °C között, néhány órán/napon keresztül. Az így kapott anyagot szárítják, majd 1-2 órán át, viszonylag alacsony hőmérsékleten 31
32

(1000-1250 °C-on) hőkezelik. A módszer hátránya a hosszú preparációs idő, amit tovább nyújthatnak az esetlegesen elreagálattan kiindulási anyagok eltávolításához szükséges, további technológiai lépések [53, 73, 100, 101, 102].

A folyadékfázisú szинтерelés alkalmazása ismert az oxiszilikátok előállításában is. A kristálynövesztést segítő, kiindulási anyaghoz kevert anyagokat olvadékképző adalékanyagoknak nevezzük [103]. Olvadékképző adalékanyagként általában alacsony olvadáspontú alkáli-, vagy alkáliöldfém-vegyületek eredményesen alkalmazhatók, ezek közül is leggyakrabban a halogenid-tartalmú anyagokat használják fel. Az ittrium-oxiortoszilikátokat is gyakran állítják elő fluoridtartalmú olvadékképző adalékanyagok segítségével [96, 103].

A folyadékfázisú szинтерelés az egyik leegyszerűbb technika tiszta, sztöchiometrikus oxidporok készítésére, amelyben alacsony olvadáspontú adalékanyagot alkalmazunk a reakció támogatására, vagy reakcióközegként.

Az előállítani kivánt szemcsék morfológiája és lumineszcencia intenzitás jól szabályozható a különböző olvadékképző adalékanyagokkal és mennyiségek megválasztásával [104, 105, 106]. Az olvadékközeg kialakulása fontos szerepet játszik a kialakuló kristályszemcsék növekedésének felgyorsításában, mivel az olvadékképző adalékanyag megolvadásakor az olvadék felületi feszültsége segíti a részecskék koagulációját. Általánosságban elmondható, hogy ez a közeg megkönnyíti a részecskék csúszását és forgását, biztosítja a részecské-részecské kapcsolatok kialakulásának nagyobb esélyét, illetve elősegíti a részecské növekedést [104]. Az olvadékképző adalékanyag-tartalom növelésével a relatív lumineszcencia intenzitás egy darabig jelentősen emelkedik, majd az olvadékképző adalékanyag-tartalom további növelésével az intenzitás csökken. A tendencia oka, hogy az olvadékképző adalékanyag mennyiségének megválasztása kritikus; növelése egy optimális koncentrációig több olvadék képződését segíti elő, fokozza a reakció létrejöttét a reagens ionok hatékonyabb eloszlásával, továbbá kedvez a krisztallizációknak és a megfelelő lumineszcencia tulajdonságok kialakulásának. Viszont túl ezen, már gátolja a kapcsolatot a részecské között, mivel meghosszabbítja a diffúziós időt, és negatív hatású a nagyszámú, de kisméretű krisztallit növekedésére, azaz csak nagyméretű krisztallitok kialakulását segíti elő [107].

A folyadékfázisú szинтерelés jelentős előrelépést hozott a szintézisek alacsonyabb hőmérsékletű megvalósításában [104]. Az előnyei közé sorolható még, hogy a diffúziós távolság csökkentésével javul a diszperzió a kiindulási reagensek alkotóelemei között, valamint a kialakuló olvadékközeg gyorsítja a reakció folyamatát, hiszen növeli a reagáló anyagok relatív mobilitását. Alkalmas nagyobb hozamú kitermelésre alacsony költséggel.
További előnye a hatékony tömeggyártás lehetősége. A szakirodalom szerint már több olvadékképző adalékanyagot (LiF, NaF, LiYO\(_2\), PbF\(_2\), NH\(_4\)F, NaOH, NaNO\(_3\), MgO, CaO, MgSO\(_4\), KNO\(_3\), KH\(_2\)PO\(_4\), Li\(_2\)SO\(_4\)) is megvizsgáltak, és megállapították, hogy ezek felgyorsítják az Y\(_2\)O\(_3\) és az amorf szilícium-oxid közötti reakciót [49, 96, 104, 108, 109, 110]. Az alkálfém-oxidok a többkomponensű szilikátüvegek jól ismert hálózati módosító szerei. A lítium-vegyületeket különösen előnyösnek tekintik az Y\(_2\)(SiO\(_4\))O szintézisénél, lévén, hogy javul a reakciótermék fázisizatszasága és a Li\(^+\) csak korlátosan mértékben épül be a kristályracsba, továbbá a RE-adaléktol vegyületek esetében növeli a lumineszcencia hatékonyságát [49, 109, 111, 112]. A Li\(^+\) és Na\(^+\) ionsugar fontos szerepet játszhat ebben a jelnövelő hatásban: a Li\(^+\) kisebb, míg a Na\(^+\) nagyobb ionsugarú, mint az Y\(^{3+}\). Mivel az X\(_2\) polimorf Y\(^{3+}\) helyei alacsonyabb koordinációs számúak, így indokolt, hogy a kisebb ionokkal való adalékolás termodinamikailag kedvezőbb a kívánt fázis kialakulásához [109]. Ezekre az adalékanyagokra jellemző, hogy olvadáspontjuk alacsonyabb, mint az X\(_1\)-X\(_2\) közti fázisátmenet hőmérséklete, azaz kipárolognak már kb. 1200 °C-on. Az eddigein alkalmazott adalékok közül az alkálfém-fluoridokról megállapították, hogy jobb a konverzió hatásfokuk az egyéb halogenid-, vagy nitrát-formáknál. A nagy sűrűségű ittrium-szilikát kerámiák alacsony nyomású szintézisénél bebizonyosodott, hogy a LiYO\(_2\) hatékony adalékanyag mind az YSO, mind a \(\gamma\)-YPS vegyületek előállításánál [113, 114].
2.5. YSO minták Li és Na tartalmának elemanalitikai vizsgálata

A nagy kémiai ellenállóképességgel jellemezhető, porított YSO:Ce minták adalékanyag (Li és Na) tartalmának pontos mennyiségi meghatározására szilárdmintás atomabszorpciós spektrometriás módszereket dolgoztam ki és alkalmaztam. Ebben a fejezetben részletesen ismertetem az analitikai gyakorlatban kevésbé alkalmazott nagyfelbontású, folytonos fényforrású szilárdmintás grafitkemencés atomabszorpciós spektrometriás (HR-CS-SS-GFAAS) módszer előnyeit, hátrányait, valamint a szilárdból mintákon végzett Li- és Na-tartalom GFAAS meghatározására vonatkozó szakirodalmi áttekintést.

Az atomabszorpciós spektrometriás elemzés során a mintából legtöbb komponens módon a meghatározandó elem szabad atomjait állítjuk elő, majd a keletkező atomfelhőt egy elsődleges sugárforrásból nyert fénnyel (pl. xenon-ivlampa) sugározzuk be. A meghatározandó elem atomjai a besugárzó fény egy részét elnyelik, így az elemzés során a fény intenzitásának csökkenését mérjük, melyből kiszámítjuk az abszorbanciát, amely arányos a meghatározandó komponens koncentrációjával. Atomabszorpciós módszernél a minta elpárologtatása és atomizálása megvalósulhat például előkevert kémiai lángok, vagy elektrotermikus atomizáló felhasználásával. Az elektrotermikus atomizálás során a mintát a fénýútba helyezett, valamilyen vezető anyagból készült (grafit, W, Ta) mintatartóba (kemence, kehely, rúd, fűtőszál) mérjük be, majd a mintatartót elektromos árammal hevítjük fel (ellenállásfűtés) nagy hőmérsékletekre (1400-2600 °C) a minta lehetőleg teljes elpárologtatásához és atomizációjához. Az atomabszorpciós gyakorlatban a grafitkemencés elektrotermikus atomizálók alkalmazása igen elterjedt, mivel ez a technika igen kis mintamennyiségek alkalmazása mellett nagy abszolút kimutatási képességgel rendelkezik [115].

A nagyfelbontású, folytonos fényforrású atomabszorpciós spektrometria (HR-CS-AAS) egy viszonylag új, szekvenciális, sokelemes technika, amelynél a pm-es felbontású optikának és a töltéscsatolt eszközös (CCD) detektálásnak köszönhetően az elemzővonal és közvetlen környezete is feldolgozásra kerül a spektrumok rögzítése (mérés) során. Ez lehetővé teszi a korábbi, vonalas elsődleges sugárforrást (pl. vájtkatód lámpás) alkalmazó AAS-nél jól ismert spektrális zavaróhatások (pl. atomi vonalak és molekulásávok átfedése) hatékony kiküszöbölését, ezért a módszerfejlesztést nagymértékben megkönnyíti. Ezen felül az alternatív, kevésbé érzékeny elemzővonalak használatára is több lehetőség
nyílik, mert a primer sugárforrás intenzitása közel azonos az UV-VIS tartományban [116]. Így hasonló jel/zaj arány realizálható az alternatív vonalakon végzett méréseknél is. A HR-CS-GFAAS technikánál az abszorbancia-idő görbékhez harmadik dimenzióként a hullámhossz is hozzáadódik, mivel a CCD egyidejűleg detektálja a meghatározandó elem elemzővonálának spektrumkörnyezetét is, tipikusan egy ±150 pm széles spektrumablakot monitorozva. Ezen háromdimenziós (3D) görbék segítségével a minta mátrixalkotóinak elpárolgásával esetlegesen jelentkező nem-specifikus abszorbancia (pl. atomi vonalak és molekula sávok) is feltérképezhetők.

11. ábra Szilárdmintás HR-CS-GFAAS berendezés atomizáló és mintabevítő egysége [117]

A szilárd (por) minták feltárás, illetve oldatbavitel nélkül végzett közvetlen elemzésének számos előnye van [116, 118]. Egyrészt jobb a módszerek kimutatási képessége az oldatos módszerekkel összehasonlítva, mert az oldatbaviteli eljárások során a minta hígulásával kell számolnunk. Másrészt kevesebb reagenst és időt kell fordítani a mintaelőkészítésre, így a teljes analízis időtartama rövidebb és az eljárás így költséghatékonyabb. Előzőekből az is következik, hogy kisebb az esélye a minta reagensek és a laboratóriumi eszközök általi elszennyezésének, illetve annak is, hogy a mintaelőkészítés során a meghatározandó elem vesztesége bekövetkezen párolgás, nem teljes mértékű oldódás, vagy laboratóriumi edényzeten való szorció által. Végül pedig vizsgálható a minta homogenitása, a meghatározandó elem mikroeloszlása a mintán belül, mivel a szilárdmintás módszerek jóval kisebb mintamennyiségek beméréssel igénylik, mint az oldatos eljárások.
Mindezekhez az előnyökhez azonban jelentős hátrányok és az elemzés során feltépő nehézségek is társulnak. Általában sokkal nehezebb a szilárd mintát bejuttatni a grafitkemencécs atomizálóba, mint egy folyadékminát. A szilárd minta bejuttatása gyakorlatot és rendkívüli elővigyázatosságot igényel. Veszteség, vagy elszennyeződés a bemérés és az grafitkemencébe (atomizálóba) juttatás során is előfordulhat. Gyakoriak a kalibrációs problémák, mert a szilárd minta atomizációs jelét a meghatározandó elemmel együtt párolgó mintaalkotók jobban befolyásolják, mint az oldatmintát, illetve a meghatározandó elem gyakran nem, vagy nem teljesen párolog el a mintából, ráadásul a nominálisan tiszta, vak minták előállítása általában bonyolult és költséges. A szilárdminőség módszereknél a kémiai módosítás gyakran kevésbé hatékony, mint az oldatos GFAAS módszernél, mert a módosító nem mindig tud megfelelő fizikai-kémiai kapcsolatba kerülni a meghatározandó elemmel, pl. a szilárd minta belsejében. Mindennek tetejében a szilárd minták nem, vagy csak nehezen hígíthatók és azok inhomogenitása miatt a szilárdminőség analízis precititása jelentősen elmarad az oldaté Ireális szórás (relatív standard deviáció, RSD) tipikusan 5-10% körüli. Továbbá, az atomizációs és tisztítási lépés után maradhatnak mintaösszetevők az atomizálóban, melyek befolyásolhatják a következő meghatározásokat (pl. memória-hatás). Nehezen elpárolgó mintaalkotók esetében nagyobb atomizációs hőmérséklet, illetve megnövelt atomizációs idő alkalmazása szükséges azok teljes elpárologtatásához, ami nagymértékben csökkenti a grafittcső élettartamát.

A felsorolt előnyök és hátrányok nagy része nem köthető kizárólag a GFAAS-hoz, hanem általánosságban a szilárdminőség analitika jellemzői, melyek régóta ismertek és kevésbé befolyásolhatóak. A specifikusan a GFAAS-ra jellemző sajátságok azonban a körülmények körülnéztekintő megválasztásával befolyásolhatóak és kontróllálhatóak. Ebben áttörést az STPF (Stabilized Temperature Platform Furnace) koncepció és a HR-CS-GFAAS hozta. Előbbi a közel izoterm atomizációval és az integrált abszorbancia használatával a nem-spektrális zavaróhatásokat küszöbölí ki, míg utóbbi rendkívüli nagy felbontásával, az elemzövonal közvetlen környezetének láthatóvá tételel és hatékony háttérrekkció rendszerével a spektrális zavaróhatások kiküszöbölésére jelent megoldást.

A SS-GFAAS-t többnyire akkor alkalmazzák, ha egy speciális analitikai feladat a rutinszerűen alkalmazott oldatos GFAAS-val nem oldható meg, vagy az adott helyzetben a SS-GFAAS valamiért előnyesebb az oldatos módszernél. Ilyen eset a nehezen feltárható, vagy csak nehezen oldatba vihető/oldatban tartható minták elemzése [119, 120, 121], a rendkívül kis koncentrációk meghatározása [122, 123, 124], vagy amikor a rendelkezésre álló minta mennyisége kevés a méréshez legendő mennyiségű mérőoldat készítéséhez [125, 126,
A HR-CS-GFAAS nagy szelektivitású és érzékenységű technika, amely lehetőséget nyújt oldat- és szilárd (por) minták közvetlen analízisére [129, 130, 131].

A szakirodalom számos közvetlen szilárdmintás (SS) GFAAS módszerről számol be a különböző korszerű/kifejlesztett anyagok [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144], geológiai minták [145, 146], és a nemzetközi referencia minták (Certified Reference Material: CRM) [145, 147] elemzése kapcsán. Ezen módszerek kimutatási határa (LOD) a ng/g tartományba, vagy az alá esik. A legtöbb tanulmány különböző módszerkídolgozási problémákról számolt be; spektrális és nem-spektrális zavaróhatásokról, amelyek akadályozzák az SS-GFAAS meghatározást, például a tűzálló mátrix komponensek együttpérolgása nagy háttérszorbanciát (BG) eredményez [133, 148], a mátrix nagy reakciókészsége csökkenti a grafitcsövek/minta bemérő/bevívő grafitcsónakok élettartamát [138]. További probléma még a háttérszorbanciákat alul- és túlkompensációs hibák [148], portott minták szemcseméretének és homogenitásának hatásai a pontosságra [146], és a módszer kalibrációs problémái [148]. Ezen nehézségek kiküszöbölésére az irodalom a következő módszerek/technikák alkalmazását javasolja: deutérium háttérkorrektor [138, 145, 147], Zeeman-rendszerű BG korrektor [141, 145], esetenként 3 mágneses mezős elrendezéssel [137], keresztirányban fűtött grafitatomizáló (THGA) [135, 137, 139, 142, 143, 144, 145, 146], grafittrúd atomizáló [133], kétlépcsős atomizáló [148], különböző (T- és villa-alakú) grafítplatformok [145], grafitcsónak [133], serleg a grafitcsőben technika [132, 135], alternatív (metánal kevert) kemencegáz atmoszféra alkalmazása [133], kémiai módosítók használata (pl. Pd [144], Pd-Mg(NO₃)₂ [135, 136, 141, 142, 144, 145, 146], Pd-aszkorbinsav [138], HNO₃ [144], NH₄F [147], szénpor [135, 137, 144]), a minta pirolízis maradékának mechanikus/sűritett levegővel elősegített eltávolítása [137], (maximális) kemence öblítőgáz áramoltatása az atomizálás során [139, 140, 141], mátrixillesztett [148], külső, vagy standard addíciós kalibráció [140,145, 146].

Megfelelő kalibráló módszerek/oldatok, valamint a grafitkemencébe bejuttatott mintatömeg kiválasztása a pontos mennyiségi SS-GFAAS meghatározás alappillére [149]. Eames és Matousek [150] például szilikát közettek Ag tartalmát határozták meg SS-GFAAS módszerrel; különböző mintamennyiségekhez azonos koncentrációjú standard oldat hozzáadásával. Bár lineáris összefüggést kaptak a mért abszorbancia és a minta tömege között, az analitikai eredmények jelentősen szórtak, az abszorbancia tömeg függvényében való ábrázolásakor már kismértékű mintatömegbeli változások is a kalibrációs görbe meredeksegének jelentős változásával jártak. Annak érdekében, hogy ez a probléma megoldódjon, Minami és társai [151] a hárompont-becsléses standard addíciós módszert
javasolták biológiai minták Cr tartalmának szilárdmintás meghatározására, amely különböző koncentrációjú standard oldatok szilárdmintához adagolását jelenti. Optikai kristályok elemzésénél szintén ezt a kalibrációs módszert alkalmazták [140]. Különböző CRM-ek (tejpor, homár hasnyálmirigy, polietilén és szennyvíziszap) Cr tartalmának meghatározására közvetlen GFAAS és elektrotermikus párologtatóval kapcsolt induktív csatolású plazma tömegspektrometriás módszer (ETV-ICP-MS) és oldatos kalibráció tűnt ideálisnak [152].

A GFAAS módszerrel alacsonyabb LOD (2 ng/g) érhető el, mint az ETV-ICP-MS (30 ng/g) eljárásnál. Ami a mintatómeget illeti, túl kevés, vagy túl nagy mennyiségű bemért minta pontatlan mérési eredményekhez vezet vitamin-komplex Cu tartalmának elemzésekor, még abban az esetben is, amikor az elem tartalom a kalibráció lineáris tartományán belülre esik [149]. Egy másik tanulmány szerint a túl nagy, vagy túl kis mintatómeg bemérése rende alulbecsült, illetve túlbecsült mérési adatokat eredményez [138].

A GFAAS szakirodalom kevés, a Li és Na meghatározására kidolgozott módszert ismertet [153, 154, 155, 156, 157], annak ismert nehézségei (pl. karbid-képződés, lassú párolgás) miatt. Ráadásul, ezek a módszerek oldatos mintabevitelen alapulnak, beleértve a minta grafitatomizálóba juttatása előtti mintaelőkészítési eljárásokat, mint például a minta mátrix feltárasát/feloldását (pl. szérum [153], gallium-arzenid [155]), és nagy tisztaságú alumínium-oxid [156] esetében, mintaszuszenzió készítését [156], vagy a vizsgálandó elem szilárdmintás melegvizes kioldását/áztatását (pl. tea és gyógynövény főzetek) [157]. Ezek az adatok is alátámasztják a fentiekben megfogalmazott célt, nevezetesen a módszerkidolgozás szükségességét Li és Na LYSO-ban való szilárdmintás GFAAS meghatározására.
3. Kísérleti rész

3.1. Mintakészítés

3.1.1. Különböző adalékanymag-tartalmú YSO:Ce minták

Az alkáli-fluoriddal és cériummal adalékolt YSO keráia mintákat folyadékfázisú szintereléssel, egymást követő hőkezelésekkel állítottam elő, nagy tisztaságú (99,999%) Y$_2$O$_3$, SiO$_2$ és CeO$_2$ kiindulási anyagokból. Ez utóbbi anyagokat megfelelő mennyiségben (49,5 mol% Y$_2$O$_3$, 50 mol% SiO$_2$ és 0,5 mol% CeO$_2$) egy Kern&Sohn Modell 770-14 elektronikus analitikai mérlegen mért le, majd a porkeveréket mágneses keverőn kevertettem víz-etanol 10:3 térfogatarányú keverékében 4 órán át. A szuszpenziót először 150 °C-on 4 órán át szárítottam, majd achátmozsárban achátőrővel végzett porítás után hozzákevertém az adalékanymag (LiF, Li$_2$B$_4$O$_7$ (LTB), LiBO$_3$-Li$_2$B$_4$O$_7$ eutektikuma (~53,7 mol% B$_2$O$_3$ tartalomnál; nagyobb a Li$_2$O tartalma, mint az LTB-nek), NaCl és NaF) különböző mennyiségét (~8-22 mol%). A megfelelő mennyiségű keverékeket achát mozsárban újból elporítottam, majd egy ø13 mm x 1 mm nagyságú pasztillát préseltem belőle egy Carver Laboratory Press, Model C típusú prés és Specac 13 mm DIE présszerszám segítségével. Végül a kész pasztillát egy platina tégelybe helyeztem, és vákuumozott csőkemencében (MTI GSL-1700x) hőkezeltem. A ~18 mol% LiF és NaF adalékanymaggal készült minták és az alkalmazott hőkezelési hőmérséklet közti összefüggés vizsgálatákor a hőkezelési hőmérsékletek 870-1400 °C hőmérséklet-tartománnyba estek, melyeket gyors hűtés követett. Az így készült, demonstrálásra kiválasztott minták összetételét, és azok hőkezelési lépéseit a 8. táblázat, valamint a 12. és 13. ábra foglalja össze.
8. táblázat Folyadékfázisú szintereléssel és különböző adalékkanyagokkal készült YSO minták

<table>
<thead>
<tr>
<th>Minta</th>
<th>Adalékkoncentráció</th>
<th>Egymást követő hőkezelési lépések</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>adalék/YSO [m/m%]</td>
<td>adalék/(adalék+YSO) [mol%]</td>
</tr>
<tr>
<td>1# LiF</td>
<td>1,48</td>
<td>7,8</td>
</tr>
<tr>
<td>2# LiF</td>
<td>3,79</td>
<td>18,18</td>
</tr>
<tr>
<td>2a# LiF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b# LiF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2c# LiF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d# LiF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2e# LiF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3# LiF</td>
<td>4,766</td>
<td>21,97</td>
</tr>
<tr>
<td>4# NaF</td>
<td>4,764</td>
<td>14,57</td>
</tr>
<tr>
<td>5# NaF</td>
<td>6,115</td>
<td>18,18</td>
</tr>
<tr>
<td>5a# NaF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b# NaF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c# NaF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d# NaF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e# NaF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6# YSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7# LTB</td>
<td>4,93</td>
<td>7,8</td>
</tr>
<tr>
<td>8# Li₂O·B₂O₃*</td>
<td>16,1</td>
<td>7,8</td>
</tr>
<tr>
<td>9# NaCl</td>
<td>3,43</td>
<td>7,8</td>
</tr>
<tr>
<td>10# NaCl</td>
<td>4,97</td>
<td>4,41</td>
</tr>
<tr>
<td>11# NaF</td>
<td>2,47</td>
<td>7,8</td>
</tr>
<tr>
<td>12# YSO**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - Li₂O·B₂O₃ eutektikum (46,293 mol% Li₂O + 53,707 mol% B₂O₃)
** - adalékkanyag nélkül készült minta
Rövidítés: RT-szobahőmérséklet
12. ábra Az alkalmazott előállítási módszer (folyadékfázisú szinterelés) egyszerűsített folyamatábrája (pl. LiF adalékanyaggal, LYSO minták esetén)

13. ábra Hőkezelési program 870-1400 °C hőmérséklet-tartományban

3.1.2. Különböző Ce$^{3+}$- és Y$^{3+}$-tartalmú YSO és LYSO minták

A különböző Ce$^{3+}$-tartalom optikai tulajdonságokra kifejtett hatásának tanulmányozása céljából, a 0,025-10 mol% CeO$_2$ koncentráció tartományban (~18 mol% LiF adalékanyaggal), YSO pasztillákat készítettem. A mintakészítési eljárás és a kiindulási
anyagok megegyeznek a fentebb leírtakkal. Ugyanazt a hőkezelési eljárást alkalmaztam, mint a 2# LiF minta esetében.

Az Lu$_3^+$ YSO gazdarácsba való beépítésével a lumineszcencia tulajdonságok változását vizsgáltam. E célból szintén ~18 mol% LiF adalékanyaggal, 0,1-2 mol% CeO$_2$ koncentráció tartományban, valamint Y-ra nézve x≤2 koncentrációig (x=0, 0,4, 0,6) LYSO (Lu$_{2-x}$Y$_x$SiO$_5$) pasztillákat készítettem. Ugyanazt a hőkezelési eljárást alkalmaztam, mint a 2# LiF minta esetében.

3.2. Alkalmazott mérőberendezések

Ebben a fejezetben ismertetem a munkám során használt különböző mérési módszereket, melyeket a kívánt vegyület előállítása és tulajdonságainak (fázisviszony, az adalékanyagok beépülése, lumineszcencia) vizsgálata során alkalmaztam.

3.2.1. Termoanalitika

Termoanalitikai mérésekkel követhetjük a fázisátalakulásokat és kémiai reakciókat az idő és/vagy a hőmérséklet függvényében. Ezek a mérések alkalmasak továbbá a minta bizonyos fizikai és fizikai-kémiai paramétereinek meghatározására, vagy az ilyen paraméterek hőmérsékletfüggésének leírására [158, 159].

A kristályosodási folyamatok és fázisátalakulások követése differenciális termoanalízissel (DTA), a tömegváltozásoké pedig termogravimetriai (TG) vizsgálatokkal valósult meg. A különböző alkáli-fluorid adalékú, hőkezeletlen, 250 °C-on szárított porkeverékek TG-DTA vizsgálatát Mettler TA1 termomérlegű PL Thermal Sciences 1500 differenciális pásztázó kaloriméter rendszer segítségével, az MTA Energiatudományi Kutatóközpont Nukleáris Analitikai és Radiográfiai Laboratóriumában végeztük. Az elemzéseket Pt tégelyben, körülbelül 270 mg tömegű mintákon, 10 °C/min felfűtési sebességgel, levegő atmoszférában, 30-1400 °C közötti hőmérséklet-tartományban és Al$_2$O$_3$ referenciaanyaggal végeztük.
3.2.2. Röntgen-pordiffrakció (XRD)

Röntgen-pordiffrakcióval a preparátumok fázisösszetételét kivántam ellenőrizni. A felvételeket az MTA Geokémiai Kutatóintézetében Phillips PW 1710-es típusú, grafit monokromátorral felszerelt diffraktométeren, Cu(Kα) sugárzással, step-scan üzemmódban, 0,05° lépésközzel, 2θ=2-70° szögtartományban készítettük. A méréseket a különböző módon előállított pasztillákból kb. 1 μm szemcseméreterre porított mintákon végeztük. Az eredmények kiértékelésekor a mintákban előforduló fázisok azonosítására a 9. táblázatban felsorolt JCPDS kártyákat használtam.

9. táblázat Fázisazonosításra használt JCPDS kártyák adatai

<table>
<thead>
<tr>
<th>Vegyület</th>
<th>Fázis</th>
<th>Kártya szám</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y₂SiO₅ (YSO)</td>
<td><X1-YSO></td>
<td>52-1810</td>
</tr>
<tr>
<td></td>
<td><X2-YSO></td>
<td>36-1476</td>
</tr>
<tr>
<td>Lu₂SiO₅ (LSO)</td>
<td><X2-LSO></td>
<td>41-0239</td>
</tr>
<tr>
<td>Y₂Si₂O₇ (YPS)</td>
<td><α-YPS></td>
<td>21-1457</td>
</tr>
<tr>
<td></td>
<td><β-YPS></td>
<td>38-0440</td>
</tr>
<tr>
<td></td>
<td><δ-YPS></td>
<td>42-0168</td>
</tr>
<tr>
<td>Lu₂Si₂O₇ (LPS)</td>
<td><β-LPS></td>
<td>35-0326</td>
</tr>
<tr>
<td>Y₄.67(SiO₄)₃O</td>
<td><apatit></td>
<td>30-1457</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td></td>
<td>41-1105</td>
</tr>
<tr>
<td>Lu₂O₃</td>
<td></td>
<td>43-1021</td>
</tr>
</tbody>
</table>
3.2.3. Raman-spektroszkópia

A Raman-méréseket a vizsgált minták előzetes fázistisztaságának feltérképezése céljából végeztem. Általában a kapott Raman-eredmények alapján döntöttem el, hogy mely minták kerüljenek XRD mérésre is. A Raman-méréseket Leica DM/LM mikroszkóppal összekapcsolt, Renishaw 1000 típusú Raman-spektrométeren végeztem. Vizsgálataimhoz a mikroszkóp objektív lensciái közül az 50-szeres nagyítású alátámasztott, amely a gerjesztőnyalábó 2 μm átmérőjűre fókuszálja. Tekintettel arra, hogy a vizsgált minták lumeszkálnak, ezért gerjesztő fényforrásként, a lumineszcencia szempontjából kevésbé hatékony, 27 mW teljesítményű, 785 nm hullámhosszú diódalézer szolgált. A spektrumokat 50-1200 cm⁻¹ hullámszám tartományban regisztráltam. Az intenzitás mérésére egy 576x20 pixeles CCD szolgált. A jobb jel/zaj viszony több, egymást követő mérés összegzésével és a mérési idő növelésével érhető el, így 50 s mérési idővel és húsz egymást követő mérés összegzésével dolgoztam. A spektrométer felbontása 1 cm⁻¹ volt.

3.2.4. Szilárdmintás HR-CS-GFAAS

A szilárdmintás meghatározásokhoz pirolitikus grafit bevonatú, oldadagoló nyílás nélküli grafit IC-csöveket (Analytik Jena) és pirolitikus grafit IC-platformokat (Analytik Jena) használtam. A szilárdmintás módszer optimalizálását standard oldatok segítségével, PIN-platformmal (pirolitikus grafit bevonatú integrált) és oldadagoló nyílással ellátott
pirolitikus grafit THGA csövekkel (Analytik Jena) végeztem. A grafitcsöveket minden nap, az első elemzést megelőzően, a gyártó által javasolt „formázás” grafitkemence felfűtési programmal kondicionáltam, mely művelet a grafitkemence hőmérsékletének pontos, pirométeres kalibrációjához is szükséges. Öblítőgázként nagytisztaságú (4N6, Messer-Magyarország, Budapest) argont használtam 2000 cm³/min külső kemencegáz áramlási sebességgel. A belső kemencegáz (Ar) áramlási sebességeket és a hevítési programokat a 10. táblázat tartalmazza. Az előkezelési és az atomizációs lépések során alkalmazható optimális hőmérsékleteket a mátrixtól és a meghatározandó elemtől függnek, és optimalizálhatók a Welz-féle előkezelési és atomizációs görbék felvételével. Ekkor az atomizációs hőmérsékletet optimális értéken tartva a pirolízis hőmérsékletet változtatjuk, illetve a pirolízis hőmérsékletet az optimális értéken tartva az atomizációs hőmérsékletet változtatjuk. Az előkezelési, illetve az atomizációs hőmérséklet függvényében ábrázoljuk a mért integrált abszorbanciákat. Az optimális előkezelési hőmérséklet az a legnagyobb hőmérséklet, amelynél még nem következik be jelcsökkenés, az optimális atomizációs hőmérséklet pedig az a legkisebb hőmérséklet, amelyen az abszorbanciájel már elérte a maximumát. Az atomizációs görbéből megkapható a meghatározandó elem megjelenési hőmérséklete, amely az a legkisebb atomizációs hőmérséklet, amelyen a vizsgált elem abszorbanciája éppen megkülönböztethető a háttérabszorbanciától (azaz az atomizációs görbe emelkedő szakaszának a kezdete).

Szilárdmintás elemzéskor a grafitcsövek élettartama 250-300 analitikai ciklus volt, míg a grafitcsónakok csupán 30 és 50 közötti analitikai ciklust bírtak ki. Ez a rövid élettartam az ittrium-oxiortoszilikát mátrix maró tulajdonságának volt köszönhető, amely jelentősen gyorsította a pirolitikus grafitbevonatok elbomlását. Az optimalizált grafitkemence fűtési programokat a 10. táblázatban tüntettem fel. Pontosan ismert Li- és Na-tartalmú, szilárd ittrium-oxiortoszilikát minta hiányában, - amely megfelelő kalibráló standard lehetett volna a szilárdmintás módszerhez, - pontosan ismert koncentrációjú Li és Na törzsoldatokból hígított standard oldatokat használtam. A kalibrációt standard addíciós módszerrel végeztem. Az eredmények feldolgozásakor a normált integrált abszorbancia értékeket vettem figyelembe, amely az integrált abszorbancia (A_{int}) grafitcsónakba bemért minta tömegére normált értéke. A standard addíciós kalibráló egyenes pontjainak megadásához minden egyes meghatározást legalább 5-7-szer ismételt meg, melyekből, - a grafikai megjelenítés előtt, - átlagos abszorbanciát és standard deviációt (SD) számítottam.
10. táblázat Li és Na meghatározásához használt SS-GFAAS hevítési programok

<table>
<thead>
<tr>
<th>Lépés</th>
<th>Hőmérséklet (°C)</th>
<th>Felfűtési sebesség (°C/s)</th>
<th>Hőntartási idő (s)</th>
<th>Belső gázáramlási sebesség (dm³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szárítás 1</td>
<td>80</td>
<td>6</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Szárítás 2</td>
<td>90</td>
<td>3</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Szárítás 3</td>
<td>110</td>
<td>5</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Pirolízis 1</td>
<td>350</td>
<td>50</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Pirolízis 2</td>
<td>800*</td>
<td>300</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Gáz áramlás beállítás</td>
<td>800</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Atomizáció</td>
<td>2400*</td>
<td>2000</td>
<td>10/5*3(^b)</td>
<td>0</td>
</tr>
<tr>
<td>Tisztítás</td>
<td>2450</td>
<td>500</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^a\) optimális hőntartási idő a porított YSO minták Na tartalmának szilárdmintás elemzése esetén

\(^b\) optimális hőntartási idő a porított krill nemzetközi referencia anyag Na tartalmának szilárdmintás elemzése esetén.

A Li és Na meghatározásokhoz az optimális pirolízis és atomizációs hőmérsékleteket a Welz-féle előkezelési és atomizációs görbék alapján határoztam meg, melyeket később részletesen tárgyalok a 4.2. fejezetben. Oldatos és szilárdmintás elemzéseknél is ugyanezeket a hőmérsékleteket alkalmaztam.
3.2.4.1. Felhasznált anyagok

Oldatos méréseknél a hígításokhoz, kalibráló és egyéb oldatok elkészítéséhez kizárólag analitikai tisztaságú (Reanal, Budapest, Magyarország), vagy annál jobb minőségű vegyszereket, illetve ioncserélt vizet (ELGA Purelab Option-R7, ELGA Labwater/VWS(UK) Ltd., High Wycombe, UK; ellenállása 15 MΩ cm), valamint kalibrált mérőlombokat, és mikropipettákat használtam fel. Az egyelemes Li és Na standard oldatokat 1000 mg/L-es törzsoldatokból hígítással készíttettem. A standard oldatokat 0,144 mol/L salétromsavban tartósítottam. A Li és Na törzsoldatok (mindegyik 1000 mg/L) LiCl, Li₂CO₃, NaCl, vagy Na₂CO₃ porvegyszerek (Merck, Riedel-de Haen, Németország) az elektronikus analitikai mérlegen való pontos bemérésével és nagy tisztaságú desztillált vízben és/vagy minimális mennyiségű, Suprapur minőségű cc. sósavban (Merck) való feloldásával készíttettem. A törzsoldatokat 1-6 mol/L HCl, vagy HNO₃ hozzáadásával tartósítottam. Az AAS analízishez használt porított, polikristályos ittrium-oxiortoszilikát pasztillák részletes mintakészítési eljárása fentebb került bemutatásra (3.1. fejezet). Attól függően, hogy Li-, vagy Na-tartalmúak voltak-e a minták, körülmények szerint 0,1-0,4 mg mennyiségű porított szilárd mintát mértam be a grafitcsónakba, amelyet a minta ada gólása előtt és után leleméret a GFAAS készülék elektronikus mikromérlegén. A szilárd minták bemérése után a kalibráló oldatokat az LDA oldatadagolóval pipettáltam be.

3.2.4.2. Nemzetközi hitelesített referencia anyagok (CRM) elemzése

Az oldatos kalibráció és a szilárdmintás meghatározás pontosságának ellenőrzéséhez, a CRM MURST-ISS-A2 antarktiszi porított krill és GBW-07407 porított talaj (laterit) nemzetközileg hitelesített referencia anyagokat használtam. A CRM-ek elemzését szilárdmintás HR-CS-GFAAS és/vagy oldatos HR-CS-FAAS módszerek segítségével végeztem. A szilárdmintás elemzéseknél, - amennyiben az lehetséges volt, - ugyanolyan eljárásokat és beállításokat alkalmaztam, mint az oxioptoszilikát minták esetében. Az oldatos módszereknél, hozzávetőleg 0,05 g mennyiségű krill, vagy 0,1 g talaj CRM (por) mintát tártsam fel PTFE edényben (össztérfogat: 23 ml) egy Parr™ 4745 típusú savas feltáró bombában (Parr Instrument Company, Moline, Illinois, USA). Három párhuzamos mintát készíttettem minden egyes CRM-ből. Egy krill minta feltárásához 4 ml cc. HNO₃-at (Suprapur, Merck), míg egy talajmintához 4 ml cc. HNO₃ plusz 1 ml cc. HF (RPE, Carlo Erba) adagoltam az előzőleg, az elektronikus analitikai mérlegen pontosan bemért referencia (por) mintához; ezután a PTFE edény fedelét lezártam, és azt a Parr acélbombába helyeztem.
A vak oldatokat ezzel megegyező módon készítettem, referenciaanyagok nélkül. A feltárást a feltáró bombák száritókemencébe helyezésével, a krill esetében 150 °C-on 4,5 órán át, míg talajmintáknál 5,5 órán át tartó melegítésével végeztem. Ezután a PTFE edényekből a CRM-minta feltárt, átlátszó oldatát egy 50 ml térfogatú kalibrált lombikba öntöttem és ioncserélt/desztillált vízzel hígítottam/jelleg töltöttem.

3.2.5. HR-CS-FAAS mérési körülmények

Az FAAS elemzéseket is az MTA Wigner SZFI-ben végeztem, a ContrAA-700 lángatomabszorciós spektrométerrel. Levegő-acetilén (acetilén tisztaság: 99,6% v/v; Messer-Magyarország) lángot használtam, szabványos, 10 cm-es égőfejjel. A HR-CS-FAAS elemzésekhöz kvázi-szimultán módban, a Li I 670,7845 nm és a Na I 589,9953 nm elemzővonalakat választottam, iteratív háttérskorrekciós (IBC) módszert és 3 pixele abszorbanciájel kiértékelést alkalmazva. A Li és Na meghatározásokhoz az optikai és a lángparamétereket a lehető legnagyobb érzékenység elérese céljából optimalizáltam a spektrométer szoftvereg segítségével. Bár a két meghatározandó elem optimális mérési körülményei hasonlóaknak adódtak, kompromisszumnak a Li-nál kapott feltételeket választottam, köszönhetően annak, hogy a minták sokkal kevesebb Li-ot tartalmaznak, mint Na-ot. Az optimalizált mérési feltételeket a 11. táblázat tartalmazza. Az ionizációs puffer valamilyen kis ionizációs energiával (IE) rendelkező elem könnyen disszociáló sója (pl. CsCl), amely nagyobb hányada a lángba kerülve ionizálódik, ezzel megnövelve az elektronkoncentrációt, ezáltal a meghatározandó elem ionizációját visszaszorítja. Minden egyes standard és a minta meghatározáshoz 0,1% CsCl ionizációs puffert adagoltam CsCl törzsoldatból. Utóbbit (1% m/v) tiszta CsCl por (BDH Chemicals Ltd., Poole, Nagy-Britannia) analitikai mérlegen végzett bemérésével és nagytisztaságú vízben feloldásával készítettem.

11. táblázat FAAS mérési feltételek

Levegő-acetilén gázáramlási sebessége (L/h)	75
Levegő-acetilén arány	0,16
Késleltetési idő (s)	15
Integrálási idő (s)	3
Megfigyelési lángmagasság (mm)	5
Porlasztó	pneumatikus, állítható
Mintabeviteli sebesség (mL/min)	3,4
3.2.6. Pásztázó elektronmikroszkóp (SEM)

A pásztázó elektronmikroszkópos (SEM) vizsgálatokat egy Leo 1540 XB digitális, speciális (Gemini) elektronoptikájú pásztázó elektronmikroszóppal (FEGSEM), 5 keV gyorsítófeszültség mellett, a 1400 °C-on 5 órán át vákuumban hőkezelt porált pasztillákban, az MTA MFA, Mikrotechnológiai Osztályon végeztük. A porított mintákat kétoldalú, szén alapú ragasztószalaggal rögzítettük a mintatartához. Annak ellenére, hogy a minták szigetelők, nem volt szükséges aranyat, vagy szenet párolni a felületükre, mivel csak 5 keV energiájú sugarat alkalmaztunk a méréshez. Így elkerülhető volt a minta zavaró töltődése. Az alkalmazott nagyítások 100-, 1000-, 5000-, 20000-, 50000-szeresek voltak. A munkatávolság 4,2 mm volt. Az elektronsugarat W/ZrO (Schottky) téremissziós katód állította elő. A Leo 1540XB rendszer esetén az elektronsugarút útjában nincs közbülső fókuszpont (crossover) a forrás és a minta felülete között. A katód csúcsából kilépő elektronokat a pozitívan előfeszített kihúzó tér viszonylag nagy energiára (20 keV) gyorsítja fel. A sugár a teljes oszlopon ezzel az energiával halad át, majd a mintafelület közelében a fékező erőtér, 0,1-20 keV energiára lassítja. Optimális esetben közepes energiákon 2-5 nm sugártartományú nyalábot is előállíthatunk, 2-5 keV energián is elérhető a 10 nm-es felbontás. A rendszer 20-30 keV között hagyományos mikroszkópként (fékezőtér nélkül) működik. A Leo 1540XB rendszeren alaphelyzetben két detektor található. Az egyik egy hagyományos Everhart-Thornley sekundärelektron-detectort, a másik az elektronoszlop objektívlencséjén belül található In-Lens sekundärelektron-detektor, a detektorokkal külön-külön és egyszerre is készültek felvételek, ezáltal a vizsgált területről részletesebb képet lehetett alkotni.

3.2.7. Fotolumineszcencia mérés

A különböző hőmérsékleteken, pasztilláként hőkezelt (870, 1013, 1200, 1300, és 1400 °C-on) és alkáli-fluoriddal adalékolt (LiF/NaF) azonos Ce³⁺-tartalmú minták fotolumineszcenciavizsgálatát Horiba Jobin Yvon Fluorolog 3-22 készülékkel végeztük. Különböző Ce³⁺- és Y³⁺-tartalmú YSO és LYSO pasztillákhoz Horiba Jobin Yvon Nanollog fluoreszcenciakvantumotómétert használtunk. A méréseket szobahőmérsékleten, reflexiós geometriában (~45°) végeztük, változatlan megvilágítási geometria mellett. A készülékben léptetőmotorral mechanikusan mozogatott diffракciós rácsok teszik lehetővé, hogy a gerjesztő és az emissziós oldalon a 200-900 nm-es (6,2–1,38 eV) hullámhossz-tartományban gerjesszünk, illetve detektáljunk. Mind a gerjesztési, mind az emissziós oldalon változtathatjuk a spektrális részvényességet és a mintavételezési tartományt. A jó jel/zaj viszony

14. ábra: PL mérésekhez használt mintatartó fényképe.
4. Eredmények és értékelésük

4.1. Előállítási eljárás optimalizálása

Az előállítani kivánt polikristályos minták megfelelő fázisztisztaságának eléréséhez, és a lumineszcencia intenzitás növelése érdekében a szintézis eljárás több paraméterét optimalizáltam. A hőkezelési program optimálásához tanulmányoztam a különböző végőmérsékletek alkalmazásának fázisztisztaságát és lumineszcenciatulajdonságokra kifejlett hatását. Ezt követően, a már optimalizált hőkezelési programmal a különböző mennyiségben hozzáadott alkáli-halogenid és alkáli-borát adalékanyagokkalkészített mintákat összehasonlítottam szintén a fázisztisztaság és lumineszcencia intenzitások tekintetében, hogy kiválaszthassam az optimális adalékanyagot és annak koncentrációját. Végül a lumineszcencia intenzitás további növelése érdekében a Ce$^{3+}$-tartalom, majd Y$^{3+}$-tartalom lumineszcencia tulajdonságokra gyakorolt hatását elemeztem.

4.1.1. Raman-spektroszkópia

A különböző adalékanyagok és előállítási körülmények (koncentráció, valamint hőkezelési paraméterek) hatását a mintafázisztisztaságára Raman-spektroszkópiával, röntgen-pordiffakcióval és fotolumineszcencia mérésekkel tanulmányoztam.

Az Y$_2$O$_3$-SiO$_2$ rendszer polimorf vegyületeinek Raman-spektrumai bizonyos közös jellemzőkkel rendelkeznek: míg a spektrum alacsony hullámszám-tartományát az Y-O rezgési módusok uralják, a nagyfrekvenciás tartományra a különböző Si-O típusú módusok jellemzőek. Így a Raman-spektroszkópiai módszert a fázisztisztaság előzetes detekálására használtam, és a kapott eredmények alapján kiválasztott minták XRD vizsgálatokra kerültek.

A minták fázisztisztaságának Raman-spektroszkópiával végzett minősítésekor egyrészt az X2-fázisú YSO egykristály Raman-spektrumát, másrészt a parazita fázisokra vonatkozó irodalmi adatokat vettem figyelembe. Az X2-YSO egykristály Raman-spektruma három fő tartományra osztható: az alacsony hullámszámtartományban a RE-RE vegyértékrerezgések, 300-600 cm$^{-1}$ között a RE-O, míg a 600-1000 cm$^{-1}$ hullámszámtartományban a Si-O rezgési sávok találhatóak. Fázisazonosításra a jellemzően nagy Raman-intenzitású, a ~340-430 cm$^{-1}$ és ~520-600 cm$^{-1}$ hullámszámtartományban megjelenő négy fő A$_g$ és öt fő B$_g$ szimmetriához tartozó Y-O rezgési sávok, valamint az A$_g$ szimmetriájú, 887 és 906 cm$^{-1}$-nél lévő Si-O rezgési sávok a legalakalmasabbak [51]. A parazita fázisok pszeudo-tetraédert [SiO$_4$]$^{4-}$
egységeihez rendelhető belső módusok 450-500 cm\(^{-1}\) közé esnek. A szilikátvegyületek Raman-spektrumának magas hullámszám tartományában jellemző sávjai alapján különböztethetőek meg a szilikáthálózatok strukturális eltérései. A megfigyelt sávok relatív intenzitása és pozíciója segít a valós \([\text{SiO}_4]^4-\) tetraéder környezetének felderítésében [160].

Ezen régióban, négy Si-O szimmetrikus nyújtási módus segítségével, -1100-1050 cm\(^{-1}\), 1000-950 cm\(^{-1}\), 900 cm\(^{-1}\) és 850 cm\(^{-1}\), a diszilikát, metaszilikát és ortoszilikát típusú összetételeket azonosítottam.

Az 1000 °C-on 2 órán át, majd 1400 °C-on 5 órán át hőkezelt ~8, ~15 és ~18 mol% NaF adalékanyaggal (15. ábra, 11#, 4#, 5#), valamint a ~8, ~18 és ~22 mol% LiF adalékanyaggal (16. ábra, 1#, 2#, 3#), készült minták, illetve referenciaként, egy porított X2-fázisú YSO egykristály (6#) Raman-spektrumait a 15. és 16. ábrán láthatóak.

15. ábra A ~8, ~15, és ~18 mol% NaF adalékanyaggal készült minták (rendre 11#, 4#, és 5#), illetve referenciaként, egy porított X2-YSO egykristály (6#) Raman-spektrumait
A hőkezelt ~8, ~18 és ~22 mol% LiF adalékanyaggal készült minták (1#, 2#, 3#), illetve referenciaként, egy porított X2-YSO egykristály (6#) Raman-spektrumai.

Mind a NaF, mind pedig a LiF adalékokkal készült minták Raman-spektrumai azt mutatják, hogy kevesebb adalékanyag használatkor nagyobb mennyiségű, a parazita fázisok jelenlétére utaló, rezgési sáv jelent meg. A ~18 mol% LiF adalékanyaggal készült minta (2#) kivételével az összes NaF és LiF adalékolt minta spektrumában 373 cm⁻¹-nél található egy nagy intenzitású, elreagálatlan, vagy bomlástermékként jelentkező Y₂O₃ szennyező jelenlétére utaló sáv (15-16. ábra), ami az ittrium-oxid egy jellemző F₆g+A₈g kombinációjú rezgési módusa [161]. A 470 cm⁻¹-nél található rezgési sáv a <β-YSO> fázisra utal. A ~5 m/m% LTB, Li₂O-B₂O₃ eutektikum és NaCl adalékanyaggal készült minták Raman-spektrumai hasonló, vagy rosszabb eredményeket mutattak. A referenciaként használt X2-YSO egykristály spektrumával összevetve úgy tűnt, hogy a ~18 mol%-nyi LiF adalék használata hozott jobb eredményt. Így a továbbiakban ~18 mol% LiF és NaF adalékanyag koncentrációval készült YSO:Ce mintákat készítettem, és azok optimális hőkezelési hőmérsékletét kivántam meghatározni.
A ~18 mol% LiF adalékkal, különböző hőkezelési lépések ből, 1000 °C (2b#), 1300 °C (2d#), és 1400 °C (2#), származó minták, illetve egy porított X2-YSO egykristály referencia minta (6#) Raman-spektrumai

A ~18 mol% alkáli-fluoriddal (LiF, vagy NaF) a különböző hőkezelési lépések ből (1000 °C/1150 °C, 1300 °C és 1400 °C) származó minták Raman-spektrumai a 17-18. ábrákon láthatóak. Ezen spektrumokat összevetve a tiszta X2-YSO kristály (6#) spektrumával világosan látszik, hogy a LiF adalékanyaggal készült mintánál a <X2-YSO> fázisra jellemző sávok (887, 906 és 956 cm\(^{-1}\)) dominánsan jelennek meg már egy rövid, 1000° C-on végzett hőkezelés esetén is (2b#). Ezek a sávok az <X1-YSO> fázis 888, 924 és 1027 cm\(^{-1}\)-nél fekvő sávjainak kíséretében jelentkeztek. Az <X1 és X2-YSO> fázisok rezgési sávjai mellett, 1300 °C-os hőkezeléskor egy intenzív sáv állandósul 870 cm\(^{-1}\)-nél. Ezt a sávot az <apatit> fázisban az [SiO\(_4\)]\(^4-\) tetraéder szimmetrikus nyújtási rezgésehez lehet rendelni [162].
18. ábra A ~18 mol% NaF adalékkal, különböző hőkezelési lépésekből, - 1150 °C (5b#), 1300 °C (5d#), és 1400° C (5#) hőmérsékleten, - származó minták, illetve egy porított X2-YSO egykristály referencia minta (6#)

Raman-spektrumai

A NaF adalékanyaggal, 1300 °C feletti hőkezelés után (18. ábra, 5b#, 5d# spektrumok) még <apatit> és <X1-YSO> fázisok sávjai uralják a spektrumot. Mindkét adalékanyag használata esetében, az 1400 °C-os hőkezelés után az <X2-YSO> a képződött fő fázis. Az új rezgési sávok felbukkanása a 922-962 cm\(^{-1}\) frekvenciátartományban a \(<\beta-\text{Y}_2\text{Si}_2\text{O}_7>\) fázis kialakulását jelzik [41]. A \(<\beta-\text{YPS}>\) kialakulása az <apatit> fázis termikus bomlásának következménye [163].
4.1.2. Röntgen-pordiffrakciós vizsgálatok

Az egymást követő 1000 °C-on 2 órán és 1400 °C-on 5 órán át végzett hőkezeléseken készült ittrium-oxiortoszilikát minták fázisviszonyt röntgen-pordiffrakciós felvételek segítettek kideríteni. Az ~5 m/m% LTB, LiF, NaCl és NaF adalékanyagokkal készült minták diffaktogramjait a 19. ábrán mutatom be.

Az LTB, illetve NaCl adalékanyaggal készült mintákban az előállítani kívánt \(<X2-YSO>\) fázis mellett jelentős a parazita fázisok mennyisége; elsősorban \(<X1-YSO>, <Y_2O_3>, \beta\)-YS, <apatit> és kisebb mennyiségben \(\alpha\)-YS fázisok fordulnak elő. A NaF és LiF minták esetében domináns fázisként már \(<X2-YSO>\) mutatható ki. Ugyanakkor, igaz

19. ábra Az ~5 m/m% LTB, LiF, NaCl és NaF (7#, 3#, 10#, 4#) adalékanyagokkal készült minták diffaktogramjai
kisebb mennyiségben, de parazita fázisok jelenléte is kimutatható. Mindkét adalékanyaggal készített mintában döntően a köbös \(<Y_2O_3>\) jelentkezik, azonban emellett kisebb mennyiségben NaF mintában szilícium-oxiapatit \(<Y_{4.67}(SiO_4)_3O>\) és \(\beta\)-ittrium-diszilikát \(<\beta\text{-}YPS>\), míg a LiF mintában alacsony hőmérsékletű \(<X1\text{-}YSO>\) fázis is marad. Ezen eredményeket a nyert Raman-spektrumok is alátámasztják. A fluorid-tartalmú adalékanyagok hatékonyabban bizonyultak az \(Y_2O_3\) és a \(SiO_2\) közötti reakció elősegítésében. Így a továbbiakban a LiF és a NaF optimális adalékanyag mennyiségét határoztam meg. A LiF és NaF adalékanyagok felhasználásával készült minták diffraktogramjait a 20. és 21. ábrák (1#-3# és 4#-5#) mutatják be.

20. ábra Az 1400 °C 5 órán át hőkezelt LiF adaléktolt minták röntgen-pordiffrakciós felvételei, ~8, ~18 és 21,9 mol% LiF adalékkal készült minták diffraktogramjai (1-3#)

A kis (<8 mol%) adalékkoncentrációjú minták az adalékolatlan mintákhoz hasonló eredményeket adtak. Domináns fázisként az \(<X2\text{-}YSO>\) mutatható ki, emellett kisebb hozzájárulással a következő fázisok: az alacsony hőmérsékletű \(<X1\text{-}YSO>\), a köbös \(<Y_2O_3>\), a szilícium-oxiapatit \(<Y_{4.67}(SiO_4)_3O>\) és a \(\beta\)-ittrium-diszilikát \(<\beta\text{-}YPS>\) figyelhetőek meg (20. ábra, 1#).
Az 1400 °C 5 órán át hőkezelt NaF adalékolt minták röntgen-pordiffrakciós felvételei, ~15 és ~18 mol% NaF adalékkal készült minták diffraktogramjai (4-5#) ²

Az alkáli-fluorid koncentráció növelésével (~18 mol%) a parazita fázisok mennyiségének csökkenése tapasztalható, ami arra utal, hogy az Y₂O₃ és SiO₂ vegyületek közötti reakció hatásfoka javult. A ~18 mol% LiF adalékanyag használatával, a parazita fázisok csökkenése jelentős, a diffraktogramon csupán kis mennyiséggű <apatit> fázis jelenléte figyelhető meg (20. ábra, 2#). Ezzel szemben nátrium-fluoriddal adalékolt minták esetében, 14-18 mol% koncentrációtartományban <apatit> és <Y₂O₃> fázisok még mindig kimutathatóak (21. ábra, 4#, 5#). Az adalékanyagok mennyiségének további növelésével, a fázisátszás ismét degradálódott mind a litium-, mind a nátrium-fluorid alkalmazása esetében (20. ábra, 3# és 21. ábra 5#). Érdemes megemlíteni, hogy LiF és NaF fázisok jelenléte nem volt kimutatható. A röntgendiffrakciós eredmények összegzésekte megállapítható, hogy a jó fázisátszás megfelelően érdekbe vonja az alkátát és adalékanyag koncentrációja közül 18 mol% (azaz 4-6 m/m%). Ez az adat összhangban van a szakirodalmi adatokkal (5 m/m% LiF és 2 m/m% KH₂PO₄ adalékanyag, valamint 1200 °C hőkezelési hőmérséklet esetében) [104].

2 A kerámiatextúrában JCPDS kártyák alapján a következő <YSO> fázisok és prekurzor parazita fázisok azonosíthatók: Y₂SiO₅ <X1-YSO>:52-1810, <X2-YSO>:36-1476, Y₃SiO₇ <β-YPS>:38- 0440, Y₄(SiO₄)₃O <apatit>: 30-1457 és <Y₂O₃> >41-1105. Megjegyzés: Az <apatit> és <X2-YSO> karakterisztikus vonalpozíciójának superpozíciója 15 szöglméter percen belül.
4.1.3. Fotolumineszcencia mérések

Számos esetben bebizonyosodott, hogy a YSO:Ce és LSO:Ce fényporok lumineszcencia intenzitása jelentősen növekedett Na⁺, illetve Li⁺ adalékanyagok alkalmazásakor [80, 164]. A különböző adalékanyagok hatásának megértésére számos magyarázatot adnak, mint például azt, hogy csökkentik a B2 helyről B1 helyre történő energia transzfer esélyét [165], és a töltséssel rendelkező elektroncsapdák mennyiségét [166], töltéskompenzációs szerepet töltenek be [167], reakcióközegként működnek [166], módosítják a kristályteret [168], megőrizzék a Ce³⁺ beépülését a B1 helyekre és javítanak a Ce³⁺/Ce⁴⁺ átalakulás koncentrációarányán. [168]. Ezek tisztázására megvizsgáltam a különböző Li- és Na-tartalmú adalékanyagok lumineszcencia tulajdonságokra gyakorolt hatását, melyet ebben a fejezetben mutatok be.

Az YSO:Ce fénykibocsátása a Ce³⁺ 5d gerjesztett állapotból a 4f alapállapotba bekövetkező elektronátmenetének köszönhető, a lumineszcencia spektrumok jellemzően duplasávos szerkezetű, pedig az alapállapot szerinti felhasadás következménye (²F₅/₂, ²F₇/₂) [72]. A Ce³⁺ nagyobb ionsugarának köszönhetően, elsősorban az X2-YSO rács 7-es koordinációs számú B1 ritkaöldőfém helyére, kisebb valószínűséggel pedig a 6-os koordinációs számú B2 helyre épülnek be [55]. Az X2-fázisú YSO esetében a gerjesztési spektrum általában három gerjesztő sávról bontható: 4,59, 4,13, és intenzív 3,4 eV (270, 300 és 360 nm) sávokra [74]. Ezek a gerjesztő fotonenergiák mindkét ritkaöldőfém helyen lévő Ce³⁺-iont gerjesztik (B1 és B2).

Felvettem az 1400 °C-on hőkezelt, 0,5 mol% Ce³⁺-mal adalékolt YSO minták gerjesztési spektrumát, majd megkerestem azt a gerjesztő energiát, mellyel az összes, a mintákról jellemző lumineszcenciasáv gerjeszthető (22. ábra). A fentiekkel összhangban három gerjesztési sávot figyeltem meg, két gyenge intenzitású 267 nm-nél és 300 nm-nél, illetve egy intenzív sávot 360 nm-nél. A továbbiakban ezt a 360 nm hullámhosszúságú (3,44 eV) gerjesztőfényt használtam a fotolumineszcencia mérésekhez.
22. ábra YSO:Ce minták jellemző gerjesztési spektruma 391, 420 és 470 nm-en rögzített emissziós hullámhosszakon felvéve.

23. ábra Az 1400 °C-on hőkezelt, 0,5 mol% Ce$^{3+}$-mal adalékolt és ~18 mol% LiF adalékanyaggal készített YSO minta normált és illesztett PL spektruma.

Az 1400 °C-on hőkezelt, 0,5 mol% Ce$^{3+}$-mal adalékolt és ~18 mol% LiF adalékanyaggal készített YSO minta 360 nm-es gerjesztőfénnyel felvett PL-spektruma egyértelműen demonstrálja az YSO X2-fázisára jellemző lumineszcenciasávokat (23. ábra). Ennek megfelelően az X2-YSO:Ce spektrumban a domináns dublett emissziós sáv 400-420 nm körüli maximumát a B1 helynek, a spektrum kiszélesedéseit, a vállként, 470 nm.
körül megjelenő sávot a B2 helynek tulajdoníthatjuk. A spektrumokra a legkisebb négyzetek módszere alapján Gauss görbéket illesztettem; a három emissziós sávnak (391 nm, 420 nm és 452 nm) megfelelően. A két nagy energiájú emissziós sáv megfelel a B1 helyen elhelyezkedő Ce$^{3+}$ alapállapot szerinti felhasadásának, míg a széles, alacsony energiájú sáv annak köszönhető, hogy a B2 helyen, az alapállapot felhasadása nem következik be a mérés hőmérsékletén (300 K). Az X1-YSO fázisban, ahol a ritkaöldőfém helyek 9-es és 7-es koordinációs számúak (A1 és A2 helyek), a kettős emissziós csúcs az A1 helynek felel meg. Ekkor a Ce$^{3+}$ alapállapot spin-pálya szerinti felhasadása eltolódik az alacsonyabb energiák irányába (körülbelül 434 nm-re és 465 nm-re), hiszen az X1-fázis átlagos Ce-O kovalens kötéstabolsága nagyobb az X2-fázisban megfigyeltekhez képest [10, 16].

![Hullámhossz (nm)](image)

Energia (eV)

Különböző Li- és Na-tartalmú adalékanyagokkal készült YSO:Ce minták PL spektrumai

A 24. ábrán a különböző Li- és Na-tartalmú adalékanyagokkal készült YSO:Ce minták PL spektrumai láthatóak. A kapott lumineszcencia spektrumok 5-7-szer ismételt mérések eredményei, a lumineszcencia intenzitás-értékeket ezek átlaga adja, és minden esetben
ugyanazt az intenzitási sorrendet kaptam. E szerint az alkali-fluorid adalékanyagok használatával nőtt leginkább a lumineszcencia intenzitás, ami összefügg a kapott XRD eredményekkel (ld. 19-21. ábra). Tehát, a NaCl, LTB és Li2O-B2O3 eutektikumoknál a magasabb olvadáspontnak köszönhető, hogy az alkali-fluoridok hozzáadásával javult a fázisiztaság az X2-fázisú YSO-ra nézve, ami az X1-fázisú YSO-nál, illetve YPS fázisoknál is intenzívebb lumineszcenciát mutat. A LiF és NaF adalékanyagok optimális (~18 mol%) mennyiségének alkalmazásával értem el a legnagyobb lumineszcencia intenzitást, míg a legkisebb intenzitás értékek NaCl adalékanyaggal adódtak. Az adalékok fajtáján kívül, azok hozzáadott mennyisége is hatást gyakorolt a lumineszcencia intenzitás értékek alakulására: amennyiben az az optimális 18 mol%-nál kevesebb volt, a lumineszcencia intenzitás csökkent. Az ábrán szereplő minták lumineszcencia intenzitási sorrendje az előzetes Raman-spektroszkópiai és XRD eredményekkel összhangban van. A továbbiakban a ~18 mol% LiF és NaF adalékanyaggal készült YSO:Ce minták lumineszcencia tulajdonságokra gyakorolt hatását vizsgáltam a hőkezelési véghőmérséklet függvényében.

25. ábra Különböző hőmérsékleteken hőkezelt 0,5 mol% Ce és ~18 mol% LiF, vagy NaF adalékanyagokkal (870 °C: 2a# és 5a#; 1200 °C: 2c# és 5c#; 1400 °C: 2# és 5#) készült YSO minták PL spektrumai
A 0,5 mol% Ce és ~18 mol% LiF, vagy NaF adalékanyagokkal készült YSO minták hőkezelési hőmérséklettől való függőséét azok fotolumineszcencia (PL) spektrumai bizonyítják. Alacsonyabb szintezishőmérsékleten (pl. 870 °C) nyert minták spektruma jellemzően X1-fázisok jelenlétét mutatja LiF és NaF alkalmazásakor (ld. 25. ábra 2a# és 5a# spektrum). A széles emissziós sáv maximuma egy gyenge váll (~460 nm) megjelenése mellett 430-440 nm-nél található, ami megegyezik a szakirodalmi adatokkal [10, 16]. A két komponens megfelel az A1 helyre beépülő Ce$^{3+}$ alapállapota felhasadásának. Habár a Ce$^{3+}$-ionok mindkét ritkaállapotét jellemzően X_1-fázisok jelenlétével mutatják, lumineszcencia csak az A1 helynek megfelelőnél figyelhető meg, az A2-ről A1 helyre irányuló energia transzfer révén [10].

A különböző NaF és LiF adalékanyaggal készült minták 1200 °C hőmérsékleten való további hőkezelésének következtében azok PL-spektrumai (25. ábra, 2c# és 5c# minták spektrumai), - összhangban a fázisvizsgálatok eredményeivel, - NaF esetén még mindig az X1-fázisra, míg LiF használatakor az X2-fázisra jellemzőek (az intenzitás maximumok körümbelül 391 nm-nél és 420 nm-nél láthatók).

Az 1400 °C-os hőkezelési hőmérsékleteken mindkét adalékanyaggal készült minták lumineszcencia spektrumai (24. ábra, 2# és 5# spektrumok) hasonlóak. Ezek mind jellemzően az X2-fázis jelenlétére utalnak, egyetértésben a Raman-spektroszkópiával nyert eredményekkel (lásd fent). Bár az ábrán a normált spektrumok szerepelnek, meg kell említeni, hogy a kibocsátott fény intenzitása LiF adalékanyaggal közel kétszer nagyobb, mint az NaF használatával, azonos besugárzó fényintenzitást alkalmazása mellett. Ezenkívül, a legmagasabb lumineszcencia intenzitások a következő, optimális adalékanyag koncentrációknál figyelhetőek meg: ~18 mol% LiF és ~15 mol% NaF alkalmazásakor. Az eredmények azt jelzik, hogy az előállítani kivánt anyag olvadáspontjának, illetve adott hőmérsékleten lezajló reakcióinak ismeretében a megfelelő olvadáspontú, megfelelő mennyiségű adalékanyag hozzáadásával növelhető az intenzitás. Felvetődik, hogy az egyes adalékanyagok alkali-ionjainak a kristályrácsba jelentős mennyiségben való beépítése is hozzájárult-e a lumineszcens intenzitás javulásához, így ezzel a kérdéskörrel külön fejezetben foglalkozom (ld. 4.2. alfejezet).
4.1.4. Termoanalitikai vizsgálatok

Mivel az általam használt adalékanyagok az $¥O_3$ és az amorf szilícium-oxid közötti reakció felgyorsítását igérik, ezért a kristályátalakulásokat és a fázis változásokat DTA segítségével követtem nyomon. Az adalékanyagok kipárolgásának mechanizmusára pedig TG vizsgálatok szolgáltak.

A ~18 mol% adalékanyaggal készített minták DTA-TG görbét a 26. ábra mutatja be, ahol a 8. táblázatban 2e# jelölésű LiF-os minták és 5e# NaF-os minták görbét szerepelnek Mindkét DTA görbe a 800-1150 °C tartományban kiterjedt/elhúzódó exoterm reakciókat mutat. A LiF adalékanyag esetén exoterm reakciók ~800 °C körül kezdődnek, 822 °C és 845 °C tetőzéssel, valamint széles csúcs jelentkezik a ~930 °C és 1030 °C közötti tartományban. A NaF adalékanyag termikus reakciói a ~850-950 °C tartományban egy kiterjedt exoterm csúccsal kezdődnek, melyet két további csúcs követ ~1080 °C és 1117 °C-nál. A DTA görbéken nincsen egyértelmű jele a LiF és NaF adalékok olvadáspontja szerinti folyadékfázis képződésének ($T_{m \text{LiF}} = 870 \degree \text{C, } T_{m \text{NaF}} = 990 \degree \text{C}$). Tiszta (1:1) $¥O_3$-SiO$_2$ porok amorf-kristályos átalakulása 900-1100 °C hőmérséklet-tartományban megy végbe, $<\text{apatit}>$ és $<\text{YSO}>$ fázisok kialakulásával [162, 163]. Ebben a hőmérséklet-tartományban az alkáli-fluorid adalékanyagokkal készített mintákban, a szerkezeti hasonlóság alapján, szilícium-oxiapatit ($¥_{4.67-x}\text{(SiO}_4\text{)}_3\text{O}$), alkáli-ittrium-oxiapatit ($\text{Li/NaY}_9\text{(SiO}_4\text{)}_6\text{O}_2$) és vegyes alkáli-fluor-apatit ($\text{Na}_x\text{Y}_{9-x}\text{(SiO}_4\text{)}_6\text{O}_2\text{F}_y$) kialakulására is van esély. Ezen vegyes ittrium-apatit vegyületek bomlása a szintézis során, - tiszta kiindulási anyagokra nézve, - magas hőmérsékleten zajlik (~1150 °C) [47], ami a fluorid- és az alkáli-ionok nagyobb részének reakcióelegyből való elvesztését (kipárolgását) jelenti (pl. 2# végső, 1400 °C-os hőkezelése után a Li-tartalom 3,67 mol%-nak adódott az AAS elemzési eredmények szerint). Fluor nyomokat sem az NMR, sem az IR-mérések nem mutattak ki.

64
26. ábra A ~18 mol% adalékanyag-tartalmú YSO-LiF (2e#) és YSO-NaF (5e#) hőkezeletlen porkeverékek DTA-TG görbéi.

4.1.5. Morfológiai vizsgálatok

Úgy gondoltam, hogy az előzetes Raman, XRD, valamint termoanalitikai vizsgálatok eredményeit érdemes a különböző LiF és NaF adalékanyag koncentrációval előállított YSO mintákon készült SEM felvételekkel kiegészíteni. Elsősorban a LiF adalékanyag-tartalomnak a minta morfológiára és a szemcsemétre gyakorlott hatását tanulmányoztam. A vizsgált minták mindegyike 1400 °C-on 5 órán át hőkezelt, majd mozsárban porított YSO:Ce pasztilla, amelyekre különbség azok LiF adalékanyag-tartalmában volt (28-30. ábra). Abban az esetben, amikor adalékanyag nélkül készült a minta, porózus szerkezetű, patisszon-alakú agglomerátumok keletkeztek. Egy-egy ilyen kevésbé tagolt agglomerátum mérete több μm (27. ábra).
27. ábra Adalékanyag nélkül előállított YSO minta (12#) SEM felvétele (20000x nagyítás)

28. ábra ~8 mol% LiF adalékanyaggal előállított YSO minta (1#) SEM felvétele (50000x nagyítás)
29. ábra ~18 mol% LiF adalékanyaggal előállított YSO minta (2#) SEM felvétele (50000x nagyítás)

A 28. ábrán a ~8 mol% LiF adalékanyaggal előállított YSO mintáról készült SEM felvétel látható. Azt tapasztaltam, hogy már kis mennyiségű LiF adalékanyag alkalmazása is pozitív hatással volt a minta morfológiájára. Kompakt agglomerátumok alakultak ki, melyeken szemcsehatárok megjelenését is észlelt. Az átlagos szemcseméret körülbelül 2,5 μm-re csökkent. A ~18 mol% LiF adalékanyag-tartalmú minta esetében jelentősen megváltozott a struktúra, illetve a szemcseméret is. Jól láthatóak az összeolvadt szemcsek közti szemcsehatárok a porítással széttört agglomerátumok felszínén. A szemcsék felszíne sima, méretük 500 nm alatti, általános ~300 nm. Köztük néhány helyen még apróbb lyukak figyelhetőek meg, de a minta alapvetően tömör szerkezetű (29. ábra). Összevetve az azonos LiF és NaF adalékanyag-tartalommal készült minták SEM képeit (30. ábra), a különbség egyértelmű. A NaF adalékkal készült minta a szemcsealak, szemcseméret, illetve struktúra tekintetében heterogén. Morfológiájukat tekintve a mintában találunk sima felületű, nagyméretű (kb. 4 μm átmérőjű), tömör szemcséket is, azonban a néhány száz nm-es szemcsékből összetevődő, „karfiolszerű” agglomerátumok jelenléte a döntő.
30. ábra ~18 mol% NaF adalékanyaggal előállított YSO minta SEM felvétele (20000x nagytárs)

A kapott SEM felvételek alátámasztják a fotolumineszcencia mérések eredményeit. Nanoméretű anyagokban ugyanis a szemcsékből korlátozott számú elemi cella fér el. Így átlagosan csak néhány elektroncsapda található egy-egy szemcsén belül, ezért a csapdák véletlenszerűen és a szemcsék között jelentős számnyi fluktuációt mutatva oszlanak el. Néhány szemcse esetleg több csapdát is tartalmazhat, míg akadhat olyan is, amiben egy sem található. A lumineszcens centrumok energiája csak rezonánsan adódhat át egy szemcsén belül, mivel a szemcsehatárok gátolják az energiatranszfert. A lumineszcens centrumok számának növekedésével a koncentrációs (aktivátor ion) kioltsás (quenching) először a sok csapdát tartalmazó szemcséket érinti. Azokban a szemcsékből, ahol nincs vagy csak kevés csapda található, a kioltsás csak nagy aktivátor ion koncentrációs esetén valósul meg, vagy egyáltalán nem következik be [169, 170]. Éppen ezért a nanoméretű, ~18 mol% LiF adalékanyaggal készült YSO:Ce minták kioltsása nagyobb Ce³⁺-tartalomnál következik be, mint az átlagosan jóval nagyobb szemcseméretű adalékanyag nélküli, vagy a mikroméretű szemcsékből álló ~18 mol% NaF adalékanyaggal és ~8 mol% LiF adalékanyaggal készült YSO:Ce minták esetén.

A SEM felvételek kiértékelésével megállapítottam, hogy az optimalizált előállítási eljárással készített polikristályos ittrium-oxiortoszilikát mintán jelentős szemcseméret csökkenést értem el, összevetésben a szakirodalomban hasonló eljárással készített YSO, vagy
YPS minták szemcseméretéhez képest. A szakirodalmi átlagos 5 μm-es szemcseméret helyett [96, 104, 111, 114, 171, 172], a mintáim átlagosan egy nagyságrenddel kisebb, 200-500 nm-es szemcsemérettel rendelkeznek. Hasonló, vagy ennél jobb eredményeket csak szol-gél, illetve hidrotermális módszerekkel értek el [80, 109, 173], amelyek azonban hosszabb preparációs időt igénylő és költségesebb eljárások.

4.1.6. Összegzés

gazdag terület belsejében, a szilíciumban gazdag amorf fázisok kilépésével kezdődik. Az ilyen rendszerekben, a prekursor klaszterek önszerveződéséből egyesülő mátrix keletkezésén keresztül makroszerkezetek alakulnak ki, ami azt jelenti, hogy először azon fázisok kristályosodnak ki, amelyek a legkevesebb szerkezeti újraszerveződéssel járnak. A jelen vizsgálatokban, különösen a NaF adalékanyaggal készített mintáknál, bebizonyosodott, hogy a termodinamikailag stabilabb ittrium-oxiortoszilikát helyett inkább apatit kristályosodik ki. Mindezen felül az is bizonyítást nyert, hogy a különböző lantanoida-szilikátok apatit egykristályainak növekedéséhez olvadékképző adalékanyagként előnyösek az alkáli-fluorid olvadékok (pl.: NaF, vagy NaF/KF eutektikum) [175]. A jelen vizsgálatokból megállapítottam, hogy a kívánt fázisizós fázis <YSO> előállítására az optimális alkáli-fluorid adalékanyag koncentráció ~18 mol%. Ez a koncentráció megfelel ~30 mol% relatív alkálielem koncentrációjának az alkáli-fluorid-SiO₂ rendszerben.

Érdemes megjegyezni, hogy a LiYO₂ olvadékképző adalékanyagnál Ziqi Sun és társai [49] szintén megfigyeltek egy 1000 °C alatti intenzív exoterm reakciót, amely az <apatit> és <YSO> fázis kialakulásához kapcsolódik. Figyelembe véve, hogy a LiYO₂ ~800 °C-on bomlani kezd Li₂O-ra és Y₂O₃-ra, ezért valószínűsíthető, hogy a Li₂O-Y₂O₃-SiO₂ rendszerben szintén megegyező módon zajlik le a fázisszeparáció.

70
4.2. SS-HR-CS-GFAAS módszerek kidolgozása YSO minták Li- és Na- tartalmának meghatározására

A folyadékfázisú szintereléssel készített mintáknál az adalékként használt LiF és NaF jelentős része kipárolog. Ezért szükségessé vált olyan analitikai módszer kidolgozása és alkalmazása, mellyel az oxioroszilikát mintákban visszamaradt/beépült adalékanyag koncentrációja meghatározható.

4.2.1. Mintamennyiség optimalizálás és elemzővonal választás szilárdmintás elemzéshez

A meghatározandó elemek megfelelő érzékenységű elemzővonalainak kiválasztásához, porított YSO minták bemérésével meghatároztam a Li és Na A

értékeinek nagyságát különböző érzékenységű Li és Na vonalakon. A kísérleteket mindkét elem legérzékenyebb elemzővonalán kezdve végeztem. E célból kis mennyiségű (0,099-0,422 mg) porított mintát mérem egy grafitcsónakba, majd az előzetesen optimalizált hevítési programot alkalmaztam. A cél az volt, hogy a bemért mintamennyiségek még jól reproducálható analitikai jeleket adjanak, pl. az A

értékek-ne legegyenek kisebbek, mint 0,01 s, de ne is legegyenek nagyobbak, mint 0,2 s, mivel a szilárdmintában belé hoz a kalibráló (standard) oldatok koncentrációjának növekedésével az abszorbancia jel is növekszik. Végül az ortoszilikát minták viszonylag nagy Li és Na tartalma miatt, az elemzéseket alternatív, kevésbé érzékeny spektrális vonalak felhasználásával végeztem. Ennek megfelelően, a Li I 610,353 nm-es nem rezonáns vonalát, míg a Na I 285,3013 nm rezonáns vonalát használtam fel az ortoszilikát porított minták direkt (szilárdmintás) elemzésére. Azt tapasztaltam, hogy a krill CRM nagyobb Na-tartalmú, míg a talaj CRM kisebb Li-tartalmú volt, mint a porított ortoszilikát minták. Következésképpen, alternatív elemzővonalában a krill esetében a Na I 268,034 nm, míg talaj CRM-nél Li I 323,2657 nm rezonáns vonalat választottam.

4.2.2. Grafitkemence hevítési program optimalizálása

A grafitkemence hevítési program optimalizálását savas Li és Na standard oldatokkal, valamint a szilárd (porított) YSO mintákkal több lépésben végeztem. A standard oldatok oldószertartalmának teljes eltávolítása érdekében a száritási lépéseket gondosan optimalizáltam a kemence videó kamerájával megfigyelve az oldatminták egyenletes és
fröccsenésmentes teljes elpárolgását. A pirolízis és atomizációs lépések optimális hőmérsékletértékeit Li és Na standard oldatok segítségével, a Welz-féle [116] pirolízis és atomizációs görböket felvételével végeztem, rendre 2400 °C-os atomizációs hőmérsékleten (T_{at}), és 800 °C-os pirolízis hőmérsékleten (T_{pr}). A standard oldattal felvett Li pirolízis görbéjén (31a. ábra), a 400 °C és 700 °C közötti plató szakasz után, 700 °C és 800 °C között egy enyhén csökkenő abszorbancia, végül 1000-1200 °C között ismét egy plató tartomány figyelhető meg. Lényegében 1200 °C-ig a Li elhanyagolhatóan kicsi párolgási vesztesége látható. A Li atomizációs görbéje enyhe növekedést mutat 1500-1800 °C között, majd 1800 °C fölött expnenciálisan emelkedik. Éppen ezért a THGA kemencéknél maximálisan megengedhető T_{at}=2400 °C-ot alkalmaztam kompromisszumos beállításként az Y₂SiO₅:Ce és a CRM minták Li mennyiségének pontos meghatározására is. A Na standard oldattal felvett pirolízis görbéjén 400 °C és 800 °C között egy plató szakasz található, majd a görbe 900 °C-tól meredeken csökkeni kezd (31a. ábra). A Na atomizációs görbéje már 900 °C-nál növekedni kezd, azaz a hatás sokkal kisebb hőmérsékleten jelentkezik, mint a Li esetében, és 1600 °C és 2600 °C között egy konstans (plató) szakasz figyelhető meg.

Szilárd ortoszilikát mintákat illetően, az optimális T_{pr} a Na-ra és a Li-ra vonatkozóan 1100 °C-nak és 1800 °C-nak, míg az optimális T_{at} rendre 2400 °C-nak és 2600 °C-nak adódott (31b. ábra). Az is látható, hogy az YSO mintánál a Na és Li megjelenési hőmérsékletei feltűnően eltérőek, rendre 1400 °C és 1900 °C. A szilárd és oldat (standard) minták Li-ra vonatkozó pirolízis és atomizációs görbéi hasonló lefutást mutatnak (31a. és b. ábra), míg Na esetében a szilárd ortoszilikát mintával felvett pirolízis görbe nagyobb hőmérsékleten kezd csökkeni (azaz 1200 °C felett), mint standard oldatok esetében. Hasonlóképpen, a Na optimális atomizációs hőmérséklete nagyobb értékűnek adódott (pl. ~2400 °C) a szilárd mintánál (31b. ábra), mint a standard oldatformánál. Mint az a szakirodalomban ismeretes, az ittrium-ortoszilikát igen magas hőmérsékleten, 1980 °C felett olvad meg és bomlik [33]. A mátrix tűzálló jellegének, magas olvadáspontjának köszönhetően, optimális atomizációs hőmérsékletként a 2400 °C kompromisszumos értéket választottam. Ez a beállítás a szilárd ortoszilikát minták Li és Na atomizációs görbéinél is helytálló választásnak bizonyult (31b. ábra)
4.2.3. Atomizációs tranziensek

Az atomizációs és az integrálási idők optimalizálása céljából különböző közegekben, pl. savas standard oldatokkal és porított szilárd mintákkal, illetve a kettő kombinációjának felhasználásával is rögzítettem a 3D-s abszorbancia tranzienseket. Az oldatmintákkal nyert Li és Na atomizációs tranziensei egyaránt egy csúcson tetőztek és 3 s atomizációs időn belül teljesen lecsengtek (32a. ábra). A Na I 285,3013 nm-es vonalának környékén (32b. ábra) további két, nagyobb intenzitású vonal is megjelent. Az egyik a 285,2811 nm-nél, a Na

31. ábra
Li és Na Welz-féle pirolízis és atomizációs görbői
(a) 10 mg/L Li és 20 mg/L Na savas (0.144 moles/L HNO₃) standard
(b) porított YSO minták; (n=3-5).
elemzővonalhoz közelebbi, a Na-dubletthez tartozó nagyobb intenzitású vonal, míg a legmagasabb tranziens csúcs a Mg I 285,2127 nm rezonáns vonala.

Porított ortoszilikát minták bemérése esetén, mind a Li, mind a Na atomizációs tranziensei késleltetve jelentkeztek, elhúzódva csengtek le, így a meghatározásokhoz hosszabb atomizációs időket alkalmaztak, mint az oldat minták esetében. Szilárd minták és oldatok (standardok) együtt bemérésekor az atomizációs tranziensek egyre inkább kiszélesedtek, így szükségessé vált az atomizációs és az integrálási idők 10 s-ra növelése. Alkalmanként, akár 12-15 s-ra is meg kellett az utóbbi paramétereket növelni, ami természetesen magával vont az alkalmazott grafit anyagok (THGA csövek, mintabemérő csónakok) fokozott igénybevételét, azok gyorsabb elhasználódását.

Továbbá, méréseknél tapasztalt fontos megfigyelés, hogy a porított szilárd minták Na tartalmának standard addíciós módszerrel végzett meghatározása során kapott atomizációs tranziensek több csúcsból tevődtek össze (Na I 285,3013 nm) (33. ábra). Minden egyes csúcs megfelel egy-egy önálló, a grafitplatform különböző részén szegregálódott minta-szemcse aggregátum elpárolgásának és atomizációjának. Bár a mintát a grafit csónakkal közepére mértem be, a standard oldat adagolása után a kis sűrűségű porszemcsék felúsztak a standard oldatcepp felületén és a beszáradás után nem egyenletesen oszloztak el a grafitplatform teljes hosszán. Ez a minta elpárolgáskor kettő, vagy több esetlegesen átlapoló csúcs megjelenését eredményező az AA tranziens jeleken. Mivel a szilárd minta grafitcsónakban való eloszlása is jelentősen befolyásolja az abszorpció tranziens csúcsmagasságát, ezért a mennyiségi kiértékeléseknél csak az A_{int} adatokat használtam fel.

A krill referencia minta Na atomizációs tranzienseit a 34a-c. ábra mutatja be. Amint látható, három atomi vonal jelenik meg minden spektrumon. A Mg többscsúcsos tranziennel jellemzhető, ami valószínűleg annak tudható be, hogy meglehetősen nagy a krill CRM minta Mg tartalma, és az nem homogén módon diszpergálódott a mintában, illetve a grafitcsónakon, amelynek eredményeként az elem párolgása időben elkülönült. Másrészut, a Na I 268,034 nm vonalán az atomizációs tranziens viszonylag rövid időn belül (3 s) lecsengett (34b. ábra), még a kalibrációs célra adagolt standard oldatokkal is, de kettős csúcsokkal és átfedő abszorbancia tranziensekkel (34c. ábra). Végül ezt a kisebb érzékenységű spektrális vonalat alkalmaztak az elemzések során a krill CRM minta igen nagy Na tartalma miatt.
32. ábra
Li (bal oldali görbék) és Na (jobb oldali görbék) 3D atomizációs spektrumai

(a) és (b): standard oldatok: (a) 0,375 μg Li, \(A_{\text{int}}=0,256 \) s, (b) 0,4 μg Na, \(A_{\text{int}}=0,0924 \) s;
(c) és (d): porított YSO minták (c) 0,166 mg szilárd, \(A_{\text{int}}=0,256 \) s, (d) 0,078 mg szilárd, \(A_{\text{int}}=0,158 \) s;
(e) és (f): porított YSO minták+standard oldat, (e) 0,170 mg szilárd + 0,375 μg Li std., \(A_{\text{int}}=0,496 \) s, (f) 0,112 mg szilárd + 0,3 μg Na std. oldat, \(A_{\text{int}}=0,310 \) s.
Többszörös csúcsok a Na atomizációs tranziensében 285,3013 nm-es elemzővonalon (a és b ábrák); az Na dublett vonalán (285,2811 nm-en) és a Mg I 285,2125 nm-en (b) YSO porított minták mérésénél;
(AA: atomos abszorpció, BG: háttérabszorbancia; mintatömeg: 0,134 mg + 25 µl 20 mg/L Na oldat, \(A_{\text{im}}\): 0,659 s).
34. ábra Krill referencia minta Na tartalmának meghatározásakor kapott jellegzetes 3D atomizációs spektrumok
(a) Na I 285,3013 nm, mintatömeg: 0,141 mg, \(A_{\text{int}} \): 0,544 s,
(b) Na I 268,034 nm, mintatömeg: 0,063 mg, \(A_{\text{int}} \): 0,222 s,
(c) Na I 268,034 nm, mintatömeg: 0,063 mg, \(A_{\text{int}} \): 0,411 s, standard: 10 µl 200 mg/L Na oldat.
4.2.4. Módosítóbevonatok hatása

Annak érdekében, hogy a grafitcsónak viszonylag gyors elhasználódását megelőzzem, néhány módosítóbevonatot (pl. Ir- és Zr-bevonat) próbáltam ki, illetve alkalmaztam. Ezeket 1 g/L-es standard oldat 20 μl-nyi mennyiségének grafitcsónakba való többszöri (10-15-ször) bemérésével és azt követő kiizzításával készítettem, a fentebb optimalizált hevíti programokat felhasználva (10. táblázat). Sajnos ezen bevonatok egyike sem bizonyosodott hasznosnak a grafitcsónak élettartamának meghosszabbítására. Ez annak volt tulajdonítható, hogy a mátrix igen reakcióképes az optimalizált előkezelési- és atomizációs hőmérsékleteken, amely a grafitplatform mellett az alkalmazott fémbenvonatokat is erősen roncsolja.

4.2.5. Kalibráció és elemzési eredmények

A különböző hőmérsékleteken előállított YSO minták Li- és Na-tartalmának szilárdmintás HR-CS-GFAAS és standard addíciós módszerrel végzett meghatározásának jellemző kalibrációs görbét a 35. ábra szemlélteti. Mindkét elem kalibrációs görbéje lineáris, a görbék korrelációs együtthatói (R) pedig nem rosszabbak, mint 0,9678. Az YSO szilárdmintáikra a Li és a Na SS-GFAAS kimutatási határ (LOD) értékei, - a 3σ/S összefüggéssel számítva (ahol σ a vak oldat szórása n=11 mérésből meghatározva, S a kalibrációs görbe meredeksége), - rendre 20 μg/g és 80 μg/g. Természetesen, a legérzékenyebb Li és Na elemzővonalak használatával, sokkal kisebb LOD-ok érhetőek el mindkét elemnél. Ez azonban nem volt célja a jelen kutatásnak, a vizsgált YSO minták meglehetősen nagy Li- és Na-tartalmak miatt. Az YSO minták adalékanyag-tartalma szilárdmintás HR-CS-GFAAS módszerrel meghatározva 0,89-8,41 mg/g közé esett (12. táblázat).

12. táblázat YSO minták szilárdmintás HR-CS-GFAAS módszerrel meghatározott adalékanyag-tartalma és a hőkezelések előtt a porkeverékekhez bemért adalékmennyiségek

<table>
<thead>
<tr>
<th>Minta azonosító</th>
<th>Szintézis hőmérséklet (°C)</th>
<th>Adaléktartalom (mg/g)</th>
<th>Adaléktartalom (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Li</td>
<td>Na</td>
<td>Li</td>
</tr>
<tr>
<td>5# NaF</td>
<td>1400</td>
<td>4,45*</td>
<td>14,49*</td>
</tr>
<tr>
<td>2b# LiF</td>
<td>1000</td>
<td>1,86±0,04</td>
<td>8,41±0,84</td>
</tr>
<tr>
<td>2c# LiF</td>
<td>1200</td>
<td>1,38±0,16</td>
<td>5,72±0,66</td>
</tr>
<tr>
<td>2# LiF</td>
<td>1400</td>
<td>0,89±0,03</td>
<td>3,67±0,12</td>
</tr>
</tbody>
</table>

* kiindulási keverékhez bemért adalékmennyisége (mg/g, illetve mol%-ban megadva).
Különböző porított YSO minták Li- és Na-tartalmának HR-CS-GFAAS meghatározásakor kapott standard addíciós kalibrációs görbék, a hibahatárokat a párhuzamos meghatározásokból számolt (n=5-7) standard deviációk (SD) adják.
Annak érdekében, hogy meggyőződjek a kalibráció pontosságáról, meghatároztam a porított antarktiszi krill CRM minta Na-tartalmát szilárdmintás HR-CS-GFAAS-val, és standard addíciós kalibrációs módszerrel (36. ábra). Látható, hogy a kalibrációs görbe lineáris, és korrelációs együtthatója sokkal jobb (R=0,9998), mint az YSO mintánál kapott (ld. 35. ábra). A szerves mátrix (krill) teljes hőbontása és elpárolgása sokkal kisebb előkezelési hőmérsékletnél következett be (pl. T_pir=800 °C), mint a tűzálló YSO, vagy a talaj CRM esetében. Ezen túlmenően azt találtam, hogy a mátrix sokkal kevésbé korrozív, mint az YSO minták, bár a 150-200 analitikai ciklus után észrevehetően hozzájárult a grafitcsónak pirolitikus grafitfelületének konzerválódásához.

Szilárdmintás HR-CS-GFAAS elemzéssel a krill minta Na-tartalmára 3,14±0,25% (m/m), míg az oldatos HR-CS-FAAS-sel (20-szoros hígítás mellett) 2,73±0,09% (m/m) koncentrációkat kaptam, amelyek jó egyezést mutattak a CRM specifikált (2,94±0,02%, m/m), szakirodalmi adatával [176]. Mivel a krill CRM Li tartalmára nem adtak meg referenciaadatot, így Li-ra nem elemeztem ezt a mintát. A talaj CRM standard (oldat) addíciós módszerű kalibrációja lineáris görbét eredményezett, és mind Na-ra, mind pedig Li-ra kiváló R értékeket, azaz rendre 0,9974-et és 0,9996-ot szolgáltatott (37. ábra). Ezen CRM szilárdmintás HS-CS-GFAAS módszerrel végzett Na₂O és Li tartalmának analízise 0,78±0,05 mg/g és 18,0±0,6 μg/g, míg az oldatos HS-CS-FAAS elemzések (hígítás mindkét elemnél: 1:1), Na₂O és Li-tartalomra 0,68±0,01 mg/g és 18,8±1,7 μg/g értékeket kaptam (13. táblázat). Ezek szintén jó egyezést mutatnak a megfelelő referencia értékekkel (Na₂O: 0,74±0,28 mg/g és Li-ra: 19,5±1,4 μg/g). A Li meghatározásához talaj CRM-ben a legérzékenyebb spektrális vonalat (Li I 670,7845 nm) alkalmaztam, az YSO-nál használt (Li I 610,353 nm) helyett, az előbbi minta igen kis Li-tartalma miatt.
36. ábra Krill CRM minta Na tartalmának meghatározása standard addiciós kalibrációval, a hibahatárokat a párhuzamos meghatározásokból számolt (n=5-7) SD értékek adják

37. ábra Talaj (laterit) CRM minta (a) Na és (b) Li standard addiciós kalibrációs görbêi; a hibahatárokat a párhuzamos meghatározásokból számolt (n=5-7) SD értékek adják
13. táblázat Krill és talaj CRM minták SS-GFAAS és FAAS módszerekkel meghatározott Na- és Li-tartalma, illetve szakirodalmi referencia értékeik

<table>
<thead>
<tr>
<th>CRM</th>
<th>Mérési módszer</th>
<th>Mért érték</th>
<th>Referencia érték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Li (µg/g)</td>
<td>Na (mg/g)</td>
<td>Li (µg/g)</td>
</tr>
<tr>
<td>Krill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szilárdmintás GFAAS</td>
<td>-</td>
<td>31,4±1,7</td>
<td>-</td>
</tr>
<tr>
<td>FAAS</td>
<td>-</td>
<td>27,3±0,9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Li (µg/g)</td>
<td>Na₂O (mg/g)</td>
<td>Li (µg/g)</td>
</tr>
<tr>
<td>Talaj</td>
<td>Szilárdmintás GFAAS</td>
<td>18,0±0,6</td>
<td>0,78±0,05</td>
</tr>
<tr>
<td></td>
<td>FAAS</td>
<td>18,8±1,7</td>
<td>0,68±0,01</td>
</tr>
</tbody>
</table>

A szilárdmintás HR-CS-GFAAS elemzés eredményei alapján tehát bebizonyosodott, hogy a szakirodalmi adatokkal ellentétben, a folyadékfázisú szintereléssel készített mintáknál az adalékként használt LiF és NaF nem párolog ki teljesen 1200 °C-ig, hanem az alkálfém-ionok beépülnek a gazdarácsba. A különböző hőmérsékleteken (1000 °C, 1200 °C, illetve 1400 °C) hőkezelt ittrium-oxiortoszilikát minták Li⁺-ion koncentrációjának csökkenése jól nyomon követhető a kidolgozott, gyors és nagy érzékenységű HR-CS-GFAAS módszerrel. A hőkezelési hőmérséklet növelésével nagymértékben, még a legnagyobb előállítási hőmérséklet (1400 °C) alkalmazásakor is kismértékben megtalálható a gazdarácsban, amely a szintézis alatt körülbélül a kiindulási koncentráció ~1/5-ére csökkent (12. táblázat). A Li⁺-ion kismértékű beépülése okozhatja a lumineszcencia intenzitás növekedését, hiszen lokális torzulást okoz a ritkaátfeldőm helyek környezetében és így nő a gerjesztő fotonok abszorpciójának lehetősége. A kidolgozott analitikai módszer létfogalma, 5000 hét után csökkent. A speciális analitikai eljárást igénylő tűzalló, polikristályos minták.
4.3. Fotolumineszcencia tulajdonságok vizsgálata

Tanulmányoztam az aktivátor adalék (Ce3+) koncentrációjának függvényében a lumineszcencia tulajdonságokban bekövetkező változásokat YSO és különböző Y3+-tartalmú LYSO minták esetében.

4.3.1. Különböző Ce3+-tartalmú YSO minták

A Ce3+-mal adalékolt YSO mintasorozatot 0,025-10 mol% Ce3+ koncentráció-tartományban és azonos, ~18 mol% LiF olvadékképző adalékanyag-tartalommal, 1400 °C hőmérsékleten folyadékfázisú szinterléssel állítottam elő. A különböző Ce3+ koncentrációval és azonos LiF olvadékképző adalékanyag (~18 mol%) tartalommal készült YSO pasztillák 3,44 eV (360 nm) gerjesztő energiával mért fotolumineszcencia spektrumait a 38. ábrán foglalom össze.

![Hullámhossz (nm)](image)

38. ábra Különböző Ce3+-tartalmú és azonos LiF adalékanyag koncentrációval (~18 mol%) készült pasztillák fotolumineszcencia spektrumai (gerjesztési hullámhossz: 360 nm)
Bár a megfigyelt intenzitás értékekből az abszolút lumineszcencia hatásfok nem határozható meg, a módszer alkalmas a minták relatív összehasonlítására. A mintasorozat egy napon és többszöri alkalommal (hetente, havonta) megismételt PL méréseiből mindig ugyanazt az intenzitás szerinti sorrendet tapasztaltam. A 3,11 eV-nál (400 nm-nél) megjelenő sávhoz tartozó lumineszcencia értékek leolvasásával, majd azok Ce$^{3+}$-tartalom függvényében való ábrázolásával jól szemléltethető a Ce$^{3+}$ koncentráció intenzitásra kifejtett hatása (39. ábra). A következő tendenciát figyeltem meg: optimális Ce$^{3+}$-tartalomig fokozatosan növekszik a lumineszcencia intenzitás értéke, azonban a Ce$^{3+}$ mennyiségének további növekedése az intenzitás csökkenését eredményezi. Az optimális Ce$^{3+}$ koncentrációként 1 mol%-ot kaptam, amely megegyezik szakirodalmi adatokkal [16, 20].

39. ábra A Ce$^{3+}$ koncentráció lumineszcencia intenzitásra kifejtett hatása YSO minták esetében a 400 nm-es (3,11 eV) sávhoz tartozó értékek leolvasásával

Mindezen felül a Ce$^{3+}$-tartalom növelése az X2-YSO:Ce spektrumok nagyobb hullámhosszak irányába való eltolódását is eredményez. Utóbbi jelenséget a 40. ábra érzékelte, amelyen három különböző Ce$^{3+}$-tartalmú minta normált PL spektruma látszik. A nagymértékben eltérő spektrumalakok a különböző RE helyek betöltöttségi állapotára is következtetni engednek. Kis Ce$^{3+}$-tartalomnál (<0,5 mol%) a ~400 nm-nél található, spektrumalakot uraló sáv a B1 hely nagyobb arányú betöltöttségére utal. Abban az esetben, amikor a Ce$^{3+}$-tartalom 0,5-2 mol% közé esett, akkor a B2 helyek betöltődése is elkezdődött.
A harmadik típusú spektrumalak a 2 mol%-nál nagyobb Ce³⁺-tartalmú mintáknál fordult elő. Ezeknél a spektrumoknál az figyelhető meg, hogy a B2 hely betöltőségi aránya B1 helyhez képest jelentősen megnövekedett.

Az emissziós spektrumok kvantitatív vizsgálatával arra kerestem a választ, hogy a spektrum alakja miként írható le 1,9-3,4 eV fotonenergia-tartományban. Az emissziós sávok teljes elkülönítése a gerjesztő energia megfelelő megválasztásával nem lehetséges, mivel ezek az emissziós sávok kisebb, vagy nagyobb mértékben egyszerre gerjesztődnek. Tehát, kiválasztva egy gerjesztő fotonenergiát, ami a legkisebb energiájú lumineszcenciasávot már gerjeszt, a többi emissziós sáv is gerjesztődik. Emiatt az egyes összetevő sávok teljesen független gerjesztése kísérletileg nem volt megoldható. Az összetevő sávok pozíciójának és félértékszélességének meghatározása céljából a spektrumokat először a maximális intenzitásra normáltam, hogy az alakjuk összevethető legyen, majd három Gauss-görbe illesztésével felbontottam azokat. A három Gauss komponens: a B1 helyek alapállapotok szerinti felhasadásának (²F₅/₂ és ²F₇/₂) az első és második Gauss-görbe, míg a B2 helynek a harmadik görbe felelt meg. Ez utóbbi (B2 hely) alapállapotok szerinti felhasadása a szobahőmérsékleten
Bekövetkező termikus kiszélesedés következtében nem figyelhető meg (41. ábra). Ugyanezen az ábrán szemléltetem dolgozatom hátralévő részében az illesztési paraméterekre használt rövidítéseket is.

41. ábra 1400 °C-on hőkezelt, 0,05 mol% Ce³⁺-tartalmú, LiF adalékolt (~18 mol%) minta normált PL spektruma (Gauss-görbék illesztési paraméterei)³

Azért, hogy teljesébő képet kapjak a spektrumalak változásának okairól, az illesztési paramétereket a Ce³⁺ koncentráció függvényében ábrázoltam. Mivel a görbe alatti terület nagyobb szórási értékek tartozik, ezért ebből nem tudtam egyértelmű következtetéseket levonni, így az illesztési paraméterek közül az összetevő sávok maximumhelyének és félértékszélességének Ce³⁺ koncentrációtól való függését tárgyalom a továbbiakban. A Ce³⁺-tartalom változása az első Gauss-görbéhez tartozó P1 pozícióra nem gyakorolt hatást; az ~3,17 eV-on stagnál. A Ce³⁺ koncentráció növelésével a PL sávpozíciók, - a P1 sávpozíció kivételével, - eltolódnak a kisebb energiák (nagyobb hullámhosszak) felé, azaz a P2 2,96 eV-tól egészen 2,90 eV-ig; a P3 pedig 2,69 eV-tól 2,58 eV-ig. Ugyanakkor általánosában véve elmondható, hogy a félértékszélességek növekedtek, ami a hibahely koncentráció növekedésével magyarázható.

³ Görbék illesztett paraméterei; A: sáv alatti terület, P: pozíció, FWHM: félértékszélesség.
A fentiekből arra lehet következtetni, hogy kis Ce koncentrációknál (0,025-0,5 mol%) elsősorban a B1 ritkaátfedő helyek töltődnek be, míg nagyobb koncentrációknál a B2 helyek is (42. ábra). Ezt jól lehet értelmezni a B1 ritkaátfedő helyek nagyobb méretével (mivel a 7-es koordinációs számú helyek nagyobb térrel rendelkeznek, mint a 6-os koordinációs számúak), hiszen a Ce³⁺-ionok mérete nagyobb, minta a gazdarács ionoké (Y³⁺). A kisebb B2 helyek betöltése csak nagy Ce³⁺ koncentrációknál válik jelentőssé. A vöröselfoldás jelenségének egyik lehetséges magyarázata, hogy energia transzfer zajlik le a két, különböző koordinációs számú és 5d gerjesztési energiaszintben kissé különböző Ce³⁺ hely között. Többek között Wang és társai [75, 78] szerint, növekvő Ce³⁺-tartalom hatására, az energia transzfer a B2 és B1 helyeken elhelyezkedő két független Ce³⁺-ion között növekszik. Ez a PL spektrumban eltolódást okoz [56].

A lumineszcencia hatásfokát csökkentő sugárzásmentes átmenetek egy része a szabályos rácskomponensek fononjaival kapcsolatos. További hatásfok csökkenést
eredményeznek a mintában található szennyezők (az előállítási eljárás során keletkező hibahelyek és a kiindulási anyagokból visszamaradt szennyezők), a rácshibákra (csapdákra) esetlegesen bekövetkező energia transzfer, amely ha a gerjesztett lumineszcens centrum közelében helyezkedik el, akkor a gerjesztési energia könnyen átjut a csapdára, amely aztán nem-sugárzó módon elvész. Az energia egy ilyen gerjesztett lumineszcens centrumból egy másik, még gerjesztetlen lumineszcens centrumra is kerülhet, ha azok elég közel (csatolási közelségben) vannak egymáshoz. Amikor a lumineszcens centrumok koncentrációja kicsi, akkor azok egymástól „elszigetelten” helyezkednek el a gazdarácsban. Ilyenkor és hozzájuk legközelebb a csapdák esnek, így energiájukat azoknak adják át. A lumineszcens centrumok koncentrációjának növekedésével azokból elegendő számú lesz ahhoz, hogy egy rezonáns energia transzfer hálózatot alkossanak, így az energia könnyen átjuthat az egyik lumineszcens centrumról a másikra. Nagy Ce$^{3+}$ aktivátor koncentrációknál nemcsak a lumineszcencia centrumok közti átmenet nő meg (energia transzfer), de a hibahelyek mennyisége és az azokkal kapcsolatos csapdák száma is nő. Ezért a koncentrációs kioltás oka a hibahelyek számának növekedése és a lumineszcencia centrumok közötti energia transzfer veszteségeiből adódik össze. Ez a folyamat valószínűbbé válik, mint a sugárzással járó rekombináció. Ezért a legtöbb gerjesztett lumineszcens centrumból még azelőtt a csapdákra megy a gerjesztésből származó energia, mielőtt az sugárzásos átmenetként emittálódna. A kioltás tehát ilyenkor valósul meg [169].
4.3.2. Különböző Y^{3+}- és Ce$^{3+}$-tartalmú LYSO minták

Az Y^{3+} LSO gazdarácsba való beépítésével a lumineszcencia tulajdonságokban bekövetkező változásokat is megvizsgáltam. E célból szintén ~18 mol% LiF adalékanyagot és 1400 °C-on, vákuumban 5 órán át tartó hőkezelést alkalmaztam. A pasztillázott YSO minták Ce$^{3+}$-tartalmának lumineszcencia tulajdonságokra gyakorolt hatásának vizsgálatakor kapott eredményeket figyelembe véve, a LYSO ($\text{Lu}_2\text{Y}_x\text{SiO}_5$, ahol $x<0.6$) mintákat 0.1-2 mol% CeO$_2$ koncentráció tartományban készítettem.

A különböző Ce$^{3+}$-tartalmú és azonos Y^{3+}-tartalommal készült LYSO pasztillák általános gerjesztési spektruma a 43. ábrán, fotolumineszcencia spektrumai pedig a 44. ábrán láthatóak. A LYSO:Ce minták mindegyikénél, a 391 nm-nél lévő emissziós sávnál felvett gerjesztési spektrum alapján kiválasztott 360 nm hullámhosszúságú (3,44 eV) gerjesztőfényt alkalmaztam, mellyel a B1 és B2 helyeken lévő lumineszcens centrumok is gerjeszthetőek.

![LYSO:Ce minták 392 nm-es emissziós sávjának jellemző gerjesztési spektruma](image)

43. ábra LYSO:Ce minták 392 nm-es emissziós sávjának jellemző gerjesztési spektruma

Először azonos Y^{3+}-tartalmú LYSO minták lumineszcencia tulajdonságait vizsgáltam a Ce$^{3+}$-tartalom változtatása mellett (44. ábra). A LYSO minták esetében hasonló jelenség figyelhető meg, mint az YSO:Ce minták esetében, vagyis az emissziós sávok a növekvő Ce$^{3+}$-tartalommal eltolódhatnak a kisebb energia-tartományok felé, pl. Lu$_{1.6}$Y$_{0.4}$SiO$_5$ minták PL spektrumai (44. ábra). Eltérésként a spektrum nagyenergiájú oldalán is eltolódás következett be. Többek között ezen jelenség nyomonkövetésére és igazolására ismét Gauss-illesztést alkalmaztam. A kapott illesztési paraméterek közül a sávpozíciók Ce$^{3+}$-tartalomtól való függését a 45. ábra szemlélteti.
Különböző Ce$^{3+}$-tartalommal (mol%) készült Lu$_{1.6}$Y$_{0.4}$SiO$_5$:Ce minták PL spektrumai

A 45. ábrán az látható, hogy a Ce$^{3+}$-tartalom 0,1 mol%-tól 2 mol%-ig való növelésével mindhárom sávpozíció eltolódott a kis energiák felé. Az YSO-hoz képest, a P1-re jellemző tendencia megváltozása talán a legszembetűnőbb, ugyanis nem maradt állandó értéken, hanem 3,16 eV-ről (392 nm-ről) 3,13 eV-ig (396 nm-ig) tolódott. A második gőrbéhez tartozó sávpozíció 0,1 mol% Ce-tartalomnál még 2,96 eV-nál, 2 mol% Ce$^{3+}$-tartalom esetén már 2,92 eV-nál volt; míg YSO-nál ugyanezen koncentráció tartományban ~2,96 eV értéken maradt. A P3-ra vonatkozó trendencia mindkét gazdarácsnál azonos: tolódik a kisebb energiák irányába; YSO-nál 2,67 eV-től 2,61 eV-ig, LYSO-nál pedig 2,86 eV-tól indulva 2,74 eV-ig. A félértékszélességek többnyire nőttek, amely a hibahely koncentráció növekedésével magyarázható. A növekvő Ce$^{3+}$-tartalom szintén a B2 helyek betöltöttségi arányának növekedését okozta. A három összetevő sávból az első kettő keskenyebbek volt, mint az YSO minták esetében volt. Egyedül az utolsó, B2 helyen lévő lumineszcencia centrum emissziós sávjá szélesedett ki, mégpedig 0,53 eV-ról 0,58 eV-ra. A másik gazdarácsnál ez utóbbi keskenyedő tendenciát mutatott (0,62 eV-ról 0,57 eV-ra).
Érdemes összevetni az azonos (1 mol%) Ce$^{3+}$ koncentrációjú YSO és LYSO minták fotolumineszcencia spektrumait (46-48. ábra). Mindkét minta 360 nm-en gerjesztett, normált fotolumineszcencia spektrumának összetevő sávjait Gauss-görbék illesztésével határoztam meg. A Gauss-görbék ismét a RE helyek sávjai szerint illesztettem. Mind az emissziós sávok sorrendje, mind az illesztési paraméterek az YSO:Ce mintáknál leírtak szerint értendőek. A függőleges tengelyen feltüntetett lumineszcencia intenzitások a két gazdarács lumineszcencia-hatáskészlet különbségét hivatottak bemutatni (46. ábra). Emellett, a nagymértékben eltérő spektrumalak is informatív: szintén a különböző RE helyek betöltöttségi állapotára utal. Eszerint az Y$^{3+}$-tartalom növelése kedvez a B1 helyek betöltödése után a B2 helyek minél nagyobb arányú betöltödésének; egykristály növesztésnél például a Ce$^{3+}$-ion effektív megoszlási együtthatója is nagyobb, ha a LYSO kristály ritkaféldfém helyeinek egy részét Y$^{3+}$-ionok foglalják el [78, 79].
Különböző Y$^{3+}$-tartalommal készült LYSO:Ce minták PL spektrumai (1 mol% Ce$^{3+}$)

Amikor a gazdarács ritkaátfélék helyeinek közel 80%-át a három RE$^{3+}$-ion közül a legkisebb ionrádiusú Lu$^{3+}$-ionok képezték, akkor a nagyobb ionrádiusú aktivátor ionok (Ce$^{3+}$) inkább a B1 helyre épültek be. Az illesztési paraméterek összevetésével igazolható, hogy az Y$^{3+}$-ionok jelenléte lumineszcencia intenzitást csökkent, a B2 helyek nagyobb arányú betöltődését okozza. A spektrum emiatt bekövetkező szélesedése például a sávpozíciók eltolódása, félértéksesességek nagyobb értékei, illetve a görbék alatti nagyobb összes területre kapott értékekből látható (14. táblázat).
47. ábra 1 mol% Ce3+-tartalommal készült Lu\textsubscript{1.6}Y\textsubscript{0.4}SiO\textsubscript{5}:Ce minta PL spektruma

48. ábra 1 mol% Ce3+-tartalommal készült Y\textsubscript{2}SiO\textsubscript{5}:Ce minta PL spektruma
14. táblázat Azonos Ce$^{3+}$-tartalmú (1 mol%) YSO és LYSO minták PL spektrumainak illesztési paraméterei (eV)

<table>
<thead>
<tr>
<th>1 mol% Ce$^{3+}$-tartalom</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>FWHM1</th>
<th>FWHM2</th>
<th>FWHM3</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>Aösszes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu${1.6}$Y${0.4}$SiO$_5$</td>
<td>3,144</td>
<td>2,935</td>
<td>2,778</td>
<td>0,198</td>
<td>0,365</td>
<td>0,564</td>
<td>0,133</td>
<td>0,286</td>
<td>0,139</td>
<td>0,558</td>
</tr>
<tr>
<td>Y$_2$SiO$_5$</td>
<td>3,174</td>
<td>2,955</td>
<td>2,641</td>
<td>0,237</td>
<td>0,435</td>
<td>0,588</td>
<td>0,113</td>
<td>0,369</td>
<td>0,244</td>
<td>0,725</td>
</tr>
</tbody>
</table>

49. ábra Különböző Y$^{3+}$-tartalommal készült LYSO:Ce minták PL spektrumai (0,5 mol% Ce$^{3+}$)
Azonos Ce\(^{3+}\)-tartalmú (0,5 mol\%) és különböző Y\(^{3+}\)-tartalmú YSO és LYSO minták PL spektrumainak illesztési paraméterei (eV)

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>FWHM1</th>
<th>FWHM2</th>
<th>FWHM3</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>Aösszes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu(_2)SiO(_5)</td>
<td>3.147</td>
<td>2.942</td>
<td>2.807</td>
<td>0.211</td>
<td>0.362</td>
<td>0.569</td>
<td>0.127</td>
<td>0.272</td>
<td>0.153</td>
<td>0.552</td>
</tr>
<tr>
<td>Lu({1.6})Y({0.4})SiO(_5)</td>
<td>3.148</td>
<td>2.947</td>
<td>2.788</td>
<td>0.201</td>
<td>0.332</td>
<td>0.554</td>
<td>0.133</td>
<td>0.286</td>
<td>0.169</td>
<td>0.588</td>
</tr>
<tr>
<td>Lu({1.4})Y({0.6})SiO(_5)</td>
<td>3.160</td>
<td>2.949</td>
<td>2.740</td>
<td>0.186</td>
<td>0.359</td>
<td>0.494</td>
<td>0.109</td>
<td>0.351</td>
<td>0.180</td>
<td>0.640</td>
</tr>
<tr>
<td>Y(_2)SiO(_5)</td>
<td>3.174</td>
<td>2.955</td>
<td>2.651</td>
<td>0.234</td>
<td>0.412</td>
<td>0.603</td>
<td>0.110</td>
<td>0.368</td>
<td>0.182</td>
<td>0.660</td>
</tr>
</tbody>
</table>

A PL spektrumok kiszélesedése egyértelműb a különböző Y\(^{3+}\), ám azonos Ce\(^{3+}\)-tartalmú minták PL spektrumainak ábrázolásánál (49. ábra és 15. táblázat). Az Y\(^{3+}\)-tartalom növekedése nagyban hozzájárult a kiszélesedési folyamathoz, amit az azonos Ce\(^{3+}\)-tartalommal készült, ám eltérő Y\(^{3+}\)-tartalmú LYSO minták normált PL spektrumai reprezentáltak (49. ábra). A Y\(^{3+}\)-tartalom növekedtével, szintén az ionrádiuszok közti különbségből adódóan, a PL spektrumok eltolódtak az alacsonyabb energiatartományok felé, a B2 helyektől származó emisszió megnövekedett.
5. A doktori értekezés tézisei

1) Optimalizáltam polikristályos ittrium-oxiortoszilikát (YSO) minták X2-fázisának előállítását folyadékfázisú szintereléssel. Raman-spektroszkópiai, röntgen-pordiffrakciós, fotolumineszcenciás, termoanálitikai és elektronmikroszkópos vizsgálatokkal kimutattam, hogy a fázisírásaság egy adott adalék esetén az adalékkoncentráció és a hőkezelési hőmérséklet függvénye. Megállapítottam, hogy a vizsgált alkáli-halogenid, és alkáli-borát adalékanyagok közül a legigéretesebb fotolumineszcencia tulajdonságokkal, – az adott 1 mol% Ce$^{3+}$-tartalom mellett, – az 1400 °C-on hőkezelt, ~18 mol% LiF adalékkal készült YSO porminták rendelkeznek.

2) Az optimalizált előállítási eljárással készített polikristályos ittrium-oxiortoszilikát mintákon jelentős szemcseméret csökkenést ért el a szakirodalomban hasonló eljárással készített YSO, vagy ittrium-piroszilikát (YPS) mintákhoz képest. Mintáim 200-500 nm-es szemcsemérettel rendelkeznek. Hasonló, vagy ennél jobb eredményeket csak a lényegesen bonyolultabb (pontos pH beállítás, hőkezelést követő mintaátmosás) és költségesebb (speciális edényzet, oldatok, nagy mennyiségű vegyszer használat, hosszú gélesedési idő) szol-gél, illetve hidrotermális módszerekkel érték el. Tapasztalataimmak megfelelően a szemcseméret csökkenést nagymértékben elősegítette a hőkezelés során olvadékot képző LiF adalékanyag optimális mennyisége. Ezzel szemben, a NaF adalékanyaggal, illetve adalékanyag nélkül készült minták nagyobb szemcsemérettel, heterogén szemcsealakkal rendelkeztek.

3) Kimutattam, hogy az optimalizált előállítási eljárással készített polikristályos ittrium-oxiortoszilikát mintákon mind a fotolumineszcencia intenzitás, mind a lumineszcenciaspektrum alakja jelentősen függ a Ce$^{3+}$ koncentrációjától. Maximális PL intenzitás 1 mol% Ce$^{3+}$-tartalomnál adódott, az optimális Ce(III) mennyiség felett a PL intenzitás lecsökken. A Ce$^{3+}$ koncentráció növelésével a PL sávospozíciók eltolódtak a nagyobb hullámhosszak felé, míg általánosságban véve elmondható, hogy a félértékszélességek növekedtek a hibahely koncentráció növekedése miatt. Kis Ce$^{3+}$ koncentrációknál (0,025-0,5 mol%) elsősorban a B1 ritkaáldfém helyek töltődnek be, nagyobb koncentrációknál a B2 helyek is. Ugyanez a jelenség figyelhető meg a lutécium-ittrium-oxiortoszilikát (LYSO) mintánál is. Ezekben az anyagokban az Y$^{3+}$ koncentráció növelésével a PL sávospozíciók eltolódtak a nagyobb hullámhosszak felé, amely hatást az Y$^{3+}$ és Lu$^{3+}$ ionrádiusai közötti különbségnek tulajdonítottam. Azonos Ce$^{3+}$-tartalommal
97

(0,5 mol%) készült LYSO minták PL spektrumaira Gauss-görbék illesztésével nyert paramétereket alapul véve megállapítottam, hogy a B2 helyek összes RE helyhez viszonyított aránya kisebb, mint az YSO minták esetén.

4) Szilárdmintás elemanalitikai módszereket dolgoztam ki és tanulmányoztam ittrium-oxiortoszilikát minták Na- és Li-adalékelem tartalmának meghatározására nagyfelbontású, folytonos fényforrást alkalmazó grafitkemencés atomabszorpciós spektrometriai (SS-HR-CS-GFAAS) módszerrel. Az YSO minták viszonylag nagy adalékelem tartalma miatt alternatív, kevésbé érzékeny elemzővonalak (Na I 285,3013 nm és Li I 610,3530nm) alkalmazását javasoltam. Meghatároztam a grafitkemence hevítési program optimális pirolízis- és atomizációs hőmérsékleteit, Na és Li standard oldatokkal, valamint adalékolto YSO szilárdminták bemérésével felvett Welz-féle pirolízis- és atomizációs görbékből, amelyek rendre 1100 °C és 2400 °C (Na), valamint 1800 °C és 2600 °C (Li). A nyert görbékből a Na és a Li megjelenési (párolgási) hőmérsékletei szilárd- és az oldatmintáknál, rendre 1400 °C és 1900 °C, illetve 900 °C és 1800 °C. Megállapítottam, hogy a szilárdmintás módszerek kalibrációja pontosan elvégezhető oldatos standard adciós módszer alkalmazásával, amelynél a lineáris illesztések korrelációs koefficiense (R) nem rosszabb, mint 0,9678. A szilárdmintás módszerek kimutatási határa rendre 20 μg/g Li és 80 μg/g Na. A kidolgozott módszerekkel nyert analitikai eredmények pontosságát porított antarktiszi krill, valamint talaj (laterit) nemzetközileg hitelesített referencia minták Li- és Na-tartalmának HR-CS-GFAAS és HR-CS-FAAS (lángatomabszorpciós spektrometria) elemzésével ellenőriztem.

5) A szilárdmintás HR-CS-GFAAS elemzés eredményei alapján megállapítottam, hogy különböző hőmérsékleteken (1000 °C, 1200 °C, illetve 1400 °C) hőkezelt ittrium-oxiortoszilikát minták Li⁺ koncentrációja a hőkezelési hőmérséklet növelésével nagymértékben csökkent. Ez az adalékanyag azonban még a legnagyobb előállítási hőmérséklet (1400 °C) alkalmazásakor is kis mértékben beépült a gazdarácsba.
6. ÖSSZEFoglalás

Kutatómunkám során előállítottam az ittrium-oxiortoszilikát speciális, szcintillációs alkalmazások szempontjából előnyös (X2) fázisát folyadékfázisú szintereüsszel, LiF, Li₂B₂O₇, Li₂O·B₂O₃ eutektikum, NaCl és NaF olvadékképző adalékanyagok felhasználásával. Megvizsgáltam a különböző hőkezelési programok alkalmasságát, másrészt a különböző adalékanyagfajták és koncentrációik fázisistzaságra gyakorolt hatását. A kialakult fázisokat XRD difffraktogramok, Raman mérések során kapott spektrumok és a termoanalízissel nyert görbék kiértékelésével vizsgáltam. Ezek alapján azt a következtetést vontam le, hogy a fázisistzaság egy adott adalék esetén az adalékkoncentráció és a hőkezelési hőmérséklet függvénye. Megállapítottam, hogy a vizsgált alkáli-halogenid és alkáli-borát olvadékképző adalékanyagok közül a legigéretesebb fotolumineszcencia tulajdonságokkal, – az optimalizált (1 mol%) Ce-tartalom mellett, – az 1400 °C-on hőkezelt, ~18 mol% LiF adalıkkel készült YSO porminták rendelkeznek. A kétféle alkáli-fluorid közül a LiF olvadékképző adalékanyag alkalmazása bizonyult előnyösebbnek. Az X2-YSO fázis ~18 mol% (~4 m/m%) koncentrációjú LiF alkalmazása mellett már 1200 °C hőmérsékleten kialakult, amit a fotolumineszcencia mérések is alátámasztottak. A LiF adalékanyag nincs a szintézis hőmérséklet jelentős csökkentésében és a fázisistzasá javításában tűnt hatékonynak, hanem jelentősen növelte a lumineszcencia intenzitását is. Ezenkívül az is bebizonyított, hogy ez az adalékanyag nincs félgyorsítja a Y₂O₃·SiO₂ porkeverék termikus reakcióját, de az X2-YSO fázis kialakulását is kedvezően befolyásolja.

Az előzetes vizsgálati eredmények kiegészítése céljából SEM felvételek készültek a különböző mennyiségű LiF és NaF adalékanyaggal előállított mintákról. Az adalékanyag nélkül, 1400 °C-on hőkezelt YSO mintákról készült felvételek igazolták, hogy mindkét adalékanyag használata előnyös a szemcseméret csökkentése, illetve a kívánatos morfológia elérése érdekében. Az optimalizált előállítási eljárással (~18 mol% LiF adalıkkel, 1400 °C-on hőkezelve) készített polikristályos ittrium-oxiortoszilikát mintákon jelentős szemcseméret csökkentést ért el a szakirodalomban hasonló eljárással készített YSO, vagy YPS mintához képest. Mintáim 200-500 nm-es szemcsemérettel rendelkeznek. Hasonló, vagy ennél jobb eredményeket csak a lényegesen bonyolultabb (pontos pH beállítás, hőkezelést követően a minta átmoszása) és költségesebb (speciális edényzet, oldatok, nagy mennyiségű vegyszer használat, hosszú gélesedési idő) szol-gél, illetve hidrotermális módszerekkel értek el.
A NaF adalékanyaggal készített minták késleltetett szerkezeti fejlődése kapcsolatban áll a Na⁺-ion kisebb mobilitásával, míg a Li⁺ diffúziója gyorsabb. A Li⁺-ion kis mérete lehetővé teszi annak mozgását az egyik kation helyről egy másik helyre, illetve mindenféle Si vagy O pozíciókat érintő kristályrácsbeli rendezetlenség kialakulása nélkül. Továbbá, a Li⁺-ion hajlamos a két NBO-val rendelkező [SiO₄]⁴⁻ tetraéder közeli kation helyeket betölteni, az <X2-YSO> fázis kialakulása az amorf-kristályos átalakulás megkezdtével pedig kiváltóképpen kedvezményezett. A Na⁺-ion mozgása rendszerint a szerkezet betöltetlen helyeire ugrását követeli meg és a szilikátátlancok mozgásával együtt következhet be. Mint az ismert, az üveges szilikátok előállításának igen hatékony segítői az alkáli- és fluorid-ionok.

A fluorid-ionok szerepet játszanak az O-Si-O kötések felhasításában és a klaszterméret csökkentésében. A hozzáadott alkáli-kationok szerepe pedig az, hogy szabályozzák az NBO kötések számát és ennek megfelelően az olvadék polimerizációs fokát.

Tanulmányoztam az aktivátor adalék (Ce³⁺) koncentrációjának függvényében a YSO és különböző Y³⁺-tartalmú LYSO minták lumineszcencia intenzitásában bekövetkező változásokat. A 0,025-10 mol% Ce³⁺ koncentráció tartományban, ~18 mol% LiF adaléktartalommal, 1400 °C hőmérsékleten végzett kezeléssel YSO mintákat készítettem. A különböző Ce³⁺-tartalmú minták normált PL spektrumainak nagymértékben eltérő spektrumalakjai a különböző RE helyek betöltöttségé változására is következtetni engednek. Alacsony Ce³⁺-tartalomnál (<0,5 mol%), a Ce³⁺-ionok ~400 nm-nél található, spektrumalakot uraló emissziós sávja a B₁ hely nagyobb betöltöttségi szintjére utal. Abban az esetben, amikor a Ce³⁺-tartalom 0,5-2 mol% közé esett, a B₂ helyek betöltődése is elkezdődött. A harmadik spektrumalak a 2 mol%-nál nagyobb Ce³⁺-tartalmú mintáknál fordult elő. Ezeknél a spektrumoknál már az figyelhető meg, hogy a B₂ hely betöltöttségi aránya B₁ helyhez képest jelentősen megnővekedett. Az eltolódás okán feltárása érdekében a normált PL spektrumokra Gauss-görbék illesztettem. A Ce³⁺ koncentráció növelésével a PL sáposzciók általában eltolódtak a nagyobb hullámhosszak felé és általában véve a félértékszélességek is növekedtek a hibahelyek számának növekedése miatt. A nagyobb hullámhosszak irányába való eltolódást a különböző Ce³⁺-tartalmú (0,1-2 mol%) és különböző Y³⁺-tartalmú (x≤0,6) LYSO mintáknál is tapasztaltam. Az eltolódás oka a Ce³⁺ (1,034 Å), Y³⁺ (0,893 Å), és Lu³⁺ (0,85 Å) ionrádiusai közti különbség. Ezeknél az összes sáposzció eltolódott, miközben az aktivátor ionok koncentrációjának növelésével a félértékszélességek csökkentek.

A folyadékfázisú szintereles sel készített minták nál az adalékként használt LiF és NaF jelentős része kipárolog. Ezért szükségessé vált olyan analitikai módszer használata, mellyel a visszamaradt/beépült adalékanyag koncentrációja gyorsan és pontosan meghatározható.
A néhány tíz mikrogrammnyi tűzálló YSO porminták Li- és Na-adalékanyag tartalmának gyors mennyiségi meghatározása szilárdmintás HR-CS-GFAAS módszerrel és standard (oldat) addíciós kalibrálással egy igen hatékony analitikai módszerek bizonyult. A szilárd (por alakú) minták meglehetősen kis inhomogenitása nem befolyásolta az abszorbancia jel alakját és a reprodukálhatóságát. A standard oldatok pormintákra való adagolása után a grafitsónakokban átrendeződött a porminta eloszlása. Ez a jelenség végül az atomizációs tranziens alakját is érintette, és többszörös csúcsok megjelenésével járt. Így az integrált abszorbancia jelet vettem figyelembe az elemzési adatok kiértékelésénél. A szilárdmintás módszerrel nyert eredmények pontosságát antarktiszi krill, valamint talaj (laterit) nemzetközileg hitelesített referencia (CRM) minták Li- és Na-tartalmának HR-CS-GFAAS és HR-CS-FAAS elemzésével ellenőriztem.

A szilárdmintás HR-CS-GFAAS elemzés eredményei alapján megállapítottam, hogy különböző hőmérsékleteken (1000 °C, 1200 °C, illetve 1400 °C) hőkezelt ittrium-oxiortoszilikát minták Li⁺ koncentrációja a hőkezelési hőmérséklet növelésével nagymértékben csökkent. Ez az adalékanyag azonban még a legnagyobb előállítási hőmérséklet (1400 °C) alkalmazásakor is kis mértékben beépült a gazdarácsba.
7. Summary

In the present research, the special X2 phase of YSO, being important for scintillation applications has been prepared via the melt-assisted method, using different flux additives (LiF, Li₂B₄O₇, Li₂O-B₂O₃ eutectic, NaCl and NaF). The effects of various thermal treatment programs and a couple of flux-forming additives at varying concentrations on the phase purity have also been investigated. The phase formation was examined by means of XRD phase assessment, Raman measurements and thermoanalytical studies. On the base of these studies, it was concluded that for any additive, the phase purity depended on the concentration of the additive and the annealing temperature. It has been found that among the studied melt-forming additives (alkaline fluorides and alkaline borates), the best photoluminescence properties for YSO were received with samples prepared with ~18 mol% LiF (at optimized, 1 mol% Ce-content), at 1400 °C. The X2-YSO formation was most favored with the addition of LiF at concentrations close to ~18 mol % (~4 wt %) at temperatures above 1200 °C, which finding was also supported by the results of the photoluminescence measurements. The LiF additive was found to be more effective not only in decreasing the temperature of the synthesis and promoting phase purity, but in increasing significantly the luminescence intensity as well. It was shown that these additives not only accelerated the thermal reaction of the Y₂O₃-SiO₂ powder mixture, but supported the formation of the X2-YSO type polymorph as well.

For accessing complementary information for the preliminary results, SEM images were also recorded for samples prepared with various amounts of LiF and NaF additives. Images from YSO samples prepared without additive and annealed at 1400 °C verified that the application of each additive was advantageous for reducing the particle size, and acquiring the desired morphology. For polycrystalline yttrium oxyorthosilicate samples prepared with the optimized procedure (i.e., with ~18 mol% LiF additive, and annealed at 1400 °C), a significant reduction in the particle size has been achieved, as compared to those samples of YSO and YPS reported in the literature. The particle size of the current samples was in the 200-500 nm range. Similar or better results have only been achieved with more complex and costly preparative chemical procedures, such as the sol-gel and hydrothermal methods, which required the sharp adjustment of pH, long gel formation times, flushing of the sample after the annealing process, relatively large amounts of chemicals, and/or utilization of special labware.
The slower structural formation of the samples prepared with the assistance of NaF additive was found to be related with the lower mobility of Na\(^+\) ion, while the fast diffusion of Li\(^+\) ions was supposed to be due to their lower size, which promotes their faster mobility from one cationic site to another, also without any disorder in the Si or O positions of the crystal lattice. Moreover, Li\(^+\) is prone to fill in cationic positions next to the \([\text{SiO}_4]^{4-}\) tetrahedrons having two NBOs, thus the formation of the \(<\text{X2-YSO}>\) phase from the beginning of the amorphous-crystalline transformation is especially favored. The motion of the Na\(^+\) ions usually requires their jump to unoccupied sites of the silicates structure, and it can occur along with the movement of the silicate-chains. It is well-known that alkaline and fluoride ions are effective promoters in the formation/synthesis of glassy silicates. Fluorides play an important role in the breaking of the O-Si-O bonds and in reducing the cluster-size. The role of alkaline ions is to regulate the number of the NBO bonds and accordingly, the degree of polymerization for the melt.

The photoluminescence intensity changes in YSO and LYSO with various Y content as a function of the concentration of the activator additive (Ce\(^{3+}\)) have also been studied. Samples of YSO with a Ce\(^{3+}\) concentration in the range of 0.025-10 mol % with ~18 mol % LiF additive content have been prepared at 1400 °C. The spectra of the X2 phase of \(\text{Y}_2\text{SiO}_5\cdot\text{Ce}\) having 1 mol % Ce\(^{3+}\) showed that the emission maxima agreed well with the values reported in the literature. The photoluminescence spectra of YSO samples prepared with various Ce(III) contents have shown three different characteristics. In the spectra of samples with low cerium content (<0.5 mol %), the bands of the Ce\(^{3+}\) ions at ~400 nm, dominating over the spectra, show more saturated B1 sites as compared to the other sites. In case of 0.5-2 mol% Ce\(^{3+}\)-doping, the B2 site also showed some saturation. The third shape of spectra was observed, when the Ce(III) content of samples was higher than 2 mol%. These spectra showed larger saturation in B2 sites than in B1 sites. In order to explore the reason for this shift, Gaussian curves were fitted to the REE bands of the normalized PL spectra. When the Ce\(^{3+}\) concentration was increased, the PL band positions were generally shifted towards longer wavelengths, and the half-widths were increasing, because of the increasing number of vacancies. The shift toward longer wavelengths was also found for LYSO samples of various (0.1-2 mol %) Ce\(^{3+}\) and Y\(^{3+}\) (\(x\leq 0.6\)) content. The shift is due to the difference between ionic radii of Ce\(^{3+}\), Y\(^{3+}\) and Lu\(^{3+}\), with values of 1.034 Å, 0.893 Å, and 0.85 Å, respectively. For these ions, each band position has shifted, while the increase in the activator ions resulted in a decrease in the values of the full-width at half maximum.
Samples, prepared with liquid/melt phase-sintering procedure, have encountered vaporization loss for a significant fraction of the LiF and NaF additives. Therefore, it was necessary to develop and apply a fast and accurate analytical method for the quantitation of the additive content of the host crystals. Solid sampling HR-CS-GFAAS has been found to be an efficient analytical tool for the quantitation of Li and Na additives in refractory yttrium oxyorthosilicate crystals, using a few ten micrograms of samples and standard (solution) addition calibration. The fairly low inhomogeneity of the solid (powdered) samples did not affect the absorbance signal shape and the reproducibility. However, dispensing liquid standards onto the powder samples, pre-dosed into the graphite sample insertion boat, resulted in redistribution of the powdered sample along the axis of the boat due to flotation. This redistribution eventually affected the shape of the atomization transients in terms of the appearance of multiple-peaks. Thus the evaluation of integrated absorbance signals could be recommended and used for data evaluation. For the verification of the accuracy of the solid sampling HR-CS-GFAAS results, the Li and Na content of international certified reference materials of Antarctic krill and soil (laterite) have been analyzed by means of HR-CS-GFAAS and HR-CS flame AAS.

On the basis of the results of solid sampling HR-CS-GFAAS analysis, it was concluded that the Li$^+$ concentration of YSO samples greatly decreased with rising annealing temperatures (1000 °C, 1200 °C, or 1400 °C). However, this additive incorporated slightly into the host lattice, even if the annealing temperature was as high as 1400 °C.
Köszönetnyilvánítás

Köszönetem fejezem ki Dr. Lévai Péter főigazgatónak (MTA Wigner FK) és Dr. Buka Ágnes igazgató asszonyának (MTA Wigner FK SZFI), hogy munkámat támogatták és tudományos segédmunkatári szerződést biztosítottak számomra. Hálásan köszönöm Dr. Kovács Lászlónak, a Kristályfizika Kutatócsoport vezetőjének, hogy mindenben támogatott, előteremtette a doktori munkámhoz szükséges eszközöket, mindig türellemmel végighallgatott, nagyon sok tanácsos és ötettel látott el, valamint doktori munkám befejezéséhez anyagi támogatást nyújtott. Doktori kutatómunkám évei alatt kiemelten fontos volt Péter Ágnes együttműködése, aki a kristályfizika területén hatalmas szaktudással rendelkezik, és különösen sok hasznos ötletet, tanácsot kaptam tőle, melyekkel átjuthattam a felmerülő problémákon.

Megköszönöm Dr. Veres Miklósnak, hogy Raman laboratóriumában minősíthettem a mintáimat, valamint Dr. Kamarás Katalinnak és Dr. Borossáné Tóth Sárának a fluoreszcencia spektrofotométer használatát mintáim optikai tulajdonságainak vizsgálataihoz. Köszönöm a DSC mérési lehetőséget Megyéri Jánosnak (MTA, IKI), Tóth Mériának (MTA CSFK FGI), Dr. Varga Lajosnak (MTA Wigner FK, SZFI), illetve Dr. Horváth Zsoltnak (MTA MFA) a mintámon végzett röntgen-pordiffракciós méréseket. Továbbá köszönöm Dr. Kocsányi Lászlónak (BME, Atomfizika Tanszék) és Dr. Tóth Attilának (MTA, MFA, Mikrotechnológiai Osztály), hogy mintáimat pásztázó elektronmikroszkóppal tanulmányozhattam, és eközben rengeteget tanulhattam erről a vizsgálati módszerrel is. Máté Lászlónak pedig hálás vagyok a PL méréseimhez használt mintatartó elkészítéséért és a kísérleteim során gyakran meghibásodó készülékek gondos javításáért. Megköszönöm a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI) OTKA-NKTH CK-80896 számú és a Magyar Tudományos Akadémia Infrastruktúra Fejlesztési (IF-037/2013 számú) pályázataink támogatását.

Hálásan köszönöm Dr. Ajtony Zsolt tanszékvezető egyetemi docens (NYME) hozzájárulását abban, hogy lehetőséget nyújtott analitikai tudásom gyakorlatban történő további elmélyítésére. Megköszönöm Dr. Mezei Pálnak, hogy az elektrolitkatódos atmoszférlikus kisülési plazmával közösen végzett kísérletekkel kibövíthettem analitikai ismereteimet, és beletanulhattam egy, addig általam nem használt mérési technikába.

Köszönetem fejezem ki témavezetőmnek, Dr. Bencs Lászlónak, hogy munkámat mindig figyelemmel kísérte, rengeteg értékes dologra megtanított és iránymutatást kaptam tőle.

104
Saját közleményeim

Értekezéshez kapcsolódó folyóiratcikkek

Az értekezéshez kapcsolódó konferencia poszter és előadás

Értekezéshez nem kapcsolódó folyóiratcikkek:

Az értekezéshez nem kapcsolódó konferencia poszter:

(1) G. Dravec, N. Laczai, Zs. Szaller, I. Hajdara, L. Bencs, *Solid sampling determination of Mg in LiNbO₃ crystals by high resolution continuum source atomic absorption spectrometric method*, European Symposium on Atomic Spectroscopy- ESAS 2016, 2016.
Irodalomjegyzék

[29] C. Wanarak, W. Chewpraditkul, A. Phunpueok, Light yield non-proportionality and energy resolution of Lu$_{1.95}$Y$_{0.05}$SiO$_5$:Ce and Lu$_2$SiO$_5$:Ce scintillation crystals, Procedia Engineering 32 (2012) 765–771.

[56] H. Yokota, M. Yoshida, H. Ishibashi, Concentration effect of cerium in (Y$_{0.9-x}$Gd$_{0.1}$Ce$_x$)$_2$SiO$_5$ blue phosphor, J. Alloy. Compd. 495 (2010) 162–166.

[58] P. C. Ricci, C. M. Carbonaro, A. Casu, C. Cannas, R. Corpino, L. Stagi A. Amedda, Optical and structural characterization of cerium doped LYSO sol–gel polycrystal films:

[113] Z. Antic, R. Krismanovic, M. Marinovic-Cincovic, M. Mitric, M. D Dramicanin, Rare-earth doped (Lu\textsubscript{0.85}Y\textsubscript{0.15})\textsubscript{2}SiO\textsubscript{5} nanocrystalline powders obtained by polymer assisted sol–gel synthesis, Radiat. Meas. 45 (2010) 475–477.

116

[175] M. A. Latshaw, K. D. Hughey, M. D. Smith, J. Yeon, H-C. Loye, Photoluminescent and magnetic properties of lanthanide containig apatites: Na_xLn_{10-x}Si_{6}O_{26-σ}F_y, Ca_xLn_{10-x}(SiO_4)_6O_2F_y, (Ln=Eu, Gd, and Sm) Gd_{9.34}(SiO_4)_6O_2 and K_{1.32}Pr_{8.68}(SiO_4)_6O_1.36F_{0.64}, Inorg. Chem. 54 (2015) 876-884.
ADATLAP
a doktori értekezés nyilvánosságára hozatalához

I. A doktori értekezés adatai
A szerző neve: Laczai Nikoletta..............................
MTMT-azonosító: 10040438..
A doktori értekezés címe és alcíme: Polikrystalis szintillátor anyagok előírítés és vizsgálata
DOI-azonosító59 10.15476/ELTE.2016.130
A doktori iskola neve: ELTE Kémiai Doktori Iskola..............................
A doktori iskola belső doktori program neve: Analitikai, kolloid- és környezetkémia, elektrokémia
A témavezető neve és tudományos fokozata: Dr. Bencs Lászio, tudományos főmunkatárs, Ph.D.
A témavezető munkahelye: MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet

II. Nyilatkozatok
A doktori értekezés szerzőjeként46
a) hozzájárulok, hogy a doktori fókazat megszerzését követően a doktori értekezésem és a tézisek nyilvánosságára kerüljön az ELTE Digitalis Intézményi Tudásvállalatban. Felhatalmazom a Természettedományi Kar Dékáni Hivatalának Doktori, Habilitációs és Nemzetközi Ügyek Csoportja úgyinténjét, hogy az értekezést és a téziséket feltöltsé az ELTE Digitalis Intézményi Tudásvállalatban, és ennek során kitöltse a felügyeleti szükséges nyilatkozatokat.
b) kérem, hogy a mellékelt kérelemben részletezett szabadalmi, illetőleg olyfelméleti bejelentés közzéteteléig a doktori értekezést ne bocsássák nyilvánosságra az Egyetemi Könyvtában és az ELTE Digitalis Intézményi Tudásvállalatban;44
c) kérem, hogy a nemzetbiztonsági okból minősített adatot tartalmazó doktori értekezést a minősítés (dátum)-ig tartó időtartama alatt ne bocsássák nyilvánosságra az Egyetemi Könyvtában és az ELTE Digitalis Intézményi Tudásvállalatban;42
d) kérem, hogy a mű kiadására vonatkozó mellékelt kiadó szerződésre tekintettel a doktori értekezést a könyv megjelenésétől nyilvánosságra ne bocsássák nyilvánosságra az Egyetemi Könyvtában, és az ELTE Digitalis Intézményi Tudásvállalatban csak a könyv bibliográfiai adatait tegyék közzé.
Ha a könyv a fókazatszerzést követően egy évig nem jelenik meg, hozzájárulok, hogy a doktori értekezésem és a tézisek nyilvánosságra kerüljenek az Egyetemi Könyvtában és az ELTE Digitalis Intézményi Tudásvállalatban.41

2. A doktori értekezés szerzőjeként kijelentem, hogy
a) az ELTE Digitalis Intézményi Tudásvállalat felüütendő doktori értekezés és a tézisek saját eredeti, önálló szellemi munkám és legjobb tudomásom szerint nem térfi nem vele senki szerzői jogait;
b) a doktori értekezés és a tézisek nyomtatott változatai és az elektronikus adathordozókn benyújtott tartalmak (szöveg és ábrák) mindenben megegyeznek.
3. A doktori értekezés szerzőjeként hozzájárulok a doktori értekezés és a tézisek szövegénél plágiumkereső adatbázisba helyezéséhez és plágiumellenőrző vizsgálatok lefuttatásához.

Kelt: 2016. augusztus 3... Laczai Nikoletta

46 A megfelelő szöveg aláhúzandó.
44 A doktori értekezés benyújtásával egyidejűleg be kell adni a tudományi doktori tanácsoshoz a szabadalmi, illetőleg olyfelméleti bejelentést tantásító okiratot és a nyilvánosságra hozatal elhanyagolása iránti kérelmet.
47 A doktori értekezés benyújtásával egyidejűleg be kell nyújtani a minősített adatokat vonatkozó közvetítőt.
48 A doktori értekezés benyújtásával egyidejűleg be kell nyújtani a mű kiadásáról szóló kiadói szerződést.