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Többváltozós adatelemzés
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MATHEMATICAL

ANALYSIS –

EXERCISES I
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Chapter 1

Basic Notions, Real Num-

bers

It is encouraging that the refutation of the unfounded rumor claiming
that it is not a lie to deny that there will be at least one student who
will not fail the exam without knowing the proof of any of the theorems

in analysis proved to be wrong.
(Baranyai Zsolt)

1.1 A set A ⊂ R is called bounded if there is a real number K ∈ R such
that for all a ∈ A |a| ≤ K.
A set A ⊂ R is bounded from above if there is a real number M ∈ R
(upper bound) such that for all a ∈ A implies a ≤M .
A set A ⊂ R is bounded from below if there is a real number m ∈ R
(lower bound) such that for all a ∈ A implies a ≥ m.

1.2 Cantor’s Axiom: The intersection of a nested sequence of closed
bounded intervals is not empty.

1.3 supremum: If a set A has a least upper bound, and this number is M ,
thenM is the supremum of the set A denoted by the expressionM = supA.

1.4 If a nonempty set A ⊂ R is bounded from above, then A has a least
upper bound.

1.5 Bernoulli Inequality: If n ∈ N and x > −1, then

(1 + x)n ≥ 1 + n · x.

The equality is true if and only if n = 0 or n = 1 or x = 0.
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1.1 Elementary Exercises

Plot the solutions of the following inequalities on the number line.

1.1. |x− 5| < 3 1.2. |5− x| < 3

1.3. |x− 5| < 1 1.4. |5− x| < 0.1

Find the solutions of the following inequalities.

1.5.
1

5x+ 6
≥ −1 1.6. 6x2 + 7x− 20 > 0

1.7. 10x2 + 17x+ 3 ≤ 0 1.8. −6x2 + 8x− 2 > 0

1.9. 8x2 − 30x+ 25 ≥ 0 1.10. −4x2 + 4x− 2 ≥ 0

1.11. 9x2 − 24x+ 17 ≥ 0 1.12. −16x2 + 24x− 11 < 0

1.13. Find the mistake.

log2
1

2
≤ log2

1

2
and 2 < 4

Multiplying the two inequalities:

2 log2
1

2
< 4 log2

1

2
.

Using the logarithmic identities:

log2

(

1

2

)2

< log2

(

1

2

)4

.

Since the function log2 x is strictly monotonically increasing:

1

4
<

1

16
.

Multiplying with the denominators: 16 < 4.
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Find the solutions of the following equations and inequalities.

1.14. |x+ 1|+ |x− 2| ≤ 12 1.15.
√
x+ 3 +

√
x− 5 = 0

1.16.

∣

∣

∣

∣

x+ 1

2x+ 1

∣

∣

∣

∣

>
1

2
1.17. |2x− 1| < |x− 1|

1.18.
√
x+ 3 + |x− 2| = 0 1.19.

√
x+ 3 + |x− 2| ≤ 0.

1.2 Basic Logical Concepts

1.20. State the negation of each of the following statements as simple as you
can.

(a) All mice like cheese.

(b) He who brings trouble on his family will inherit only wind.

(c) There is an a, such that for all b there is a unique x such that
a+ x = b.

(d) 3 is not greater than 2, or 5 is a divisor of 10.

(e) If my aunt had wheels, she would be the express train.

1.21. There are 5 goats and 20 fleas in a court. Does the fact that there is a
goat bitten by all fleas imply that there is a flea which bit all the goats?

1.22. Let us assume that the following statements are true.

(a) If an animal is a mammal, then it has a tail or a gill.

(b) No animal has a tail.

(c) All animals are either mammals or have a tail or have a gill.

Is it implied by the previous statements that all animals have a gill?

1.23. Left-handed Barney, who is really left-handed, can write with his left
hand only true statements, and with his right hand only false state-
ments. With which hand can he write down the following statements?
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(a) I am left-handed.

(b) I am right-handed.

(c) I am left-handed and my name is Barney.

(d) I am right-handed and my name is Barney.

(e) I am left-handed or my name is Barney.

(f) I am right-handed or my name is Barney.

(g) The number 0 is not even, and not odd.

1.24. Seeing a black cat is considered bad luck. Which of the following state-
ments is the negation of the previous statement?

(a) Seeing a black cat is considered as good luck.

(b) Not the seeing a black cat is considered as bad luck.

(c) Seeing a white cat is considered as bad luck.

(d) Seeing a black cat is not considered as bad luck.

1.25. : -) ”All of the Mohicans are liar” - said the last of the Mohicans. Did
he tell the truth?

1.26. : -) 1) 3 is a prime number.
2) 4 is divisible by 3.
3) There is exactly 1 true statement in this frame.

How many true statements are there in the frame?

1.27. If it’s Tuesday, this must be Belgium. Which of the following statements
are implied by this?

(a) If it’s Wednesday, this must not be Belgium.

(b) If it is Belgium, this must be Tuesday.

(c) If it is not Belgium, this must not be Tuesday.

How many subsets of the set H = {1, 2, 3, . . . 100} are there for
which the following statement is true and for how many of them it
is false?

1.28. 1 is an element of the subset;

1.29. 1 and 2 are elements of the subset;
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1.30. 1 or 2 are elements of the subset;

1.31. 1 is an element of the subset or 2 is not an element of the subset;

1.32. if 1 is an element of a subset, then 2 is an element of the subset.

1.33. There is a bag of candies on the table, and there are some students.
Which of the following statements implies the other?

(a) All of the students licked a candy (from the bag).

(b) There is a candy (from the bag), such that it is licked by all of the
students.

(c) There is a student, who licked all of the candies (from the bag).

(d) All candies (from the bag) are licked by some students.

1.3 Methods of Proof

Prove that

1.34.
√
3 is irrational; 1.35.

√
2√
3
is irrational;

1.36.

√
2 + 1

2
+ 3

4
+ 5 is irrational!

1.37. We know that x and y are rational numbers. Prove that

(a) x+ y (b) x− y

(c) xy (d)
x

y
, if y 6= 0

are rational.

1.38. We know that x is a rational number, and y is an irrational number.
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(a) Can x+ y be rational? (b) Can x− y be rational?

(c) Can xy be rational? (d) Can
x

y
be rational?

1.39. We know that x and y are irrational numbers.

(a) Can x+ y be rational? (b) Can xy be rational?

1.40. Is it true that

(a) if a and b are rational numbers, then a+ b is rational?

(b) if a and b are irrational numbers, then a+ b is irrational?

(c) if a is a rational number, b is an irrational number, then a + b is
rational?

(d) if a is a rational number, b is an irrational number, then a + b is
irrational?

1.41. Let A1, A2, . . . be a sequence of statements. What can we conclude
from the fact that

(a) A1 is true. If A1, A2, . . . , An are all true, then An+1 is also true.

(b) A1 is true. If An and An+1 are true, then An+2 is true.

(c) If An is true, then An+1 is also true. A2n is false for all n.

(d) A100 is true. If An is true, then An+1 is also true.

(e) A100 is true. If An is false, then An+1 is also false.

(f) A1 is false. If An is true, then An+1 is also true.

(g) A1 is true. If An is false, then An−1 is also false.

1.42. Prove that 16|5n+1 − 4n− 5 for all n ∈ N.

1.43. Prove that tan 1◦ is irrational.

1.44. Prove that n! ≤
(

n+ 1

2

)n

.

1.45. Let a1 = 0.9, an+1 = an − a2n.

Is it true that there is such an n that an < 10−6 ?

1.46. Write down the following expressions for n = 1, 2, 3, 6, 7, k and k + 1.
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(a)
√
n

(b)
√
1 +

√
2 +

√
3 + · · ·+√

n

(c) 12 + 22 + 32 + · · ·+ n2

(d)
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

(n− 1) · n
(e) 1 · 4 + 2 · 7 + 3 · 10 + · · ·+ n(3n+ 1)

(f) 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n+ 1)

1.47. After calculating the first terms, find simple expressions for the follow-
ing sums, then prove this by induction.

(a)
1

1 · 2 +
1

2 · 3 + · · ·+ 1

(n− 1) · n
(b) 1 + 3 + . . .+ (2n− 1)

Prove that for all positive integers n the following equations hold:

1.48. an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1)

1.49. 1 + 2 + · · ·+ n =
n(n+ 1)

2

1.50. 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

1.51. 13 + 23 + · · ·+ n3 =

(

n(n+ 1)

2

)2

1.52. 1− 1

2
+

1

3
− · · · − 1

2n
=

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

Write down a more simple form for the following expressions:

1.53.
1

1 · 2 +
1

2 · 3 + · · ·+ 1

(n− 1) · n

1.54.
1

1 · 2 · 3 +
1

2 · 3 · 4 + · · ·+ 1

n · (n+ 1) · (n+ 2)

1.55. 1 · 2 + 2 · 3 + · · ·+ n · (n+ 1)
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1.56. 1 · 2 · 3 + 2 · 3 · 4 + · · ·+ n · (n+ 1) · (n+ 2)

1.57. A newly born pair of rabbits, one male and one female, is put in a field.
Rabbits are able to mate at the age of one month so that at the end of
its second month a female can produce another pair of rabbits. Rabbits
never die, and a mating pair always produces one new pair (one male,
one female) every month from the second month on. How many pairs
of rabbits will be there at the end of the 2nd, 3rd, 4th, 5th and 6th
month?

Let (un) be the Fibonacci sequence, that is, u0 = 0, u1 = 1, and
if n > 1, then un+1 = un + un−1.

1.58. Prove that un and un+1 are relatively primes.

1.59. Prove that
1.6n

3
< un < 1.7n (n > 0).

1.60. Prove the following equations:

(a) u1 + u2 + · · ·+ un = un+2 − 1 (b) u2n − un−1un+1 = (−1)n+1

(c) u21 + u22 + · · ·+ u2n = unun+1

1.61. Simplify the following expressions:

(a) sn = u0 + u2 + · · ·+ u2n (b) sn = u1 + u3 + · · ·+ u2n+1

(c) sn = u0 + u3 + · · ·+ u3n (d) sn = u1u2 + u2u3 + · · · +
u2n−1u2n

1.62. Theorem: All of the horses have the same color.

Proof: We prove by induction that any n horses are same colored. For
n = 1 the statement is obvious. Let assume that it is true for n, and
from this we prove it for n + 1: By the induction hypothesis from the
given n + 1 horses the 1st, 2nd, . . . , nth horses are same colored, and
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also the 2nd, . . . , nth, (n+1)th horses are same colored, therefore all of
the n+ 1 horses are same colored.

Is this proof correct? If not, where is the mistake?

1.63. Theorem: There is no sober sailor.

Proof: By induction. Let’s assume that the statement is true for n
sailors, and we prove the statement for n+ 1 sailors. By the induction
hypothesis from the given n+1 sailors 1th, 2nd, . . . , nth sailors are not
sober, and also the 2nd, . . . , nth, (n+1)th sailors are not sober, therefore
all of the n+ 1 are drunk.

Is this proof correct? If not, where is the mistake?

1.64. Prove the arithmetic and geometric means inequality for 2 terms.

1.65. Show that the arithmetic, geometric and harmonic means of some posi-
tive real numbers a1, a2, . . . , an are between the biggest and the smallest
numbers.

We know that a, b, c > 0 and a+ b+ c = 18. Find the values of a, b
and c such that the following expressions are maximal:

1.66. abc 1.67. a2bc

1.68. a3b2c 1.69.
abc

ab+ bc+ ac

We know that a, b, c > 0 and abc = 18. Find the values of a, b and
c such that the following expression are minimal:

1.70. a+ b+ c 1.71. 2a+ b+ c

1.72. 3a+ 2b+ c 1.73. a2 + b2 + c2

1.74. We know that the product of three positive numbers is 1.

(a) At least how much can be their sum?

(b) At most how much can be their sum?
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(c) At least how much can be the sum of their reciprocal?

(d) At most how much can be the sum of their reciprocal?

1.75. Prove that if a > 0, then a+
1

a
≥ 2.

1.76. Prove that if a, b and c are positive numbers, then
a

b
+
b

c
+
c

a
≥ 3.

1.77. Prove that if n positive, then

(

1 +
1

n

)2n

≥ 4.

1.78. A storekeeper has a pair of scales, but the arms of the scale have dif-
ferent length. The storekeeper knows this, so if a customer buys some
goods, he puts the half of the goods in the left container and the known
weight in the right container, and he puts the other half of the goods
in the right container, and the known weight in the left container. The
storekeeper thinks that in this way he can compensate the inaccuracy
of the scale. Is he right?

1.79. Find the maximum of the function f(x) = x(1−x) in the closed interval
[0, 1].

What is the minimum of the following function if x > 0, and at
which point is it attained?

1.80. f(x) = x+
4

x
1.81. g(x) =

x2 − 3x+ 5

x

1.82. Find the maximum of the function x2(1 − x) in the closed interval
[0, 1].

1.83. What is the maximum of the function g(x) = x(1 − x)3 in the closed
interval [0, 1]?

1.84. What is the minimum of the function f(x) = 2x2 +
3

x2 + 1
+ 5?

1.85. Which point of the y =
1

4
x2 parabola is closest to (0, 5)?

1.86. Which rectangle has maximal area that we can write in the circle of
radius 1?
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1.4 Sets

Which statements are true, and which statements are false? If a
statement is true, then prove it, if a statement is false, then give a
counterexample.

1.87. A \B = A ∩B 1.88. (A ∪B) \B = A

1.89. (A \B) ∪ (A ∩B) = A 1.90. A \B = A \B?

1.91. (A ∪B) \A = B 1.92. (A ∪B) \ C = A ∪ (B \ C)

1.93. (A \B) ∩ C = (A ∩ C) \B 1.94. A \B = A \ (A ∩B)

1.95. Which statement is not true?

(a) A \B = {x : x ∈ A ∨ x 6∈ B} (b) A \B = A ∩B

(c) A \B = (A ∪B) \B (d) A \B = A \ (A ∩B)

1.96. Which of the following sets is equal to A ∪B?

(a) {x : x 6∈ A ∨ x 6∈ B} (b) {x : x 6∈ A ∧ x 6∈ B}

(c) {x : x ∈ A ∨ x ∈ B} (d) {x : x ∈ A ∧ x ∈ B}

1.97. Which of the following sets is equal to A ∩ (B ∪ C)?

(a) A ∪ (B ∩ C) (b) (A ∩B) ∪ C

(c) (A ∪B) ∩ C (d) (A ∩B) ∪ (A ∩ C)

Let A,B,C be sets. Write down the following sets with A,B,C
and with the help of the set operations, for example: (A\B) ∪ C.
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1.98. Elements which are in A, but are not in B nor in C.

1.99. Elements which are exactly in one of A, B and C.

1.100. Elements which are exactly in two of A, B and C.

1.101. Elements which are exactly in three of A, B and C.

1.102. Prove that for arbitrary sets A and B it is true that A ∪B =

A ∩B.

1.103. Prove the De Morgan’s laws:

n
⋃

i=1

Ai =
n
⋂

i=1

Ai and
n
⋂

i=1

Ai =
n
⋃

i=1

Ai

1.5 Axioms of the Real Numbers

1.104. Prove that for all real numbers a, b

(a) |a|+ |b| ≥ |a+ b| (b) |a| − |b| ≤ |a− b| ≤ |a|+ |b|

1.105. Prove that for all real numbers a1, a2, . . . , an

|a1|+ |a2|+ . . . |an| ≥ |a1 + a2 + · · ·+ an| .

1.106. Is it true that

(a) if x < A, then |x| < |A|, (b) if |x| < A, then |x2| < A2?

1.107. Is it true for all real numbers a1, a2, . . . , an that

(a) |a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|,
(b) |a1 + a2 + · · ·+ an| ≥ |a1|+ |a2|+ · · ·+ |an|,
(c) |a1 + a2 + · · ·+ an| < |a1|+ |a2|+ · · ·+ |an|,
(d) |a1 + a2 + · · ·+ an| > |a1|+ |a2|+ · · ·+ |an|?

1.108. Is it true for all real numbers a, b that
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(a) |a+ b| ≥ |a| − |b|, (b) |a+ b| ≤ |a| − |b|,

(c) |a− b| < ||a| − |b||, (d) |a− b| ≤ |a| − |b|?

1.109. LetH be a nonempty subset of the real numbers. What do the following
statements mean?

(a) ∀x ∈ H ∃y ∈ H (y < x) (b) ∀y ∈ H ∃x ∈ H (y < x)

(c) ∃x ∈ H ∀y ∈ H (y ≤ x) (d) ∃y ∈ H ∀x ∈ H (y ≤ x)

1.110. Let H1 = {h ∈ R : −3 < h ≤ 1} and H2 = {h ∈ R : −3 ≤ h < 1}.
Which statements are true, if H = H1 or H = H2?

(a) ∀x ∈ H ∃y ∈ H (y < x) (b) ∀y ∈ H ∃x ∈ H (y < x)

(c) ∃x ∈ H ∀y ∈ H (y ≤ x) (d) ∃y ∈ H ∀x ∈ H (y ≤ x)

1.111. Let A = {a ∈ R : −3 < a ≤ 1} and B = {b ∈ R : −3 < b < 1}. Which
statements are true?

(a) ∀a ∈ A ∃b ∈ B b < a (b) ∃b ∈ B ∀a ∈ A b < a

(c) ∀b ∈ B ∃a ∈ A b < a (d) ∃a ∈ A ∀b ∈ B b < a

Determine the intersection of the following sequences of sets.

1.112. An = {a ∈ Q : − 1

n
< a <

1

n
}

1.113. Bn = {b ∈ R\Q : − 1

n
< b <

1

n
}

1.114. Cn = {c ∈ Q :
√
2− 1

n
< c <

√
2 +

1

n
}

1.115. Dn = {d ∈ N : −n < d < n}

1.116. En = {e ∈ R : −n < e < n}
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1.117. Let H ⊂ R. Write down the negation of the following statement:

∀x ∈ H ∃y ∈ H (x > 2 =⇒ y < x2).

Determine the intersection of the following sequences of intervals.
(For example, find the intersection M with the help of a figure,
then prove that ∀x ∈ M implies that ∀n x ∈ In, and if y /∈ M ,
then ∃k y /∈ Ik. (We note that k and n are positive integers.)

1.118. In = [−1/n, 1/n] 1.119. In = (−1/n, 1/n)

1.120. In = [2− 1/n, 3 + 1/n] 1.121. In = (2− 1/n, 3 + 1/n)

1.122. In = [0, 1/n] 1.123. In = (0, 1/n)

1.124. In = [0, 1/n) 1.125. In = (0, 1/n]

1.126. Which statements are true? (Give the reasoning for the answer!)

(a) If the intersection of a nested sequence of intervals is not empty,
then the intervals are closed.

(b) If the intersection of a nested sequence of intervals is empty, then
the intervals are open.

(c) The intersection of a nested sequence of closed intervals is one
point.

(d) If the intersection of a nested sequence of intervals is empty, then
there is an open interval among the intervals.

(e) If the intersection of a nested sequence of intervals is empty, then
there is a not closed interval among the intervals.

(f) If the intersection of intervals is not empty, then the intervals are
nested.

Satisfy your answers.

1.127. Can the intersection of a nested sequence of intervals be empty?
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1.128. Can the intersection of nested sequence of closed intervals be empty?

1.129. Can the intersection of nested sequence of closed intervals be a single
point?

1.130. Can the intersection of nested sequence of open intervals be not empty?

1.131. Can the intersection of nested sequence of open intervals be empty?

1.132. Can the intersection of nested sequence of closed intervals be a proper
interval (not a single point)?

1.133. Can the intersection of nested sequence of open intervals be a proper
interval?

1.134. Can the intersection of nested sequence of closed intervals be a proper
open interval?

1.135. Can the intersection of nested sequence of open intervals be a proper
open interval?

1.136. Which of the axioms of the real numbers are fulfilled by the rational
numbers?

1.137. Prove from the Archimedes’ axiom that (∀b, c < 0) (∃n ∈ N) nb < c.

1.138. Prove that there is a finite decimal number between any two real num-
bers.

1.139. Prove that there is a rational number between any two real numbers.

1.140. What is the connection between the finite decimal numbers and the
rational numbers?

1.141. Prove that a decimal form of a real number is repeating decimal if and
only if the number is rational.

1.142. Prove that Cantor’s axiom doesn’t remain true, if we omit any of its
assumption.

1.143. Prove from the field axioms the following identities:
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(a) −a = (−1) · a (b) (a− b)− c = a− (b+ c)

(c) (−a) · b = −(a · b) (d)
1

a/b
=
b

a

(e)
a

b
· c
d
=
a · c
b · d

1.6 The Number Line

Draw the following sets on the number line. Decide which one is an
interval, and which one is not. Decide which intervals are closed,
which ones are open, and which ones are nor open, neither closed.

1.144. A = {1, 2, 3} 1.145. B = {x ∈ R : 2 < x < 6}

1.146. C = {5.6} 1.147. D = {x ∈ N : 2 ≤ x ≤ 6}

1.148. E = {x ∈ R : 2 ≤ x ≤ 6} 1.149. F = {x ∈ R : 2 < x ≤ 6}

1.150. G = {x ∈ R : 2 ≤ x < 6} 1.151. H = {x ∈ Q : 2 ≤ x ≤ 6}

Which ones of the following sets are bounded, bounded from above,
bounded from below? Do they have minimal or maximal elements?

1.152. set of the prime numbers 1.153. set of the positive numbers

1.154. [−5,−2) 1.155.

{

1

n
: n ∈ N+

}

1.156. {x ∈ R : x ≤ 73} 1.157. {x ∈ Q : x ≤ 73}

1.158. {x ∈ R : x ≤
√
2} 1.159. {x ∈ Q : x ≤

√
2}

1.160. {n ∈ N : n is prime ∧ n+ 2 is prime}
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1.161. Which of the following statements implies the other one?

P: The set A is finite (that is, the number of the elements of A is finite).

Q: The set A is bounded.

1.162. Is there any sequence of numbers a1, a2, . . . such that the set {a1, a2, . . .}
is bounded, but the sequence has no maximal and no minimal ele-
ments?

Write down with logical symbols the following statements.

1.163. The set A is bounded. 1.164. The set A is not bounded from
below.

1.165. The set A has no minimal element.

1.166. How many maxima, or upper bounds can a set have?

1.167. Which of the following statements implies the other one?

P: The set A has a minimal element.

Q: The set A is bounded from below.

1.168. Let A∩B 6= ∅. What can we say about the connection of supA, supB,
sup(A ∪B), sup(A ∩B) and sup(A \B)?

1.169. Let A = (0, 1), B = [−
√
2,
√
2] and C =

{

1

2n
+

1

2m
: n,m ∈ N+

}

.

Find, if there exist, the supremum, the infimum, the maximum and the
minimum of the previous sets.

1.170. Let A be an arbitrary set of numbers, and

B = {−a : a ∈ A} , C =

{

1

a
: a ∈ A, a 6= 0

}

.

What is the connection between the supremum and the infimum of the
sets?

Find, if there exist, the supremum, the infimum, the maximum and
the minimum of the following sets.
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1.171. [1, 2] 1.172. (1, 2)

1.173.

{

1

2n− 1
: n ∈ N+

}

1.174. Q

1.175.

{

1

n
+

1√
n
: n ∈ N+

}

1.176.
{

n
√
3 : n ∈ N+

}

1.177. {x : x ∈ (0, 1) ∩Q} 1.178.

{

1

n
+

1

k
: n, k ∈ N+

}

1.179.
{√

n+ 1−√
n : n, k ∈ N+

}

1.180.

{

n+
1

n
: n ∈ N+

}

1.181.
{

n
√
2 : n ∈ N+

}

1.182.
{

n
√
2n − n : n ∈ N

}

1.183. LetH be a nonempty subset of the real numbers. Which of the following
statements implies an other one?

(a) H is not bounded from below. (b) H has no minimal element.

(c) ∀x ∈ H ∃y ∈ H (y < x). (d) ∀y ∈ H ∃x ∈ H (y < x).

1.184. We know that c is an upper bound of H. Does it imply that supH = c?

1.185. We know that there is no less upper bound of H, than c. Does it imply
that supH = c?

1.186. Let A and B be not empty subsets of the real numbers. Prove that if

∀a ∈ A ∃b ∈ B(a ≤ b),

then supA ≤ supB.

1.187. Prove that any nonempty set, which is bounded from below, has an
infimum.

Let x, y,A,B be arbitrary real numbers, and ε be a positive real
number. Which of the following statements (P and Q) implies the
other one?
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1.188. P: |x−A| < ε Q: A− ε < x < A+ ε

1.189. P: |x− y| < 2ε Q: |x−A| < ε and |y −A| < ε

1.190. P: |x| < A and |y| < B Q: |x| − |y| < A−B

1.191. P: |x| < A and |y| < B Q: |x|+ |y| < A+B

1.192. P: |x| < A and |y| < B Q: |x| − |y| < A+B

1.193. Show an example of a nonempty set of real numbers, which is bounded,
but has no minimum.

1.194. Let us assume that the set H ⊂ R is nonempty. Which of the following
statements implies the other one?

P: H has no minimum. Q: ∀a ∈ R+ ∃b ∈ H b < a



Chapter 2

Convergence of a Sequence

2.1 The sequence (an) converges to the number b ∈ R if

∀ε > 0 ∃n0 ∀n ≥ n0(|an − b| < ε).

We call the natural number n0 the threshold for the given ε.
If the sequence (an) converges to the number b, we can use the following
notations:

lim
n→∞

an = b or lim an = b or an → b, if n→ ∞ or an → b.

If the sequence (an) is not convergent, we say that the sequence (an) is
divergent.

2.2 We say that the limit of the sequence (an) is infinity, or (an) diverges
to ∞, if

∀P ∈ R ∃n0 ∀n ≥ n0(an > P ).

The notations:

lim
n→∞

an = ∞ or lim an = ∞ or an → ∞, if n→ ∞ or an → ∞.

2.3 We say, that the limit of the sequence (an) is -infinity, or (an) diverges
to −∞, if

∀P ∈ R ∃n0 ∀n ≥ n0(an < P ).

The notation:

lim
n→∞

an = −∞ or lim an = −∞ or an → −∞, or n→ ∞ or an → −∞.
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2.1 Limit of a Sequence

Let the sequence (an) be: an = 1+
1

√
n
. In the exercises the letters

n and n0 denote positive integers.

2.1. Find a number n0 such that ∀n > n0 implies that

(a) |an − 1| < 0, 1 (b) |an − 1| < 0, 01

2.2. Is there any n0 number such that ∀n > n0 implies |an − 2| < 0, 001?

2.3. Is it true that

(a) ∀ε > 0 ∃n0 ∀n > n0 (|an − 1| < ε)

(b) ∃n0 ∀ε > 0 ∀n > n0 (|an − 1| < ε)

(c) ∃ε > 0 ∃n0 ∀n > n0 (|an − 1| < ε)

(d) ∃ε > 0 ∃n0 ∀n > n0 (|an − 1| > ε)

(e) ∀ε > 0 ∃n0 ∀n ≤ n0 (|an − 1| < ε)

(f) ∀ε > 0 ∃n0 ∀n ≤ n0 (|an − 1| > ε)

Find a threshold N from which all of the terms of one of the se-
quences is greater than the terms of the other one.

2.4. an = 10n2 + 25

bn = n3

2.5. an = 4n5 − 3n2 − 7
bn = 10n+ 30

2.6. an = 3n − n2

bn = 2n + n

2.7. an = 2n + 3n

bn = 4n

2.8. an = 2n

bn = n!

2.9. an = n!
bn = nn

2.10. an =
√
n+ 1−√

n

bn =
1

n

2.11. an = 2n

bn = n3
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2.12. an = 0.999n

bn =
1

n2

2.13. an = 10n

bn = n!

Find a number N such that ∀n > N implies that

2.14. 1.01n > 1000; 2.15. 0.9n <
1

100
;

2.16. n
√
2 < 1.01. 2.17. n

√
n < 1.0001.

2.18. n2 > 6n+ 15 2.19. n3 > 6n2 + 15n+ 37

2.20. n3 − 4n+ 2 > 6n2 − 15n+ 37

2.21. n5 − 4n2 + 2 > 6n3 − 15n+ 37

Show that there exists a number n0 such that for all n > n0 implies

2.22.
√
n+ 1−√

n < 0.01 2.23.
√
n+ 3−√

n < 0.01

2.24.
√
n+ 5−

√
n+ 1 < 0.01 2.25.

√
n2 + 5− n < 0.01

Prove the following inequalities.

2.26. ∀n > 10 2n > n3; 2.27.
√
n ≤ 1 +

1√
2
+ . . .+

1√
n
< 2

√
n.

2.28. Which statement implies the other?

P: In the sequence (an) there is a smallest and a greatest term.

Q: The sequence (an) is bounded.

2.29. Is it true that b is the limit of the sequence (an) if and only if
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(a) for any ε > 0 the sequence an has infinitely many terms closer to
b than ε?

(b) for any ε > 0 the sequence an has only finitely many terms at least
ε distance to b?

(c) there exists ε > 0 such that the sequence an has infinitely many
terms closer to b than ε?

(d) there exists ε > 0 such that the sequence an has infinitely many
terms at least distance ε to b?

What can we say about the limit of the sequence (−an) if

2.30. lim
n→∞

an = a (a ∈ R); 2.31. lim
n→∞

an = ∞;

2.32. lim
n→∞

an = −∞? 2.33. an is oscillating divergent?

2.34. Which statement implies the other?

P: lim
n→∞

an = ∞

Q: (an) is bounded below, but isn’t bounded above.

Find the limits of the following sequences, and give a threshold
depending on ε:

2.35.
(−1)n

n
2.36.

1√
n

2.37.
1 +

√
n

n
2.38.

n

n+ 1

2.39.
5n− 1

7n+ 2
2.40.

2n6 + 3n5

7n6 − 2

2.41.
n+ 1

n

n+ 1
2.42.

√
n+ 1−√

n

2.43.
√
n2 + 1− n 2.44.

1

n−√
n



2. Convergence of a Sequence 30

2.45.
1 + · · ·+ n

n2 2.46. n

(

√

1 +
1

n
− 1

)

2.47.
√

n2 + 1 +
√

n2 − 1− 2n 2.48. 3
√
n+ 2− 3

√
n− 2

2.49. Are the following sequences convergent or divergent? Find the limits if
they exist.

(a) an =

{

3 if n is even

4 if n is odd
(b) an =

{

3 if n ≤ 100

4 if n > 100

(c) an =

{

3n if n is even

4n2 if n is odd
(d) an =

{

n if n is even

0 if n is odd

2.50. Prove that the sequence
1

n
does not converge to 7.

2.51. Prove that the sequence (−1)n
1

n
does not converge to 7.

2.52. Prove that the sequence (−1)n does not converge to 7.

2.53. Prove that the sequence (−1)n is divergent.

2.54. Prove that a convergent sequence always has a minimal or maximal
term.

2.55. Show an example such that an − bn → 0 but
an
bn

9 1.

2.56. Prove that if (an) is convergent, then also (|an|) is convergent. Is the
reverse of the statement true?

2.57. Does a2n → a2 imply that an → a?

And does a3n → a3 imply that an → a?

2.58. Prove that if an → a > 0, then
√
an → √

a.

Which statement implies that an → ∞?
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2.59. ∀K it is true that outside the interval (K,∞) the sequence an has only
finitely many terms.

2.60. ∀K it is true that inside the interval (K,∞) the sequence an has in-
finitely many terms.

2.61. Let’s assume that lim
n→∞

an = ∞. Which statements are true for this

sequence? Which statements imply that lim
n→∞

an = ∞?

(a) The sequence an has no maximal term.

(b) The sequence an has a minimal term.

(c) Outside the interval (3,∞) the sequence an has only finitely many
terms.

(d) ∀K it is true that outside the interval (K,∞) the sequence an has
only finitely many terms.

(e) Inside the interval (3,∞) the sequence an has infinitely many
terms.

(f) ∀K it is true that inside the interval (K,∞) the sequence an has
infinitely many terms.

2.62. Is it true that if a sequence has a (finite or infinite) limit, then the
sequence is bounded from below or above?

2.63. Which statement implies the other?

P: The sequence (an) is strictly monotonically increasing.

Q: The limit of (an) is infinity.

Can the limit of the sequence an be −∞, ∞ or a finite number, if

2.64. the sequence has infinitely many terms greater than 3?

2.65. the sequence has infinitely many terms smaller than 3?

2.66. the sequence has a maximal term?

2.67. the sequence has a minimal term?
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2.68. the sequence has no minimal term?

2.69. the sequence has no maximal term?

2.70. Is there any oscillating divergent sequence, which is

(a) bounded? (b) not bounded?

2.71. A sequence has infinitely many positive and infinitely many negative
terms. Can the sequence be convergent?

Find a threshold for the sequences with limit infinity:

2.72. n−√
n 2.73.

1 + 2 + · · ·+ n

n

2.74.

√
1 +

√
2 + · · ·+√

n

n
2.75.

n2 − 10n

10n+ 100

2.76.
2n

n
2.77.

n!

2n

2.78. Find the limit of
n2 + 1

n+ 1
− an if a is an arbitrary real number.

2.79. Find the limit of
√

n2 − n+ 1− an if a is an arbitrary real number.

2.80. Find the limit of
√

(n+ a)(n+ b)−n if a, b are arbitrary real numbers.

2.81. Prove that if an+1 − an → c > 0 , then an → ∞.

2.82. Prove that if an > 0,
an+1

an
→ c > 1 , then an → ∞.

2.83. For which real numbers is it true that the sequence of its decimal num-
bers is oscillating divergent?
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2.2 Properties of the Limit

Can we decide from the given inequalities, whether the sequence
bn has a limit or has not, and if there is a limit, can we determine
the value of the limit? If the answer is “yes”, then find the limit of
bn.

2.84.
1

n
< bn <

2

n
2.85. − 1

n
≤ bn ≤ 1√

n

2.86.
1

n
< bn <

√
n 2.87. n ≤ bn

2.88. bn < −1.01n 2.89. bn < n2

2.90. Prove that if the sequence (an) has no subsequence, which goes to
infinity, then the sequence (an) is bounded from above.

2.91. Prove that if the sequences (a2n), (a2n+1), (a3n) are convergent, then
(an) is convergent, too.

2.92. Is there any sequence (an) which has no convergent subsequence, but
(|an|) is convergent?

Let a be a real number, and an → a. Prove that

2.93. if a > 1, then ann → ∞. 2.94. if |a| < 1, then ann → 0.

2.95. if a > 0, then n
√
an → 1. 2.96. if a < −1, then ann is divergent.

2.97. Prove that if (an + bn) is convergent, and (bn) is divergent, then (an)
is divergent.

2.98. Is it true that if (an · bn) is convergent, and (bn) is divergent, then (an)
is divergent?
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2.99. Is it true that if (an/bn) is convergent, and (bn) is divergent, then (an)
is divergent?

2.100. Prove that if lim
an − 1

an + 1
= 0, then (an) is convergent, and lim an =

1.

2.101. Let’s assume that (an) satisfies that
an − 5

an + 3
→ 5

13
. Prove that an →

10.

2.102. Let’s assume that n
√
an → 0, 3. Prove that an → 0.

2.103. Let p(x) be a polynomial. Prove that
p(n+ 1)

p(n)
→ 1.

Let’s assume that the sequence an has a limit. Which statement
implies the other?

2.104. P: For all large enough n
1

n
< an Q: lim

n→∞
an > 0

2.105. P: For all large enough n
1

n
≤ an Q: lim

n→∞
an ≥ 0

2.106. P: For all large enough n
1

n
< an Q: lim

n→∞
an ≥ 0

2.107. P: For all large enough n
1

n
≤ an Q: lim

n→∞
an > 0

Let’s assume that the sequences an and bn have limits. Which
statement implies the other?

2.108. P: For all large enough n an < bn Q: lim
n→∞

an < lim
n→∞

bn

2.109. P: For all large enough n an ≤ bn Q: lim
n→∞

an ≤ lim
n→∞

bn

Which statement implies that the sequence an has a limit? Which
statement implies that the sequence an is convergent? Which state-
ment implies that the sequence an is divergent?

2.110. bn is convergent and an > bn for all large enough n.
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2.111. lim
n→∞

bn = ∞ and an > bn for all large enough n.

2.112. lim
n→∞

bn = −∞ and an > bn for all large enough n.

2.113. bn and cn are convergent and bn ≤ an ≤ cn for all large enough n.

2.114. lim
n→∞

bn = ∞ and an < bn for all large enough n.

Are the following sequences bounded from above? Find the limits
if they exist.

2.115.
1 + 2 + · · ·+ n

n
2.116.

1 + 2 + · · ·+ n

n2

2.117.

√
1 +

√
2 + · · ·+√

n

n
2.118.

√
1 +

√
2 + · · ·+√

n

n2

Are the following sequences convergent or divergent? Find the
limits if they exist.

2.119. n
√
2n + 3n 2.120. n

√
3n − 2n

2.121. n
√

7 + (−1)n 2.122. n
√
2n − n

2.123. n
√
2n + n2 2.124. n

√
2n − n2

2.125.
1− 2 + 3− · · · − 2n√

n2 + 1
2.126.

(

n− 1

3n

)n

2.127.
n3 − n2 + 1√

n6 + 1 + 100n2 + n+ 1
2.128. n

√

n3 − n2 + 1

n6 + 100n2 + n+ 1

2.129. n

√

2n + n2 + 1

3n + n3 + 1
2.130.

n2 + (−1)n

3n2 + 1

2.131.

(

1 +
1

n

)n2

2.132.
n2 − 1

n2 + 1
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2.133.
1

n3
2.134.

5n− 1

7n+ 2

2.135.
n

n+ 1
2.136.

2n6 + 3n5

7n6 − 2

2.137.
n+ 1/n

n+ 1
2.138.

7n5 + 2

5n− 1

2.139.
3n7 + 4

−5n2 + 2
2.140.

2n + 3n

4n + (−7)n

2.141.
3n5/3 + n

√
n

n1/4 + 5
√
n

2.142.
7n− 2n3

3n3 + 18n2 − 9

Which statement implies the other?

2.143. P: an is convergent and bn is con-
vergent

Q: an + bn is convergent

2.144. P: an + bn → ∞ Q: an → ∞ and bn → ∞

2.145. P: an + bn → ∞ Q: an → ∞ or bn → ∞

2.146. P: an · bn → 0 Q: an → 0 or bn → 0

2.147. P: an and bn are bounded Q: an + bn is bounded

2.148. P: an and bn are bounded Q: an · bn is bounded

2.149. Show examples of the possible behavior of the sequence an + bn if

lim
n→∞

an = ∞ and lim
n→∞

bn = −∞.

2.150. Show examples of the possible behavior of the sequence an · bn if

lim
n→∞

an = 0 and lim
n→∞

bn = ∞.

2.151. Show examples of the possible behavior of the sequence
an
bn

if

lim
n→∞

an = 0 and lim
n→∞

bn = 0.
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2.152. Show examples of the possible behavior of the sequence
an
bn

if

lim
n→∞

an = ∞ and lim
n→∞

bn = ∞.

2.153. Let’s assume that none of the terms of the sequence bn is 0. Which
statement implies the other?

P: bn → ∞ Q:
1

bn
→ 0

2.154. Which statement implies the other?

P:
an
bn

→ 1 Q: an − bn → 0

2.155. Let’s assume that an → ∞ and bn → ∞. Which statement implies the
other?

P:
an
bn

→ 1 Q: an − bn → 0

2.156. Let’s assume that an → 0 and bn → 0. Which statement implies the
other?

P:
an
bn

→ 1 Q: an − bn → 0

2.3 Monotonic Sequences

Let (an) and (bn) be two monotonic sequences. What can we say
about the monotonity of the following sequences? What additional
conditions are required for monotonity?

2.157. (an + bn) 2.158. (an − bn)

2.159. (an · bn) 2.160.

(

an
bn

)

2.161. Let a1 = 1, and an+1 =
√
2an, if n ≥ 1. Prove that the sequence an is

monotonically increasing.
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2.162. Let a1 =
1

2
, and an+1 = 1−√

1− an, if n ≥ 1. Prove that all terms of

the sequence are positive, and the sequence is monotonically decreasing.

2.163. Let a1 = 0.9, and an+1 = an− a2n, if n ≥ 1. Prove that all terms of the
sequence are positive, and the sequence is monotonically decreasing.
Prove that there is n ∈ N+ such that an < 10−6, and find such an n
number.

2.164. Let a1 > 0, and
an+1

an
> 1.1 for all n ∈ N+. Prove that there is n ∈ N+

such that an > 106, and find such an n number.

Which statement implies the other?

2.165. P: The sequence an is monotoni-
cally increasing

Q: The sequence an goes to infinity.

2.166. P: The sequence an is monotoni-
cally decreasing.

Q: The sequence an goes to minus

infinity.

2.167. Let’s assume that the terms of the sequence satisfy the inequality

an ≤ an−1 + an+1

2
if n > 1. Prove that the sequence (an) cannot

be oscillating divergent.

2.168. Let a1 = a > 0 be arbitrary, and an+1 =
1

2

(

an +
a

an

)

. Prove that

an → √
a.

Find the limits of the following recursive sequences if the limits
exist. In the recurrence formulas n ≥ 1.

2.169. a1 = 2, an+1 =
2an

1 + a2n

2.170. a1 = 1, 5, an+1 = −an + 1

2.171. a1 = 3, an+1 =
an +

5

an
2
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2.172. a1 = 6, an+1 =
an +

5

an
2

2.173. a1 = 0, an+1 =
√
2 + an

2.174. a1 = 0, an+1 =
1

2− an

2.175. a1 = 0, an+1 =
1

4− an

2.176. a1 = 0, an+1 =
1

1 + an

2.177. a1 = 1, an+1 = an +
1

an

2.178. a1 = 0, 9, an+1 = an − a2n

2.179. a1 = 1, an+1 =
√
2an

2.180. a1 = 1, an+1 = an +
1

a3n + 1

Are the following sequences bounded or monotonic? Find the limits
if they exist.

2.181.

(

1 +
1

n

)n

2.182.

(

1 +
1

n

)n+1

2.183.

(

1− 1

n

)n

2.184.

(

1 +
1

2n

)n

2.4 The Bolzano–Weierstrass theorem and

the Cauchy Criterion

2.185. Write down the negation of Cauchy’s criterion for a sequence (an).
What is the logical connection between the negation of Cauchy’s cri-
terion and the statement “(an) is divergent”, that is, which statement
implies the other?
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Which statement implies the other?

2.186. P: a2n and a2n+1 are convergentQ: an is convergent

2.187. P: a2n, a2n+1 and a3n is conver-
gent

Q: an is convergent

2.188. P: a2n → 5 Q: an → 5

Which statement implies that the sequence is convergent?

2.189. an+1 − an → 0, if n→ ∞ 2.190. |an − am| < 1

n+m
for all n,m

Which sequence has a convergent subsequence?

2.191. (−1)n 2.192.
1

n

2.193.
√
n 2.194. (−1)n

1

n

2.195. Prove that if the sequence (an) has no convergent subsequence, then
|an| → ∞.

2.196. Prove that if (an) is bounded, and all of its convergent subsequences go
to a, then an → a.

2.197. Prove that if the sequence (an) has no two subsequences going to two
different limits, then the sequence has a limit.

2.198. Prove that if |an+1 − an| ≤ 2−n for all n, then the sequence (an) is
convergent.

2.199. Let’s assume that an+1 − an → 0. Does it imply that a2n − an → 0?
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2.5 Order of Growth of the Sequences

2.200. Prove that n! ≺ nn is true.

2.201. Give the order of growth of the following sequences.

(n7), (n2 + 2n), (100
√
n),

(

n!

10

)

2.202. Insert into the order of growth n ≺ n2 ≺ n3 ≺ · · · ≺ 2n ≺ 3n ≺ · · · ≺
n! ≺ nn into the right places the sequences

√
n, 3

√
n, ..., k

√
n.

2.203. Find all of the asymptotically equal pairs among the following se-
quences.

(n!), (nn), (n! + nn), (
√
n), ( n

√
n), (

√
n+ 1), (

n
√
2)

Are the following sequences convergent or divergent? Find the
limits if they exist.

2.204.
2n

3n
2.205.

3n

2n

2.206. (1.1)n 2.207.

(

−4

5

)n

2.208.
1

(1.2)n + 1
2.209.

n+ 2√
n− 3−n

2.210.
3.01n

2n + 3n
2.211.

3n

(−3)n

2.212.
3n −√

n+ n10

2n − n
√
n+ n!

2.213.
n100

100n

2.214.
10n

n!
2.215. 0.99nn2

2.216.
n!− 3n

n10 − 2n
2.217.

1.01n

n2
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2.218.
n3

1.2n
2.219. n

√
2n + n− 1

2.220.
3n+6 + n2

2n+3
2.221.

4n + 5n

6n + (−7)n

2.6 Miscellaneous Exercises

2.222. Let an =
1

n
+

1

n
+ · · ·+ 1

n
(the sum has n terms). Since the sequences

in all terms go to 0, so the sequence an goes to 0. On the other hand

an = n · 1
n

= 1 for all n, therefore an → 1. Which of the reasonings

contains any error, and what is the error?

2.223. We know that 1 +
1

n
→ 1, and 1n = 1, therefore

(

1 +
1

n

)n

→ 1.

On the other hand, applying Bernoulli’s inequality, we can prove that
(

1 +
1

n

)n

≥ 2,

therefore the limit of

(

1 +
1

n

)n

cannot be smaller than 2.

Which of the reasonings contains any error, and what is the error?

2.224. Let’s assume that n
√
an → 2. What can we say about lim

n→∞
an?

2.225. Let’s assume that n
√
an → 1

2
. What can we say about lim

n→∞
an?

2.226. Let’s assume that n
√
an → 1. What can we say about lim

n→∞
an?

2.227. Let’s assume that an → 2. What can we say about lim
n→∞

ann?

2.228. Let’s assume that an → 1

2
. What can we say about lim

n→∞
ann?

2.229. Let’s assume that an → 1. What can we say about lim
n→∞

ann?

Show an example for a sequence an, for which is true that

lim
n→∞

an+1

an

= 1, and
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2.230. lim
n→∞

an = 1 2.231. lim
n→∞

an = ∞

2.232. lim
n→∞

an = 0 2.233. lim
n→∞

an = 7



Chapter 3

Limit and Continuity of Real

Functions

3.1 Jensen’s inequality. The function f is convex on the interval (a, b) if
and only if for arbitrarily chosen finitely many x1, x2, · · · , xn ∈ (a, b) numbers

and t1, t2, . . . , tn ≥ 0 weights, where
n
∑

i=1

ti = 1

f

(

n
∑

i=1

tixi

)

≤
n
∑

i=1

tif(xi)

holds.

3.2 Limits and inequalities.

— If there is some neighborhood of a such that f(x) ≤ g(x), and the limits
of f and g exist at a, then

lim
x→a

f(x) ≤ lim
x→a

g(x).

— If the limits of f and g exist at a, and

lim
x→a

f(x) < lim
x→a

g(x),

then in some neighborhood of a f(x) < g(x).

— Squeeze theorem. If in some neighborhood of a f(x) ≤ g(x) ≤ h(x),
and the limits of f and h exist at a, and

lim
x→a

f(x) = lim
x→a

h(x),

then the limit of g also exists at a, and

lim
x→a

f(x) = lim
x→a

g(x) = lim
x→a

h(x).

— “0 times bounded is 0”. If lim
x→a

f(x) = 0, and g(x) is bounded, then

lim
x→a

f(x)g(x) = 0.
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3.3 Continuous functions and their limits.

— The function f is continuous at a if and only if there exists the limit of
the function at a and the limit is f(a).

— The function f is continuous from right at a if and only if there exists
its right-hand side limit at a and it is f(a).

— The function f is continuous from left at a if and only if there exists
its left-hand side limit at a and it is f(a).

3.4 Continuous functions in closed interval.

— Weierstrass theorem: If a function is continuous in a bounded and
closed interval, then the function has maximum and minimum value.

— Intermediate value theorem (Bolzano’s theorem): If the func-
tion f(x) is continuous in the bounded and closed [a, b] interval, then
every value between f(a) and f(b) is attained in [a, b].

— Inverse of a continuous function: If a function is continuous and
invertible in a bounded and closed interval, then the range of the func-
tion is a closed interval, and in this interval the inverse function is
continuous.

3.5 Uniform continuity.

— Heine-Borel theorem: If a function is continuous in a bounded and
closed interval, then the function is uniformly continuous.

— The function f(x) is uniformly continuous in a bounded and open
(a, b) interval if and only if the function is continuous in (a, b) and the
lim
x→a+

f(x), lim
x→b−

f(x) finite limits exist.

— If f(x) is continuous in [a,∞), differentiable in (a,∞), and its derivative
is bounded, then f(x) is uniformly continuous in [a,∞).
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3.1 Global Properties of Functions

3.1. Let [x] be the floor of x, that is, the maximal integer which is not
greater than x. Plot the following functions!

(a) [x] (b) [−x]

(c) [x+ 0, 5] (d) [2x]

3.2. Let {x} be the fractional part of x, that is, {x} = x − [x]. Plot the
following functions!

(a) {x} (b) {−x}

(c) {x+ 0, 5} (d) {2x}

3.3. Is this a formula for a function?

D(x) =







1 if x ∈ Q

0 if x /∈ Q

3.4. Find the formulas for the following graphs!

(a)

 

1 2

 

1

(b)

 

1 2

 

1
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(c)

 

1 2

 

1

(d)

 

1 2

 

1

Determine the maximal domain of the real numbers for the follow-
ing functions!

3.5. log2 x
2 3.6.

√
x2 − 16

3.7.
√
sinx 3.8.

log2(−x)√−x

3.9. Match the formulas and the graphs!

(a) (x− 1)2 − 4 (b) (x− 2)2 + 2

(c) (x+ 2)2 + 2 (d) (x+ 3)2 − 2

(A)

 

0

1 2 3 4

 

1

2

3

4

5

6

(B)

 

K4 K3 K2 K1

0

 

1

2

3

4

5

6
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(C)

 

K5 K4 K3 K2 K1

0

 

K2

K1

1

2

(D)

 

K1

0

1 2 3

 

K4

K3

K2

K1

3.10. We plotted four transforms of the function y = −x2. Find the formulas
for the graphs!

(a)

 

K1

0

1 2 3

 

1

2

3

4 (b)

 

K4 K3 K2 K1

0

 

K1

1

2

3

(c)
 

0

1 2 3 4

 

K4

K3

K2

K1

(d)
 

K3 K2 K1

0

1

 

K5

K4

K3

K2

K1

3.11. Are there some equivalent among the following functions?
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(a) f1(x) = x (b) f2(x) =
√
x2

(c) f3(x) =
(√
x
)2

(d) f4(x) = ln ex

(e) f5(x) = eln x (f) f6(x) =
(√

−x
)2

3.12. Find the values of the following functions if f(x) = x + 5 and g(x) =

x2 − 3.

(a) f(g(0)) (b) g(f(0))

(c) f(g(x)) (d) g(f(x))

(e) f(f(−5)) (f) g(g(2))

(g) f(f(x)) (h) g(g(x))

3.13. Find the values of the following functions if f(x) = x − 1 and g(x) =
1

x+ 1

(a) f(g(1/2)) (b) g(f(1/2))

(c) f(g(x)) (d) g(f(x))

(e) f(f(2)) (f) g(g(2))

(g) f(f(x)) (h) g(g(x))

Which function is even, which one is odd, which one is both, and
which one is neither even, nor odd?

3.14. x3 3.15. x4

3.16. sinx 3.17. cosx

3.18. 2 + sinx 3.19. 2 + cosx
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3.20. 3 3.21. (x+ 1)2

3.22. 0 3.23.
∣

∣x3
∣

∣

3.24. [x] 3.25. {x}

Let’s assume that the domains of f and g are R. Which statements
are true? Explain your answers!

3.26. If f is odd, then f(0) = 0.

3.27. If f(0) = 0, then f is odd.

3.28. If f even, then f(−5) = f(5).

3.29. If f(−5) = f(5), then f is even.

3.30. If f and g even, then fg is even.

3.31. If f(−5) 6= −f(5), then f is not odd.

3.32. If f and g odd, then fg is even.

3.33. If f and g odd, then fg is odd.

3.34. Plot the graphs of the following functions! Color the intervals on the
x-axis red, where the function is monotonically decreasing. Is any of
the following functions monotonically decreasing on its whole domain?

(a) sinx (b) cosx

(c) x2 (d)
1

x

(e) |x| (f)
∣

∣x2 − 2
∣

∣
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(g) tanx (h) cotx

3.35. Is there any function in R, which is monotonically decreasing and mono-
tonically increasing? If there is such a function, find all of them!

Answer the following questions! Reason the answers!

3.36. Can the sum of two strictly monotonically increasing functions be strictly
monotonically decreasing?

3.37. Can the product of two strictly monotonically increasing functions be
strictly monotonically decreasing?

3.38. Is it true that the sum of two strictly monotonically decreasing functions
is strictly monotonically decreasing?

3.39. Is it true that the product of two strictly monotonically decreasing
functions is strictly monotonically decreasing?

Let D(f) be the domain and R(f) be the range of the f function.
Is there a monotonically increasing function such that

3.40. D(f) = (0, 1) and R(f) = [0, 1]

3.41. D(f) = [0, 1] and R(f) = (0, 1)?

3.42. Write down with logic symbols that f is bounded!

Find lower and upper bounds for the following functions if there
exist. Which functions are bounded?

3.43. x2 3.44. sinx

3.45. {x} 3.46.
[x]

x
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3.47. sin2 x 3.48. 2−x

3.49. log2 x 3.50.
1

1 + x2

Let’s assume that the domain of f is R. Write down with logic
symbols, and give examples for such an f function which

3.51. has maximum at 3! 3.52. has a maximum 3.

3.53. has a maximum! 3.54. has no maximum!

Which statement implies the other?

3.55. P: f has a maximum. Q: f is bounded from above.

3.56. P: f has no minimum. Q: f is not bounded from below.

Find the M maximum and m minimum of the following functions,
if there exist.

3.57. x2 (−∞,∞) 3.58. |x| [−1, 3]

3.59. x3 [−1, 1) 3.60. sinx (−π, π)

3.61. cosx (−π, π) 3.62. [x] [−1, 1]

3.63. [x] (−1, 1) 3.64. {x} [−1, 1]

Give an example of functions with domain R such that

3.65. the function is not bounded from above and not bounded from below.

3.66. bounded, but has no maximum and no minimum.
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Give an example of such a function whose domain is [−1, 1], and
which

3.67. is not bounded from above, and not bounded from below.

3.68. is bounded, but has no maximum and no minimum.

Is there any function such that it is

3.69. strictly monotonically decreasing in (−∞, 0), strictly monotonically in-
creasing in (0,∞), and has no minimum at 0?

3.70. monotonically decreasing in (−∞, 0], monotonically increasing in [0,∞),
and has no minimum at 0?

3.71. not bounded in [0, 1]?

3.72. bounded in [0, 1], but has no minimum, and no maximum in [0, 1]?

3.73. positive in R, but has no minimum?

Find the least positive period for the following functions!

3.74. sinx 3.75. sin(2x)

3.76. sin
x

2
3.77. tanx

3.78. sinx+ tanx 3.79. sin 2x+ tan
x

2

3.80. Prove that if p is a period for a function, then any positive integer times
p is also a period.

3.81. Is the function f(x) = 3 periodic? If yes, then find all of its periods!

3.82. Do all non-constant periodic functions have a least positive period?
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3.83. Is the Dirichlet-function

D(x) =







1 if x ∈ Q

0 if x /∈ Q

periodic? If the answer is “yes”, then give all periods!

Is the given function convex or concave in (0,∞)?

3.84. x 3.85. x2

3.86.
√
x 3.87. −x3

3.88. sinx 3.89. [x]

3.90. Let the domain of the real function f be (0, 10). Which statement
implies the other?

P: f is convex in (3, 8) Q: f is convex in (5, 7).

3.91. Give all of the functions that are both convex and concave in (1, 2)!
Is there among the functions a strictly convex or a strictly concave
function?

3.92. Let’s assume that the domain of f is (−1, 3). Which statement implies
the other?

P: f(1) ≤ f(0) + f(2)

2
Q: f is convex in (−1, 3)

3.93. Is the function
√
x convex, concave, both or neither in the interval

[0,∞)? Write down the Jensen-inequality with the weights t1 = . . . =

tn =
1

n
!

3.94. Plot the graph of x10, and the chord in the interval [1, 2]! Write down

the equation of the chord of x10 in [1, 2]! Prove that x10 ≤ 1023x−1022
is true for all x ∈ [1, 2].
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3.95. Write down the equation of the chord of the function sinx in
[π

6
,
π

2

]

.

Which number is greater:
sin(π/6) + sin(π/2)

2
or sin

π/6 + π/2

2
?

3.96. Write down the equation of the chord of the function log7x in [2, 4].

Which number is greater: log7 3 or
log7 2 + log7 4

2
?

Plot the graphs of some functions so that the function is

3.97. monotonically increasing in [1, 2] and monotonically decreasing in [3, 4],

3.98. monotonically increasing in [1, 4] and monotonically decreasing in [3, 5],

3.99. convex in [1, 4], and concave in [4, 5],

3.100. convex in [1, 4], and concave in [2, 5],

3.101. strictly monotonically increasing in [1, 2], strictly monotonically de-
creasing in [2, 4], and has a maximum at 2,

3.102. strictly monotonically increasing in [1, 2], strictly monotonically de-
creasing in [2, 4], and has a minimum at 2.

Plot the graphs of some functions so that

3.103. ∀x1 ∈ [1, 2] ∧ ∀x2 ∈ [1, 2] f(x1) = f(x2),

3.104. ∀x1 ∈ [1, 2] ∧ ∀x2 ∈ [1, 2] (x1 > x2 =⇒ f(x1) > f(x2)),

3.105. ∀x1 ∈ [1, 2] ∧ ∀x2 ∈ [1, 2] (x1 > x2 =⇒ f(x1) ≤ f(x2)),

3.106. ∀x1 ∈ [1, 2] ∧ ∀x2 ∈ [1, 2] ∃c ∈ [x1, x2] f(c) =
f(x1) + f(x2)

2
,

3.107. ∃x1 ∈ [1, 2] ∧ ∃x2 ∈ [1, 2] ∀x ∈ [1, 2] f(x) 6= f(x1) + f(x2)

2
,

3.108. ∀x1 ∈ [1, 2] ∧ ∀x2 ∈ [1, 2] f

(

x1 + x2
2

)

>
f(x1) + f(x2)

2
,
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3.109. ∀x1 ∈ [1, 2] ∧ ∀x2 ∈ [1, 2] f

(

1

4
x1 +

3

4
x2

)

<
1

4
f(x1) +

3

4
f(x2),

3.110. ∃x0 ∈ [1, 2] ∀x ∈ [1, 2] f(x) ≤ f(x0),

3.111. (∀x1 ∈ [1, 2] ∃x2 ∈ [1, 2] f(x1) < f(x2))∧(∀x1 ∈ [1, 2] ∃x2 ∈ [1, 2] f(x1)
> f(x2)).

3.112. Which of the following functions are bijective on the whole number-line?

(a) x (b) x2

(c) x3 (d)
√
x

(e) 3
√
x (f)

√

|x|

(g)
1

x
(h) f(x) =

{

1/x if x 6= 0
0 if x = 0

3.113. Give the inverses of the following functions! Plot in the same coordinate
system the inverse pairs!

(a) x3 (b) x3 + 1

(c) 2x (d) 2x − 1

Find intervals such that the function is injective in those intervals!
Find the inverses of the function in these intervals!

3.114. x2 3.115.
√
x

3.116. sinx 3.117. 2x

3.118. Find some functions that are equal to their inverses!

3.119. Which statement implies the other?

P: f is strictly monotonic Q: f has an inverse function
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3.120. Show that the function

f(x) =

{

x if x ∈ Q

−x if x /∈ Q

is not monotonic in any interval, but the function has an inverse!

3.121. Find the inverse pairs among the graphs!

(a)

 

 

(b)

 

K1

0

1

 

K

1

2

 p

1

2

 p

(c)

 

 

(d)
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(e)

 

 

(f)

 

 

(g)

 

 

(h)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K1

1

3.122. Is there a function with domain R whose graph is symmetric, and the
line of symmetry is the

(a) axis x? (b) axis y?

3.123. Which statement implies the other?

P: f is monotonically increasing
in R.

Q: f(x+ 1) ≥ f(x) for all x ∈ R

3.124. Prove that the function f(x) =
1

x
+

1

x− 1
attains each value exactly

once in (0, 1)!

3.125. Prove that if for all x ∈ R f(x+1) =
1 + f(x)

1− f(x)
, then f is periodic!

3.126. Let’s assume that f is an even function. Can f have an inverse?
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3.127. Let’s assume that f is an odd function. Does that imply that f has an
inverse?

3.128. Plot the functions f and g. Give the function g ◦ f . Is it true that g is
the inverse of f?

f(x) =











x, if x < 0

1/2 if x = 0

x+ 1 if x > 0

and g(x) =











x, if x < 0

0 if 0 ≤ x < 1

x− 1 if x ≥ 1

3.2 Limit

3.129. Do the given limits exist according to the graph? If the answer is “yes”,
find the limits!

 

0

1 2 3

 

1

(a) lim
x→1

f(x) (b) lim
x→2

f(x) (c) lim
x→3

f(x)

3.130. Do the given limits exist according to the graph? If the answer is “yes”,
find the limits!

 

K2 K1

0

1

 

K1

1
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(a) lim
x→−2

f(x) (b) lim
x→−1

f(x) (c) lim
x→0

f(x)

3.131. Which statements are true according to the graph?

 

0

1

 

K1

1

(a) lim
x→0

f(x) exists. (b) lim
x→0

f(x) = 0 (c) lim
x→0

f(x) = 1

(d) lim
x→1

f(x) = 1 (e) lim
x→1

f(x) = 0

(f) The function has a limit at each point of (−1, 1).

3.132. Which statements are true according to the graph of the function?

 

0

1 2 3

 

K2

K1

1

(a) lim
x→2

f(x) does not exist. (b) lim
x→2

f(x) = 2

(c) lim
x→1

f(x) does not exist.

(d) f(x) has a limit at each point of (−1, 1).

(e) f(x) has a limit at each point of (1, 3).

3.133. Which statements are true according the graph of the function?
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K1

0

1 2

 

1

(a) lim
x→1+

f(x) = 1 (b) lim
x→0−

f(x) = 0

(c) lim
x→0−

f(x) = 1 (d) lim
x→0−

f(x) = lim
x→0+

f(x)

(e) lim
x→0

f(x) exists. (f) lim
x→0

f(x) = 0

(g) lim
x→0

f(x) = 1 (h) lim
x→1

f(x) = 1

(i) lim
x→1

f(x) = 0 (j) lim
x→2−

f(x) = 2

(k) lim
x→1−

f(x) does not exist. (l) lim
x→2+

f(x) = 0

3.134. Write down the following statements with logic symbols! Find functions
of which the statements are true!

(a) lim
x→3

f(x) = 4 (b) lim
x→4

f(x) = ∞ (c) lim
x→5

f(x) = −∞

(d) lim
x→3+

f(x) = 4 (e) lim
x→3+

f(x) = ∞ (f) lim
x→3+

f(x) = −∞

(g) lim
x→3−

f(x) = 4 (h) lim
x→3−

f(x) = ∞ (i) lim
x→3−

f(x) = −∞

(j) lim
x→∞

f(x) = 4 (k) lim
x→∞

f(x) = ∞ (l) lim
x→∞

f(x) = −∞

(m) lim
x→−∞

f(x) = 4 (n) lim
x→−∞

f(x) = ∞ (o) lim
x→−∞

f(x) = −∞

3.135. Find the functions which have limit at 3. Which functions have the
same limit?
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(a) 5 (b) 6

(c)

{

5, if x 6= 3

6, if x = 3
(d)

{

5, if x ∈ Q

6, if x /∈ Q

(e)
1

(x− 3)2
(f)

1

cos(x− 3)

(g)
1

sin(x− 3)
(h)

1

x− 3

Find the following limits with substitution!

3.136. lim
x→3

5x 3.137. lim
x→0

5x

3.138. lim
x→1/7

(7x− 3) 3.139. lim
x→1

−2

7x− 3

3.140. lim
x→−1

3x2(7x− 3) 3.141. lim
x→1

3x2

7x− 3

3.142. lim
x→π/2

x sinx 3.143. lim
x→π

cosx

1− π

Find the following limits after simplifying the fractions!

3.144. lim
x→5

x− 5

x2 − 25
3.145. lim

x→−3

x+ 3

x2 + 4x+ 3

3.146. lim
x→−5

x2 + 3x− 10

x+ 5
3.147. lim

x→2

x2 − 7x+ 10

x− 2

3.148. lim
t→1

t2 + t− 2

t2 − 1
3.149. lim

t→−1

t2 + 3t+ 2

t2 − t− 2

3.150. lim
x→9

√
x− 3

x− 9
3.151. lim

x→4

4x− x2

2−√
x

3.152. lim
x→1

x− 1√
x+ 3− 2

3.153. lim
x→−1

√
x2 + 8− 3

x+ 1
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3.154. lim
x→1

√
x− 1

x− 1
3.155. lim

x→0

√
1 + x2 − 1

x2

Find the following trigonometric limits!

3.156. lim
x→0

sinx

x
3.157. lim

x→0

1− cosx

x2

3.158. lim
ϑ→0

sin(ϑ
√
2)

ϑ
√
2

3.159. lim
t→0

sin kt

t

3.160. lim
y→0

sin 3y

4y
3.161. lim

h→0

h

sin 3h

3.162. lim
x→0

tan 2x

x
3.163. lim

t→0

2t

tan t

Find the following limits if exist!

3.164. lim
x→0

x sinx 3.165. lim
x→0

sin
1

x

Find the limits of the following functions at ∞ and at −∞.

3.166.
2x+ 3

5x+ 7
3.167.

2x2 − 7x+ 1√
x2 + 1 + 1

3.168.
2x3 − 7x

x3 + 1
3.169.

2x+ 3

5x2 + 7

3.170.
2x2 − 7x

x3 + 1
3.171.

x−1 + x−5

x−2 − x−3

Find the (finite or infinite) limits of the following functions at ∞.

3.172.
2
√
x+ x−1

3x− 7
3.173.

2 +
√
x

2−√
x
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3.174.
2x3 − 7x

x2 + 1
3.175.

2x2 − 7x+ 1√
x3 + 3 + 7

3.176.
2x2 − 7x+ 1√
x4 + 1 + 1

3.177.
3
√
2x2 + 1 + 1√
x2 + 1 + 1

Find both the right-hand side and the left-hand side limits in each
problem!

3.178. lim
x→0+

1

3x
3.179. lim

x→0−

5

2x

3.180. lim
x→2−

3

x− 2
3.181. lim

x→3+

1

x− 3

3.182. lim
x→−8+

2x

x+ 8
3.183. lim

x→−5−

3x

2x+ 10

3.184. lim
x→7+

4

(x− 7)2
3.185. lim

x→0−

−1

x2(x+ 1)

Find the following limits!

3.186. lim
x→∞

sinx

x
3.187. lim

x→∞
ex

x

3.188. lim
x→∞

lnx

x
3.189. lim

x→∞
x2

ex

Let k be a fixed positive number. Find the following limits:

3.190. lim
x→∞

xk

ex
3.191. lim

x→∞
lnx
k
√
x

Do the limits of the following functions exist at 0? Do the right-
hand side or the left-hand side limits exist at 0?

3.192. [x] 3.193. {x}
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3.194.

{

1, if x ∈ Q

0, if x /∈ Q
3.195.

{

x, if x ∈ Q

−x, if x /∈ Q

3.196. Find a function with domain R, which has limits at exactly 2 points!

3.197. Is there any function with domain R, whose limit is infinity at infinitely
many points?

3.198. Prove that if f is not a constant, periodic function, then f has no limit
at infinity.

Have the following functions limits at infinity?

3.199. [x] 3.200. {x}

3.201. sinx 3.202. tanx

Which statement implies the other?

3.203. P: lim
x→∞

f(x) = 5 Q: lim
x→∞

f2(x) = 25

3.204. P: lim
x→∞

f(x) = −5 Q: lim
x→∞

|f(x)| = 5

3.205. P: lim
x→∞

f(x) = ∞ Q: lim
x→∞

1

f(x)
= 0

3.206. Are there any limit of

(a) the sequence an = sin(nπ)? (b) the function f(x) = sinx in in-
finity?

(c) the sequence an =

[

1

n

]

? (d) the function f(x) = [x] at 0?
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Which statement implies the other?

3.207. P: The limit of the sequence f(n)
is 5.

Q: lim
x→∞

f(x) = 5.

3.208. P: The limit of the sequence

f

(

1

n

)

is 5.

Q: lim
x→0

f(x) = 5.

3.209. P: lim
x→∞

(f(x) + g(x)) = ∞ Q: lim
x→∞

f(x)g(x) = ∞

3.210. P: lim
x→∞

(f(x) + g(x)) = ∞ Q: lim
x→∞

f(x) = ∞ or lim
x→∞

g(x) = ∞

3.211. P: lim
x→∞

f(x)g(x) = ∞ Q: lim
x→∞

f(x) = ∞ or lim
x→∞

g(x) = ∞

3.212. Let the domain of f be R. Which statement implies the other:

P: lim
x→∞

f(x) = 0 Q: The limit of f(n) is 0

if

(a) f can be any arbitrary function?

(b) f is continuous?

(c) f is monotonic?

(d) f is bounded?

3.3 Continuous Functions

3.213. Write down with logic symbols that f is continuous at 3!

Which statement implies the other?

3.214. P: f has a limit at 3. Q: f is continuous at 3.

3.215. P: f has no limit at 3. Q: f is not continuous at 3.

3.216. Are the following functions continuous at 0?
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(a) D(x) =

{

1, if x ∈ Q

0, if x /∈ Q
(b) f(x) =

{

x, if x ∈ Q

−x, if x /∈ Q

3.217. Find a function that is continuous at exactly 2 points!

3.218. The functions f and g : R → R are different at a point, but equal to
each other at all other points. Can be both functions continuous at
every point?

3.219. Let’s assume that f and g : R → R have finite limits at every point,
and their limits are equal. Does it imply that f = g in every point?
Does it imply that f = g in every point if both f and g are continuous?

3.220. Which statement implies the other?

P: f and g are continuous at 3. Q: f + g is continuous at 3.

3.221. Let’s assume that f is continuous, and g is not continuous at 3. Can

(a) f + g (b) fg

be continuous at 3?

3.222. Let’s assume that nor f , neither g is continuous at 3. Does it imply
that

(a) f + g (b) fg

is not continuous at 3?

3.223. Let’s assume that f and g are continuous at 3. Does it imply that
f

g
is

continuous at 3?

At which points are the following functions continuous?

3.224.
x2 − 4

x+ 2
3.225.

x3 − 1

x− 1
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3.226.
√
x 3.227. 3

√
x

3.228. Find a function f : R → R which is not continuous at some points, but
|f | is continuous at every point.

For what number c are the following functions continuous at 0?

3.229. f(x) =

{

x2 + 2 if x ≥ 0
mx+ c if x < 0

3.230. f(x) =

{

sinx

x
if x 6= 0

c if x = 0

3.231. f(x) =

{

x3 + x+ 1 if x > 0
ax2 + bx+ c if x ≤ 0

3.232. f(x) =

{ √
x+ 2 if x ≥ 0

(x+ c)2 if x < 0

3.233. Prove that all polynomials with degree 3 have a real root.

3.234. Let’s assume that f is continuous in [a, b]. Prove that there is a c ∈ [a, b]
such that

(a) f(c) =
f(a) + f(b)

2
(b) f(c) =

√

f(a)f(b)

3.235. Let’s assume that f is continuous in [a, b], and f(a) ≥ a and f(b) ≤ b.
Prove that there is a c ∈ [a, b] such that f(c) = c.

3.236. Let’s assume that both f and g are continuous in [a, b], and f(a) ≥ g(a)
and f(b) ≤ g(b). Prove that there is a c ∈ [a, b] such that f(c) =
g(c).

3.237. Let’s assume that f and g are continuous in [a, b], and for all x ∈ [a, b]
f(x) < g(x). Prove that there is an m > 0 such that for all x ∈ [a, b]
g(x)− f(x) ≥ m.

3.238. Find a function f : [0, 1] → R which is continuous except at one point,
and
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(a) not bounded. (b) bounded, but has no maximum.

Which statement implies the other?

3.239. P: f is continuous in [1, 2] Q: f has a maximum and a minimum
in [1, 2]

3.240. P: f is continuous in (1, 2) Q: f has a maximum and a minimum
in (1, 2)

3.241. P: f is bounded in (1, 2) Q: f has a maximum and a minimum
in (1, 2)

3.242. P: f is bounded in [1, 2] Q: f has a maximum and a minimum
in [1, 2]

Is there a function which is

3.243. not continuous in [0, 1], but has both a maximum and a minimum in
[0, 1]?

3.244. continuous in (0, 1), and has both a maximum and a minimum in (0, 1)?

3.245. continuous in (0, 1), but has neither a maximum, nor a minimum in
(0, 1)?

3.246. continuous in [0, 1], but has neither a maximum, nor a minimum in
[0, 1]?

Have the following functions got a maximum in [77, 888]?

3.247. 3x+5 sinx+
√
x 3.248. sin(2x) + cos(3x)

3.249. [x] 3.250. {x}

D(f) is the domain, and R(f) is the range of the function f . Is
there any function such that
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3.251. D(f) = (0, 1) and R(f) = [0, 1]

3.252. D(f) = [0, 1] and R(f) = (0, 1)

3.253. D(f) = [0, 1] and R(f) = [3, 4] ∪ [5, 6]

Is there any monotonically increasing function such that

3.254. D(f) = (0, 1) and R(f) = [0, 1]

3.255. D(f) = [0, 1] and R(f) = (0, 1)

3.256. D(f) = [0, 1] and R(f) = [3, 4] ∪ [5, 6]

Is there any continuous function such that

3.257. D(f) = (0, 1) and R(f) = [0, 1]

3.258. D(f) = [0, 1] and R(f) = (0, 1)

3.259. D(f) = [0, 1] and R(f) = [3, 4] ∪ [5, 6]

3.260. Prove that if a function is continuous in a (bounded) closed interval,
then the range of the function is a (bounded) closed interval.

3.261. Prove that if f is a continuous function in R, and its limit is 0 both at
infinity and minus infinity, then f is bounded!

3.262. Prove that if f is a continuous function in R, and its limit is infinity
both in infinity and minus infinity, then f has a minimum.

3.263. Prove that the equation x sinx = 100 has infinitely many roots!

At which points are the following functions continuous, or contin-
uous from left or right?
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3.264. [x] 3.265. [−x]

3.266. [x] + [−x] 3.267. [x]− [−x]

At which points are the following functions continuous?

3.268. f(x) =















cos
1

x
if x 6= 0

0 if x = 0

3.269. f(x) =















x sin
1

x
if x 6= 0

0 if x = 0

Are the following functions uniformly continuous in the given in-
tervals?

3.270. f(x) = x2 (−∞,∞), [−2, 2], (−2, 2)

3.271. f(x) =
1

x
(0,∞), [1, 2], (1, 2), [1,∞)



Chapter 4

Differential Calculus and its

Applications

4.1 The function f has a tangent line at point a if and only if f is differen-
tiable at a. The equation of the tangent line is

y = f ′(a)(x− a) + f(a).

4.2 If f(x) is differentiable at a, then the function is continuous at a.

The converse of the theorem is not true: for example, f(x) = |x| is continuous
at 0, but not differentiable at 0!

4.3 Derivative rules. If f and g are differentiable at a, then

— for any c ∈ R c · f is differentiable at a, and

(c · f)′(a) = c · f ′(a)

— f + g is differentiable at a, and

(f + g)′(a) = f ′(a) + g′(a)

— f · g is differentiable at a, and

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a)

— if g(a) 6= 0, then
f

g
is differentiable at a, and

(

f

g

)′
(a) =

f ′(a) · g(a)− f(a) · g′(a)
g2(a)
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4.4 Chain rule. If g is differentiable at a, and f is differentiable at g(a),
then f ◦ g is differentiable at a, and

(f ◦ g)′(a) = f ′(g(a)) · g′(a).

4.5 Derivative of the inverse function. If f is continuous and has an
inverse in a neighbourhood of the point a, and it is differentiable at a, and
f ′(a) 6= 0, then f−1 is differentiable at f(a), and

(f−1)′(f(a)) =
1

f ′(a)
.

4.6 Mean value theorems.

— Rolle’s theorem. If f is continuous on a closed interval [a, b], and
differentiable on the open interval (a, b), and f(a) = f(b), then there
exists a c ∈ (a, b) such that f ′(c) = 0.

— Mean value theorem. If f is continuous on the closed interval [a, b],
and differentiable on the open interval (a, b), then there exists a c ∈
(a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Therefore, for any function that is continuous on [a, b], and differen-
tiable on (a, b) there exists a c ∈ (a, b) such that the secant joining the
endpoints of the interval [a, b] is parallel to the tangent at c.

— Cauchy’s theorem. If f and g are continuous on the closed interval
[a, b], differentiable on the open interval (a, b), and for any x ∈ (a, b)
g′(x) 6= 0, then there exists a c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

— Basic theorem of antiderivatives. If f and g are continuous on the
closed interval [a, b], differentiable on the open interval (a, b), and if for
∀x ∈ (a, b) f ′(x) = g′(x), then f − g is constant.

4.7 Darboux’s theorem. If f is differentiable on (a, b), differentiable from
the right-hand side at a and from the left hand-side at b, then the range of
the derivative function f ′(x) contains each value between f ′+(a) and f

′
−(b).

4.8 Relationship between monotonicity and derivative. Let f(x) be
continuous on [a, b], and differentiable on (a, b).



4. Differential Calculus and its Applications 74

— f(x) is monotonically increasing on [a, b] if and only if for all x ∈ (a, b)
f ′(x) ≥ 0.

— If for all x ∈ (a, b) f ′(x) > 0, then f(x) is strictly monotonically in-
creasing on [a, b].

The converse of the statement is not true, for example f(x) = x3 is
strictly monotonically increasing, but f ′(0) = 0.

— f(x) is strictly monotonically increasing on [a, b] if and only if for all
x ∈ (a, b) f ′(x) ≥ 0 and for all a < c < d < b f ′(x) has only finitely
many roots on (c, d).

4.9 Relationship between local extrema and derivative. Let’s assume
that f(x) is differentiable at a.

— If f(x) has a local extremum (maximum or minimum) at a, then f ′(a) =
0.

— If f(x) is differentiable in a neighbourhood of a, f ′(a) = 0 and f ′(x)
changes sign at a, then f(x) has a local extremum at a, namely

− (strict) local maximum if x < a implies (f ′(x) > 0) f ′(x) ≥ 0 and
x > a implies (f ′(x) < 0) f ′(x) ≤ 0,

− (strict) local minimum if x < a implies (f ′(x) < 0) f ′(x) ≤ 0 and
x > a implies (f ′(x) > 0) f ′(x) ≥ 0.

— If f(x) is differentiable two times at a, f ′(a) = 0 and f ′′(a) 6= 0, then
f(x) has a local extremum at a, namely
− strict local maximum if f”(a) < 0,
− strict local minimum if f”(a) > 0.

4.10 Relationship between convexity and derivative. Let’s assume
that f(x) is differentiable on (a, b).

— f(x) is (strictly) convex on (a, b) if and only if f ′(x) is (strictly) mono-
tonically increasing on (a, b).

— f(x) is (strictly) concave on (a, b) if and only if f ′(x) is (strictly) mono-
tonically decreasing on (a, b).

— f(x) has an inflection point at c ∈ (a, b) if and only if f ′(x) has local
extremum at c.

4.11 L’Hospital’s rule. Let’s assume that f and g are differentiable in
a punctured neighbourhood of a, f and g have limits at a, and either both
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limits are 0 or both limits are ∞, that is, the limit of the quotient of the two

function is critical. In this case if there exists the limit lim
x→a

f ′(x)

g′(x)
, then

also exists the limit lim
x→a

f(x)

g(x)
, and

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)
.

This theorem is also valid for one-sided limits or limits at infinity or minus
infinity.

4.1 The Concept of Derivative

4.1. Find the derivative of
√
x and 3

√
x at point x = a using the definition!

What is the domain, where are the functions
√
x and 3

√
x continuous,

and where are they differentiable? Give the derivatives!

4.2. Let’s assume that

lim
x→3

f(x)− f(3)

x− 3
= 4.

Does it imply that f is continuous at 3?

4.3. Let’s assume that f is continuous at 3. Does it imply that the limit

lim
x→3

f(x)− f(3)

x− 3

exists and it is finite?

Find the following limits!

4.4. lim
h→0

(x+ h)2 − x2

h
4.5. lim

h→0

√
x+ h−√

x

h

4.6. lim
h→0

1/(x+ h)− 1/x

h
4.7. lim

h→0

(x+ h)3 − x3

h
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4.8. lim
x→x0

x2 − x20
x− x0

4.9. lim
x→x0

√
x−√

x0
x− x0

4.10. lim
x→x0

1/x− 1/x0
x− x0

4.11. lim
x→x0

x3 − x30
x− x0

Where are the following functions continuous and differentiable?

4.12. |x| 4.13.
∣

∣x3
∣

∣

4.14.
∣

∣x2 − 1
∣

∣
4.15.

∣

∣

3
√
x
∣

∣

For which values of b and c are the following functions differentiable
at 3? Find the derivatives!

4.16. f(x) =

{

x if x ≥ 3
bx2 − c if x < 3

4.17. g(x) =

{

x2 if x ≤ 3
b− cx if x > 3

4.18. h(x) =

{

(1− x)(2− x) if x ≥ −3
bx+ c if x < −3

At which points are the following functions differentiable? At which
points are the derivatives continuous?

4.19. f(x) =

{

x sin
1

x
if x 6= 0

0 if x = 0

4.20. f(x) =

{

x2 sin
1

x
if x 6= 0

0 if x = 0

4.21. f(x) =
∣

∣x3
∣

∣

4.22. f(x) = {x} sinπx

4.23. f(x) = [x] sin2 πx
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4.24. f(x) =

{

−x2 if x ≤ 0
x2 if x > 0

4.25. f(x) =











1− x if x < 1

(1− x)(2− x) if 1 ≤ x ≤ 2

−(2− x) if 2 < x

4.26. f(x) =

(

{x} − 1

2

)2

, where {x} denotes the fraction part of x.

4.27. f(x) = [x] sinπx, where [x] denotes the integer part of x.

4.28. Which of the following graph belongs to f(x) = sin2 x and which one
to g(x) = |sinx|?

(a)

 

 

(b)

 

 

Find the first, second, . . .nth derivatives of the following functions!

4.29. x6 4.30.
1

x
4.31. sinx 4.32. cosx

4.2 The Rules of the Derivative

Which statement implies the other?

4.33. P: f is even. Q: f ′ is odd.

4.34. P: f is odd. Q: f ′ is even.

Let’s assume that the function f is differentiable. Which statement
implies the other?



4. Differential Calculus and its Applications 78

4.35. P: f is periodic. Q: f ′ is periodic.

4.36. P: lim
x→∞

f(x) = 0 Q: lim
x→∞

f ′(x) = 0

4.37. P: lim
x→∞

f(x) = ∞ Q: lim
x→∞

f ′(x) = ∞

4.38. P: f is differentiable at a Q: lim
h→0

f(a+ h)− f(a− h)

2h
exists.

Find the points where the tangent line of sinx is parallel to the

4.39. x-axis; 4.40. line y = x.

4.41. Give the equation of the tangent line of the graph of cosx at point

x =
π

3
.

4.42. Give the equation of the tangent line of the graph of f(x) = x3− 2x2+
3x+ 4 at point (1; 6).

4.43. Where is the tangent line of the graph of 2x3 − 6x2 + 8 horizontal?

4.44. Find those tangent lines of the graph of 2x3−6x2+8 whose angle with
the x-axis is 45 degree and 30 degree!

4.45. What is the angle between the graph of x2 and the line y = 2x, that is,
what is the angle between the tangent line and the line y = 2x at the
intersection point?

4.46. Prove that the curves x2−y2 = a and xy = b are perpendicular, that is,
their tangent lines are perpendicular to each other at the intersection
point!

4.47. Where is the tangent line of the graph of 3
√
sinx vertical?

4.48. In the following figure one of the graphs is the graph of tanx, and the

other is the graph of x3. Which graph belongs to tanx, and which to
x3?
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(a)

 

 

(b)

 

 

4.49. The position-time function of a car is s(t) = 3t2 + 5t + 8. Find the
instanteneous velocity at t = 3. Find the velocity-time function!

4.50. The velocity-time function of a car is v(t) = 5t+ 3. Find the instanta-
neous velocity of the car at t = 7. Give the acceleration-time function!

4.51. The displacement-velocity of vibrating mass point is y(t) = 5 sin t.
Give the velocity-time and acceleration-time functions!

Find the domain of the following functions! Find the derivatives
and the domains of the derivatives as well!

4.52. 3x8 − 3

4
x6 + 2 4.53.

5x+ 3

2x− 1

4.54. x+
1

x
+

√
x 4.55. 3x2 −

3
√
x

5
+ 7

4.56.

√

x

√

x
√
x 4.57.

√

x+

√

x+
√
x

4.58. 4 sinx 4.59.
sinx+ cosx

3

4.60. sin
(

x22
)

4.61. (sinx)
22

4.62.
sinx− x cosx

cosx+ x sinx
4.63. 4x3 tan(x2 + 1)
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4.64.
sinx

cosx
4.65. sin

1

x

4.66. x sinx 4.67. (3x5 + 1) cos x

4.68. xx 4.69. x
√
x

4.70. x−x 4.71. e
√
x

4.72. x
√

x2 + 1 4.73. e−3x2

4.74. log4 x 4.75. logx 4

4.76. ln(lnx) 4.77.
1

2
ln
x+ 1

x− 1

4.78. ln
(

x+
√

x2 + 1
)

, (x > 1)

4.79. ln
(

ex +
√

1 + e2x2

)

4.80. 4 sinhx 4.81.
sinhx+ coshx

3

4.82. sinh
(

x22
)

4.83. (sinhx)
22

4.84.
sinhx− x coshx

coshx+ x sinhx
4.85. 4x3 tanh(x2 + 1)

4.86.
sinhx

coshx
4.87. sinh

1

x

4.88. x sinhx 4.89. (3x5 + 1) coshx

4.90. log3 x · cosx 4.91.
sinx+ 2 lnx√

x+ 1

4.92.
x2ex − 3x lnx+ cosπ

x2 + 1
4.93. ln

(

sinx+ cos2 x
)

4.94.
cos(3x) + 5

ln(sinx) + x2
4.95. (sinx)cos x
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4.96. ln(sinx) 4.97. xtan x

Show that the following functions have inverses on an adequate
interval, and find the derivatives of the inverses at the given points!

4.98. x+ sinx, a = 1 + π/2 4.99. 3x3 + x, a = 4

4.100. f(x) = x5 + x2, a = 2 4.101. −2x3 +
√
x, a = −1

Find the derivatives of the inverses of the following trigonometric
functions!

4.102. arcsinx 4.103. arccosx

4.104. arctanx 4.105. arccotx

Where are the following functions differentiable, and what are the
derivatives?

4.106. arcsin(cosx) 4.107. sin(arccosx)

4.108. arctan(sinx) 4.109. tan(arcsinx)

4.110. arsinh(coshx) 4.111. sinh(arcoshx)

4.112. artanh(sinhx) 4.113. tanh(arsinhx)

Find the following limits if they exist!

4.114. lim
x→π/6

2 sinx− 1

6x− π
4.115. lim

x→π/2

sinx− 2/(πx)

cosx

4.116. lim
x→π/2

cosx

x− π/2
4.117. lim

x→0

ex − 1

x

Find the following limits if they exist!
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4.118. lim
n→∞

n

(

√

n+ 1

n
− 1

)

4.119. lim
n→∞

n

(

cos
1

n
− 1

)

4.120. lim
n→∞

ne1/n − 1 4.121. lim
n→∞

n2 sin
1

n

(

n
√
e− 1

)

Find the second derivatives of the following functions!

4.122. x3 + 2x2 + x+ 1 4.123. esin x

4.124. ln cosx 4.125. arctan
1

x

4.3 Mean Value Theorems, L’Hospital’s

Rule

4.126. Is there any function whose derivative is [x], that is, the integer part of
x on the interval [−3, 5]?

4.127. Is there any function whose derivative is not continuous?

4.128. Let’s f(x) = arctanx, g(x) = arctan
1 + x

1− x
and h(x) = f(x) − g(x).

Prove that h′(x) = 0. Does it imply that h(x) is a constant function?
Calculate h(0), and the limit lim

x→∞
h(x). Explain the results!

4.129. Let’s assume that f and g are differentiable functions, and f(0) ≥ g(0),

and for all x ∈ R f ′(x) > g′(x). Prove that f(x) > g(x), if x > 0.

How many roots do the following equations have?

4.130. x3 + 2x+ 4 = 0 4.131. x5 − 5x+ 2 = 0

4.132. ex = 2x+ 2 4.133. sinx =
x

2

Find the following limits!
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4.134. lim
x→∞

x
(π

2
− arctanx

)

4.135. lim
x→0

x

ln(1 + x)

4.136. lim
x→π/2

1− sinx

1 + cos 2x
4.137. lim

x→0+

x

sin
√
x

4.138. lim
x→0+

lnx

cotx
4.139. lim

x→∞
x+ lnx

x+ 1

4.140. lim
x→−∞

x+ 1

e−x
4.141. lim

x→0

sinx− x

tanx− x

4.142. lim
x→0

x cotx− 1

x2
4.143. lim

x→0

(

cotx− 1

x

)

4.144. lim
x→0

(1 + x)
1/x

4.145. lim
x→0

(

sinx

x

)1/x2

4.146. lim
x→0

(

1 + ex

2

)cot x

4.147. lim
x→∞

x3 + x2 + 1

ex

4.148. lim
x→∞

lnx√
x

4.149. lim
x→∞

x sin
1

x+ 1

4.150. lim
x→0

coshx− cosx

x2
4.151. lim

x→∞
1 + arctanx

sinhx+ coshx

4.152. Calculate the limit lim
x→0

sinx

x+ 1
.

Solution: Applying L’Hospital’s rule:

lim
x→0

sinx

x+ 1
= lim
x→0

cosx

1
= 1

Find the error!

4.153. Calculate the limit a lim
x→0

x+ 1

2x+ 2
.

Solution: Applying L’Hospital’s rule:

lim
x→0

x+ 1

2x+ 2
= lim
x→0

1

2
=

1

2

Find the error!
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4.154. Calculate the limit lim
x→∞

sinx

x
.

Solution: Applying L’Hospital’s rule:

lim
x→∞

sinx

x
= lim
x→∞

cosx

1
= lim
x→∞

cosx. The limit does not exist.

Find the error!

4.4 Finding Extrema

Find the extrema of the following functions on the given intervals!

4.155. x3 − 12x [−10; 3], [0; 3]

4.156. x3 + 2x5 [−1, 4], [2, 5], [−7, 3]

4.157. For a thin lens the object (t) and image (k) distances are related by the
equation

1

f
=

1

t
+

1

k
,

where f is the focal length. Find the value of t for the given f such
that t+ k is maximal or minimal.

4.158. At a projectile motion the particle is thrown obliquely from the earth
surface. The angle between the initial velocity v0 and the horizontal
line is α. The length of the motion is

2v20
g

sinα cosα.

Find α for the given v0 such that the length of the motion is maximal!

4.159. Which of the rectangles has the maximal area in a right-angled, isosceles
triangle? And which of them has the maximal perimeter?

We examine only those rectangles, which have two vertices on the hy-
potenuse of the triangle, and the other vertices are on the legs.

4.160. Find the radius R and the height m of a right circular cone with given
generatrix a such that the volume of the cone is maximal!
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4.161. Which of the rectangles with area 16 cm2 has the minimal perimeter?
Find the sides of this rectangle!

4.162. Why has the square the maximal area among the rectangles with perime-
ter 8?

4.163. What can the area of a right-angled triangle be at most, if the sum of
its one leg and its hypotenuse is 10 cm?

4.164. One side of a rectangle is on the x-axis, and the two upper vertices are

on the parabola y = 12 − x2. Find the maximum of the area of these
kinds of rectangles!

4.165. We want to make an upper open box from a 8 x 15 dm cardboard, so we
cut out congruent squares from the cardboard’s corners, and turn up
the sides. What are the sides of the box with maximal volume? What
is this maximal volume?

4.166. The two vertices of a triangle in a coordinate system’s first quarter are
(a, 0) and (0, b), and the length of the side connecting these two vertices
is 20 length unit. Prove that the area of the triangle is maximal, if a = b.

4.167. There is a farm alongside a river. We want to enclose a rectangle for
the animals. One side of the rectangle is the river, and we want to build
an electric fence along the other three sides, for which we have 800m
length of electric wire. Find the side of the rectangle for the maximal
area! What is the maximal area?

4.168. Find the R radius and the m height of a cylinder with given volume V
such that the surface area of the cylinder is maximal!

4.169. We should fence a rectangle plantation, which has 216 m2 area, then
we should divide the rectangle to two equal parts with a fence parallel
to one of the sides of the rectangle. Find the side of the rectangle such
that the length of the fence is minimal. What is the length of the fence
in this case?
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4.5 Examination of Functions

Let’s assume that f is differentiable on R. Which statement implies
the other?

4.170. P: f ′(a) = 0 Q: f has a local extremum at a

4.171. P: f ′(a) 6= 0 Q: f has no local extremum in a

4.172. P: f ′(x) ≥ 0 on (3, 5) Q: f is monotonically increasing on
(3, 5)

4.173. P: f ′(x) > 0 on (3, 5) Q: f is strictly increasing on (3, 5)

Let’s assume that f is two times differentiable on R. Which state-
ment implies the other?

4.174. P: f ′′(a) > 0 Q: f has a local minimum at a

4.175. P: f ′(a) = 0 and f ′′(a) > 0 Q: f has a local minimum at a

4.176. P: f ′′(a) = 0 Q: f has an inflection point at a

4.177. P: f ′′(a) = 0 Q: f has an inflection point or
local extremum at a

4.178. P: f ′′(x) ≥ 0 on (3, 5) Q: f is convex on (3, 5)

4.179. P: f ′′(x) > 0 on (3, 5) Q: f is strictly convex on (3, 5)

On which intervals are the following functions monotonically in-
creasing or decreasing? Find the local extremum as well!

4.180. f(x) = −x2 − 3x+ 23 4.181. f(x) = 2x3 − 18x+ 23

4.182. f(x) = x4 − 4x3 + 4x2 + 23

4.183. f(x) = x
√

9− x2
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4.184. f(x) = x2
√
5− x 4.185. f(x) =

x2 − 9

x− 2

Find the local extrema of the following functions and the types of
the extrema!

4.186. y = xe−x 4.187. y = 2 + x− x2

4.188. y = x3 − 6x2 + 9x− 4 4.189. y = x+ sinx

Analyze the following functions!

4.190. f(x) = x+
1

x
4.191. f(x) = x− 1

x2

4.192. f(x) =
1

1 + x2
4.193. f(x) =

x

1 + x2

4.194. f(x) =
x+ 1

1 + x2
4.195. f(x) =

x3

x2 + 1

4.196. f(x) =
x3

x2 − 1
4.197. f(x) = x+

2x

x2 − 1

4.198. f(x) =
1

x2
− 1

(x− 12)
4.199. f(x) =

x
√
1− x

1 + x

Plot the graphs of the following functions!

4.200. f(x) = 6− 2x− x2 4.201. f(x) = x3 − 3x+ 3

4.202. f(x) = x(6− 2x)2 4.203. f(x) = 1− 9x− 6x2 − x3

4.204. f(x) = (x− 2)3 + 1

4.205. f(x) = 1− (x+ 1)3
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4.6 Elementary Functions

Analyze the following functions!

4.206. x2n, n ∈ N+ 4.207. x2n+1, n ∈ N+

4.208. x−2n, n ∈ N+ 4.209. x−(2n+1), n ∈ N+

4.210. 2n
√
x, n ∈ N+ 4.211. 2n+1

√
x, n ∈ N+

4.212. ax, (a > 1) 4.213. ax, (0 < a < 1)

4.214. loga x, (a > 1) 4.215. loga x, (0 < a < 1)

4.216. sinx 4.217. tanx

4.218. arcsinx 4.219. arctanx

4.220. sinhx =
ex − e−x

2
4.221. coshx =

ex + e−x

2

4.222. arsinhx 4.223. arcoshx

Find the following values!

4.224. 2
ln 100
ln 2 4.225.

(

1

9

)− log3 7

4.226. arcsin

√
3

2
4.227. arctan(−1)

4.228. arccos(cos(9π)) 4.229. sin

(

arcsin
1

3

)

4.230. tan(arctan 100) 4.231. arcsin(sin 3)

Are the following functions periodic? If “yes”, find a period!
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4.232. tan(10x) 4.233. cot(πx)

4.234. sin
x

5
4.235. cos

x

2
+ tan

x

3

4.236. There are the graphs of some functions below. Find the formulas be-
longing to the graphs!

sinhx, coshx, ex, e−x, log3 x, log0,5 x, ln(−x), x3, x−3

(a)

 

 

(b)

 

 

(c)

 

 

(d)
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(e)

 

 

(f)

 

 

4.237. There are the graphs of some functions below. Find the formulas be-
longing to the graphs!

sinx, cos 2x, 2 sinx, sin(x− 2), − cosx, tanx, cotx,

sin2 x, |cosx|

(a)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K1

1

(b)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K1

1

(c)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

1

(d)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K1

1
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(e)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K3

K2

K1

1

2

3

(f)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K2

K1

1

2

4.238. There are the graphs of some functions below. Find the formulas be-
longing to the graphs!

arcsinx, arccosx, arctanx, arccotx

sin(arcsinx), arcsin(sinx), tan(arctanx), arctan(tanx)

(a)

 

K1

0

1

 

1

2

 p

p

(b)

 

K1

0

1

 

K

1

2

 p

1

2

 p

(c)

 

K3 K2 K1

0

1 2 3

 

1

2

 p

p

(d)

 

K3 K2 K1

0

1 2 3

 

K

1

2

 p

1

2

 p
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(e)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K

1

2

 p

1

2

 p

(f)

 

K3 K2 K1

0

1 2 3

 

K1

1

(g)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K1

1

(h)

 

K3 K2 K1

0

1 2 3

 

K3

K2

K1

1

2

3

4.239. There are the graphs of some functions below. Find the formulas be-
longing to the graphs!

sin(arccosx), arccos(sinx), cos(arcsinx), arcsin(cosx)

tan(arccotx), arccot(tanx), cot(arctanx), arctan(cotx)

(a)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

1

2

 p

p

(b)

 

K3 K2 K1

0

1 2 3

 

1
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(c)

 

K3 K2 K1

0

1 2 3

 

1

(d)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K

1

2

 p

1

2

 p

(e)

 

K3 K2 K1

0

1 2 3

 

K3

K2

K1

1

2

3

(f)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

1

2

 p

p

(g)

 

Kp

K

1

2

 p

0

1

2

 p

p

 

K

1

2

 p

1

2

 p

(h)

 

K3 K2 K1

0

1 2 3

 

K3

K2

K1

1

2

3



Chapter 5

Riemann Integral

5.1 Basic antiderivatives.
∫

xα dx =
1

α+ 1
xα+1 + C (α 6= −1)

∫

1

x
dx = ln |x|+ C

∫

ax dx =
1

ln a
ax + C (a 6= 1)

∫

ex dx = ex + C

∫

cosx dx = sinx+ C

∫

sinx dx = − cosx+ C

∫

1

cos2 x
dx = tanx+ C

∫

1

sin2 x
dx = − cotx+ C

∫

1√
1− x2

dx = arcsinx+ C

∫

1

1 + x2
dx = arctanx+ C

∫

coshx dx = sinhx+ C

∫

sinhx dx = coshx+ C

∫

1√
1 + x2

dx = arsinhx+ C

∫

1√
x2 − 1

dx = arcoshx+ C

5.2 Rules of integration

— If f and g have primitive functions, then f + g and c · f have one, too,
namely

∫

(f + g) =

∫

f +

∫

g,

∫

c · f = c

∫

f.

— If F is a primitive function of f , then for all a, b ∈ R, a 6= 0

∫

f(ax+ b) dx =
1

a
F (ax+ b) + C.
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— If f is differentiable and positive everywhere, then

∫

fα(x)f ′(x) dx =
fα+1(x)

α+ 1
+ C (α 6= −1).

— If f is differentiable and not equal to zero at any point, then

∫

f ′(x)

f(x)
dx = ln |f(x)|+ C.

— Integration by parts:

If f and g are differentiable and fg′ has a primitive function, then f ′g
has a primitive function, too, and

∫

f ′g = fg −
∫

fg′.

— Integration by substitution:

If g(x) is differentiable, and the range of g is part of the domain of
f , and f has primitive function there, then the composite function
f(g(x)) · g′(x) has a primitive function, and

∫

f(g(x)) · g′(x) dx = F (g(x)) + C,

where F (y) is one of the primitive functions of f(y).

5.3 The fundamental theorem of calculus (Newton-Leibniz for-
mula). If f is integrable on the closed interval [a, b], has a primitive function
F on the open interval (a, b), and continuous on the closed interval [a, b], then

b
∫

a

f(x) dx = F (b)− F (a),

.

5.4 Integral transform. If f is continuous on [a, b], g : [c, d] → [a, b] is
continuously differentiable, and g(c) = a and g(d) = b, then

b
∫

a

f(x) dx =

d
∫

c

f(g(t))g′(t) dt.
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The advantage of the formula above is that we don’t have to know the inverse
of g, it is enough to determine the points c and d.

5.5 Applications of integration.

— The area below of the graph of a function. If f : [a, b] → R is
integrable and not negative at any points, then the domain

A = {(x; y) : x ∈ [a, b], 0 ≤ y ≤ f(x)}

has an area and

t(A) =

b
∫

a

f(x) dx.

— Area between two functions. If f and g are integrable functions on
[a, b], and for all x ∈ [a, b] g(x) ≥ f(x), then the domain between the
two graphs

N = {(x; y) : x ∈ [a, b], f(x) ≤ y ≤ g(x)}

has an area, and

t(N) =

b
∫

a

(g(x)− f(x)) dx.

— Polar integration: area of a sector-like domain. If the domain S
is bounded by the curve given by the polar equation r = r(ϕ), ϕ ∈ [α, β]
and by two lines connecting the origin and the endpoints of the curve,
and r(ϕ) is integrable, then S has an area, and

t(S) =
1

2

β
∫

α

r2(ϕ) dϕ.

— Length of the function graph. If the function f is continuously
differentiable on [a, b], then the graph of the function has a length, and

L =

b
∫

a

√

1 + (f ′(x))2 dx.

— Volume of a solid of revolution. If f : [a, b] → R is integrable and
not negative at any points, then the solid of revolution

A =
{

(x; y; z) : a ≤ x ≤ b, y2 + z2 ≤ f2(x)
}
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has a volume, and

V = π

b
∫

a

f2(x) dx

5.6 Comparison test. If f and g are integrable on every closed and

bounded subinterval of [a,∞), x ∈ [a,∞) implies |f(x)| ≤ g(x), and

∞
∫

a

g(x) dx

is convergent, then

∞
∫

a

f(x) dx is (absolute) convergent.

5.7 Limit comparison test. If f and g are positive and integrable functions
on every bounded and closed subinterval of [a,∞), the limit

lim
x→∞

f(x)

g(x)
= L

exists and 0 < L <∞, then the improper integrals

∞
∫

a

f(x) dx and

∞
∫

a

g(x) dx

are both convergent or both divergent.

The criteria of convergence above can be worded for improper integrals on
bounded intervals, too.

5.1 Indefinite Integral

5.1. There are functions on the left-hand side column, and their derivatives
on the right-hand side column. Find the corresponding pairs!

x3 − 4x, x3, x+ sinx, tanx, e−x
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(1)

K2 0 2

10

20 (A)

K10 0 10

1

2

(2)

K2

0

2

K10

10

(B)
K2 2

K20

K10

(3)

K1

0

1

K2

2

(C)

K2

0

2

2,5

5,0
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(4)

K2

0

2

K2,5

2,5

(D)

K1

0

1

2

4

(5)

K10

0

10

K10

10

(E)

K2

0

2

10

20

Find the following indefinite integrals!

5.2.

∫

sin(x+ 3) dx 5.3.

∫

(1 + x+ 5x2) dx

5.4.

∫ √
x+ 2 dx 5.5.

∫

(sinx+ cosx)
2
dx

5.6.

∫

1

(x+ 2)3
dx 5.7.

∫

e2x+3 dx

Find the following indefinite integrals by using the basic antideriva-
tives, or linear substitution! Always verify the result by derivation!
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5.8.

∫

x3/2 dx 5.9.

∫ (√
x+

1

x

)

dx

5.10.

∫ −5

x− 7
dx 5.11.

∫

x5 − 3x3 + x− 2

x2
dx

5.12.

∫

sin 2x+ 3 cosx dx 5.13.

∫

2x dx

5.14.

∫

e2x−3 dx 5.15.

∫

e−x + 3 cos
x

2
dx

Find the following integrals applying the formulas for the special

forms

∫

f ′

f
or

∫

faf ′. Always verify the result by derivation!

5.16.

∫

x2

x3 + 1
dx 5.17.

∫

ln2 x · 1
x
dx

5.18.

∫

2x+ 1√
x2 + x+ 1

dx 5.19.

∫

x
√

x2 + 1 dx

5.20.

∫

x√
x2 + 1

dx 5.21.

∫

1

x lnx
dx

5.22.

∫

1

(1 + x2) arctanx
dx 5.23.

∫

sinx

cos2013 x
dx

There are quadratic expressions in the following denominators.
Solve the integrals by partial fraction decomposition or the form
f ′

f
, or by using the basic antiderivative formula for

∫

1

1 + x2
dx.

Always verify the result by derivation!

5.24.

∫

1

2 + x2
dx 5.25.

∫

4

5 + 6x2
dx

5.26.

∫

1

4− x2
dx 5.27.

∫

1

4− 9x2
dx
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5.28.

∫

3

(x+ 3)(x+ 2)
dx 5.29.

∫

3

(x+ 3)(2− x)
dx

5.30.

∫

1

10− x2
dx 5.31.

∫

1

10 + x2
dx

5.32.

∫

x− 2

x2 − 2x+ 6
dx 5.33.

∫

x

x2 − 2x+ 6
dx

5.34.

∫

x2 + 1

x2 − 1
dx 5.35.

∫

x2 − 1

x2 + 1
dx

5.36.

∫

3x3 + 2x− 1

x2 − x− 6
dx 5.37.

∫

3x2 + 2x− 1

x2 − 2x+ 6
dx

5.38.

∫

x4 + 2

x2 + 1
dx 5.39.

∫

x4 − 2

x2 − 1
dx

Integrate the following rational fraction functions!

5.40.

∫

1

x3 + x2
dx 5.41.

∫

1

x3 + x
dx

5.42.

∫

x

x2 − 2x+ 5
dx 5.43.

∫

x

x2 − 2x− 3
dx

5.44.

∫

x+ 2

x− 1
dx 5.45.

∫

x2 + 2

x− 1
dx

5.46.

∫

x2 − 2

x+ 1
dx 5.47.

∫

3x2 + 2

x3 + 2x
dx

5.48.

∫

x+ 2

x2 + 2x+ 2
dx 5.49.

∫

2

(x− 1)2
dx

Find the following indefinite integrals using the basic antideriva-

tives recognizing the special forms

∫

f ′

f
or

∫

f ′fa, or using trigono-

metric formulas! Always verify the results by derivation!

5.50.

∫

sin2 x dx 5.51.

∫

cos2 2x dx
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5.52.

∫

3

cos2 x
dx 5.53.

∫

4

sin2(3x− 5)
dx

5.54.

∫

5

cos2(1− x)
dx 5.55.

∫

tanx dx

5.56.

∫

(sinx+ cosx)2

sin2 x
dx 5.57.

∫

(sinx− cosx)2

cos2 x
dx

5.58.

∫

sin2 2x+ 1

cos2 x
dx 5.59.

∫ √
1 + sinx dx

Find the following indefinite integrals by using integration by parts!

5.60.

∫

x cosx dx 5.61.

∫

x2 sinx dx

5.62.

∫

ex sinx dx 5.63.

∫

x2e−x dx

5.64.

∫

arctanx dx 5.65.

∫

x arctanx dx

5.66.

∫

x sinhx dx 5.67.

∫

x ln2 x dx

5.68.

∫

x ln
1 + x

1− x
dx 5.69.

∫

sin 3x · cos 4x dx

5.70. Is the following integration by parts correct? If yes, then 0 = 1?

∫

1

x
· 1

lnx
dx = lnx · 1

lnx
−
∫

lnx ·
− 1

x
ln2 x

dx = 1 +

∫

1

x
· 1

lnx
dx

Find the following indefinite integrals by the given substitutions!

5.71.

∫

xex
2

dx, t = x2
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5.72.

∫

x2
√

x3 + 1 dx, t =
√
x3 + 1

5.73.

∫

x2√
1− x2

dx, x = sin t

5.74.

∫

1
√

x(1− x)
dx, x = sin2 t

5.75.

∫

1

sinx
dx, t = cosx

5.76.

∫

1

1 + cos2 x
dx, t = tanx

5.77.

∫

1

2x + 4x
dx, t = 2x

5.78.

∫

1

1 + sin2 x
dx, t = tanx

5.79.

∫

1

(1− x2)
√
1− x2

dx, x = sin t

5.80.

∫

1

(1 + x2)
√
1 + x2

dx, x = tan t

5.81.

∫

1

(1 + x2)
√
1 + x2

dx, x = sinh t

5.82.

∫

1

(x+ 1)2(x− 2)3
dx, t =

x+ 1

x− 2

Find the following indefinite integrals by substitutions!

5.83.

∫

(2x+ 1)ex
2+x+1 dx 5.84.

∫

cosx esin x dx

5.85.

∫

dx
√

x(1− x)
5.86.

∫

x

(x2 + 1)2
dx

5.87.

∫

ex + 2

ex + e2x
dx 5.88.

∫

1

ex + e−x
dx
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5.89.

∫

2x + 3

2x + 22x
dx 5.90.

∫

1

cosx
dx

Find the following indefinite integrals!

5.91.

∫

1

(x+ 2)(x− 1)
dx 5.92.

∫

x+ 1

x2 + x+ 1
dx

5.93.

∫

cos3 x sin2 x dx 5.94.

∫

ex − e−x

ex + e−x
dx

5.95.

∫

1

ex + e−x
dx 5.96.

∫

x sin(x2 + 1) dx

5.97.

∫

1

1 +
√
x
dx 5.98.

∫

lnx dx

5.99.

∫

ln(x2 + 1) dx 5.100.

∫

1

(1 + x2)arctanx
dx

5.101.

∫

1

1 + cosx
dx 5.102.

∫

arctanx

1 + x2
dx

5.103.

∫

2x sin(x2 + 1) dx 5.104.

∫

e−3x − 2 sin(3x− 2) dx

5.105.

∫

(2x+ 2)(x2 + 2x)222 dx 5.106.

∫

cotx dx

5.107.

∫

e2x

1 + ex
dx 5.108.

∫ √
2− x dx

5.109.

∫

1

1 +
√
x
dx 5.110.

∫

x2 lnx dx

5.111.

∫

(x2 + x) lnx dx 5.112.

∫

(

3 4
√
x+ 2

)

dx

5.113.

∫

sinx · cos3000 x dx 5.114.

∫

1

x lnx
dx

5.115.

∫

3−2x dx 5.116.

∫

√

2− x2 dx
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5.117.

∫

cosx · esin x dx 5.118.

∫

cos3 x

sin4 x
dx

5.119.

∫

1

sin2 x cos4 x
dx 5.120.

∫

cos5 x

sin3 x
dx

5.121.

∫

1

cos4 x
dx 5.122.

∫

cosx sin2 x dx

5.2 Definite Integral

5.123. Decide whether the given points are a partition of the interval [−2, 4]
according to the definition of Riemann integral? If yes, find the norm
of the partition!

(a) x0 = −2, x1 = −1, x2 = 0, x3 =
1

2
, x4 = 4

(b) x0 = −1, x1 = 2, x2 = 4

(c) x0 = −2, x1 = 4

(d) x0 = −2, x1 = x0 + 1, x2 = x1 +
1

2
, . . . , xn = xn−1 +

1

n

(e) x0 = −2, x1 = −1, 5, x2 = 3, x3 = 4

5.124. Are the following partitions refinements of each other in the interval
[−2, 4]?

(a) F={-2; -1; 0; 4} Φ = {−2;−1; 0;
1

2
; 3; 4}

(b) F={-2; -1.5; 3; 4} Φ = {−2;−1; 0; 3; 4}

Find the lower and the upper Riemann sums of the following func-
tion with the given partition of the interval [−2, 4]!

5.125. f(x) =

{

1 if x ∈ Q

0 if x /∈ Q
, Φ = {−2, 1, 5, 4}

5.126. x2, Φ = {−2,−1, 0, 4} 5.127. x2, Φ = {−2, 4}
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5.128. [x], Φ = {−2,−1, 0, 4} 5.129. [x], Φ = {−2, 1, 5, 4}

5.130. Find the sets of the lower and upper Riemann sums of the function

f(x) =



















0 if 0 ≤ x <
1

2

1 if
1

2
≤ x ≤ 1

in the interval [0, 1]. Give the supremum of the lower sums, and the
infimum of the upper sums!

Are the following functions Riemann integrable on the given I in-
tervals?

5.131. f(x) = 5 I = [0, 1] 5.132. f(x) = −4 I = (−1, 2)

5.133. f(x) = [x] I = [2, 4] 5.134. f(x) = |x| I = [−2, 1]

5.135. f(x) =















1

x
if x 6= 0

0 if x = 0

I = [0, 1]

5.136. D(x) =

{

1 if x ∈ Q

0 if x /∈ Q
I = [3, 5]

5.137. g(x) =

{

x if x ∈ Q

−x if x /∈ Q
I = [3, 5]

5.138. Prove that if for all x ∈ [a, b] imply that m ≤ f(x) ≤ M , and f is
integrable on [a, b], then

m(b− a) ≤
b
∫

a

f(x) dx ≤M(b− a).
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5.139. Prove that if for all x ∈ [a, b] imply that f(x) ≤ g(x), and f and g are
integrable on [a, b], then

b
∫

a

f(x) dx ≤
b
∫

a

g(x) dx.

Prove the following inequalities!

5.140. 0 ≤
2
∫

1

1

x2 + ex
dx ≤ 1 5.141. 1 ≤

5
∫

4

√

lnx+ 0, 2 dx ≤ 2

5.142. Let

f(t) = sgn t and G(x) =

x
∫

−6

f(t) dt (x > −6).

Find the values of G(−4), G(0), G(1), G(6)! Find the derivative of G(x).

5.143. Let

f(t) =







1 if t =
1

n
(n ∈ N+)

0 otherwise
and G(x) =

x
∫

0

f(t) dt (x > 0).

Find the functions G(x) and G′(x).

5.144. Can the function sgnx be the integral function of any functions on
[−1, 1]? Has the function sgnx got a primitive function on (−1, 1)?

5.145. Let

F (x) =

{

x2 if x 6= 0

0 if x = 0
and g(x) =

{

F ′(x) if x 6= 0

1 if x = 0
.

Does the function g have a primitive function? Is g integrable? Is g
differentiable?
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Find the limits of the following sequences!

5.146. lim
n→∞

sin
1

n
+ sin

2

n
+ · · ·+ sin

n

n
n

5.147. lim
n→∞

√
1 +

√
2 + · · ·+√

n

n
√
n

5.148. lim
n→∞

3
√
1 + 3

√
2 + · · ·+ 3

√
n

n 3
√
n

5.149. lim
n→∞

n
n
∑

i=1

(

i

n

)2

5.150. lim
n→∞

n
n
∑

i=1

i

n2 + i2

5.151. lim
n→∞

n
∑

i=1

(

ln n
√
n+ i− ln n

√
n
)

5.152. Let f be a bounded function on [0, 1], and assume that

lim
n→∞

f

(

1

n

)

+ f

(

2

n

)

+ · · ·+ f
(n

n

)

n
= 5.

Does it imply that f is integrable on [0, 1], and

1
∫

0

f(x) dx = 5?

5.153. Which statement implies the other?

P: f is integrable on [a, b]. Q: |f | is integrable on [a, b].

5.154. Find the derivative of

G(x) =







x2 sin
1

x
if x 6= 0

0 if x = 0
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Using this result prove that the function

f(x) =







cos
1

x
if x 6= 0

0 if x = 0

has a primitive function!

5.155. We know that the function

f(x) =







cos
1

x
if x 6= 0

0 if x = 0

has a primitive function. Can the function

g(x) =







cos
1

x
if x 6= 0

1 if x = 0

have a primitive function?

Find the derivatives of the following functions!

5.156. H(x) =

x
∫

2

1

ln t
dt. 5.157. L(x) =

cosh x
∫

2

1

ln t
dt.

Find the following limits!

5.158. lim
x→∞

lnx

x

x
∫

2

1

ln t
dt 5.159. lim

x→∞
lnx

x

cosh x
∫

2

1

ln t
dt

Let f be integrable on [−a, a]. Prove that if f is

5.160. even, then

a
∫

−a

f(x) dx = 2

a
∫

0

f(x) dx,
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5.161. odd, then

a
∫

−a

f(x) dx = 0.

Calculate the following definite integrals!

5.162.

3
∫

2

x2 dx 5.163.

6
∫

4

45x+6 dx

5.164.

π
∫

0

sinx dx 5.165.

4
∫

3

x2 lnx dx

5.166.

0
∫

−2π

sin2 x dx 5.167.

3
∫

−2

3x4 + 4x3 − 2x+ 1

x2 + 1
dx

Calculate the following definite integrals by applying the given sub-
stitutions!

5.168.

√
3/2
∫

1/2

x2√
1− x2

dx, x = sin t

5.169.

5
∫

2

x2
√

x3 + 1 dx, t =
√

x3 + 1

Calculate the following definite integrals by substitutions!

5.170.

2
∫

1

3x + 2

3x + 32x
dx 5.171.

1
∫

0

arctanx · √x dx

5.172.

π/2
∫

π/6

1

1 + tanx
dx 5.173.

2
∫

1

52x

1 + 5x
dx
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5.174. Calculate the integral

2
∫

−2

sin9 x · ex4

dx.

5.3 Applications of the Integration

5.175. Find the area below the graph of the function −x2 + 3.

5.176. Find the area below one “hump” of the graph of the function sin2 x.

Find the area between the graphs of f and g.

5.177. f(x) = x2, g(x) = −x+ 2

5.178. f(x) = −x2 + 2x, g(x) = −x

5.179. f(x) =
√
1− x2, g(x) = 0

5.180. f(x) =
√
1− x2, g(x) = −x

Find the area between the curves!

5.181. the x axis, the graph of lnx and the line x = e

5.182. the x axis, the graph of tanx and the line x = π/4

5.183. the y axis, the graph of x2 and the line y = 3

5.184. the y axis, the graph of ex and the line y = 5

5.185. the graph of
1

1 + x2
and the graph of

x2

2

5.186. the graph of x2, the line y = x and the line y = −x+ 1

5.187. the graph of x2, the graph of 2x2 and the line y = x
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5.188. the graph of
1

x
, the line y = x and the line y = −2x+ 4.5

5.189. Prove that the segment of the parabola on the figure given below, which

has height m, and chord h, has the area T =
2

3
mh.

h

m

Find the area bounded by the following curves given with polar
coordinates!

5.190. r = cosϕ 5.191. r = cos 2ϕ

5.192. r = cos 3ϕ 5.193. r =
1

1 +
1

2
cosϕ

, 0 ≤ ϕ ≤ π

2

Rotate the graphs of the following functions around the x-axis!
Find the volume of the solids of revolution!

5.194. e−x I = [0, 1] 5.195.
√
x I = [0, 1]

5.196. sinx I = [0, π] 5.197.
1

x
I = [1, 4]

Rotate the graphs of the following functions around the y-axis!
Find the volume of the solids of revolution!

5.198. e−x x ∈ [0, 1] 5.199.
√
x x ∈ [0, 1]
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5.200. sinx x ∈ [0, π/2] 5.201.
1

x
x ∈ [1, 4]

Rotate the graphs of f and g around the x-axis on the inter-
vals [x1, x2], then calculate the volume of the solids of revolution
bounded by the rotated graphs and the planes x = x1 and x = x2.

5.202. f(x) = −x2 + 4 g(x) = −2x2 + 8 x1 = −2 x2 = 2

5.203. f(x) = sinx g(x) = −4x4 + 4 x1 = 0 x2 = 1

5.204. f(x) = ex g(x) =
1

x
x1 = 1 x2 = 2

5.205. f(x) = lnx g(x) = coshx x1 = 1 x2 = 2

Find the arc length of the graph of the following functions on the
given intervals!

5.206.
√
x, I = [0, 1] 5.207. lnx, I = [

√
3,
√
8]

5.208. coshx, I = [−1, 1] 5.209. x3/2 I = [0, 4]

Find the displacement of the mass-point moving along a line in the
given time intervals, if the velocity-time function of the point is

5.210. v(t) = 5t2 t ∈ [0, 2] 5.211. v(t) = 3 sin 2t t ∈ [0, 2π]

A mass-point is moved on the x-axes from the point x1 to the
point x2 by the force F (x) codirectional with the x-axis. What is
the work of the force?

5.212. F (x) = 2x, [x1, x2] = [0, 2]

5.213. F (x) = 3 sinx, [x1, x2] = [0, π/4]

There is a 1 m length rod on the x-axis with its left endpoint at
the origin. What is the mass of the rod, if its density at distance
x from the origin is ̺(x)?
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5.214. ̺(x) = 2 + x 5.215. ̺(x) = 2 +
x2

1000

5.216. Find the centers of mass of the rods in the previous problem!

5.217. Find the moment of inertia around the y-axis of the rods in the previous
problems!

5.218. How much is needed to move an electric charge q on the x-axis from
the point x0 to the point 2x0, if there is a fixed electric charge Q at the
origin?

5.219. There is a rod with length l, mass m on the x-axis with left endpoint
at the origin. What is the force between the rod and a mass point M
at the point (0, y0)?

5.4 Improper integral

5.220. For which value of c is the improper integral

∞
∫

1

1

xc
dx convergent?

5.221. For what c is the improper integral

1
∫

0

1

xc
dx convergent?

5.222. Which statement implies that the improper integral
∞
∫

1

f(x) dx is con-

vergent? Which statement implies that the improper integral
∞
∫

1

f(x) dx

is divergent?

(a) ∀x ∈ [1,∞) |f(x)| < 1

x2
(b) f(x) >

1

x3

(c) ∀x ∈ [1,∞) |f(x)| > 1

x
(d) ∀x ∈ [1,∞) |f(x)| < 1

x

Are the following improper integrals convergent? If yes, find the
value of the integrals!
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5.223.

∞
∫

3

2−x dx 5.224.

1
∫

0

dx

x− 1

5.225.

∞
∫

2

dx

x3
5.226.

7
∫

0

dx

x3

5.227.

∞
∫

1

dx√
x

5.228.

1
∫

0

dx√
x

5.229.

2
∫

1

dx

x lnx
5.230.

∞
∫

2

dx

x lnx

5.231.

1
∫

1
2

dx

x lnx 5.232.

1
2
∫

0

dx

x lnx

5.233.

∞
∫

1

dx

x+
√
x

5.234.

1
∫

0

dx

x+
√
x

5.235.

1
∫

0

dx√
1− x2

5.236.

∫ 1

0

lnx dx

5.237.

π/2
∫

0

tanx dx 5.238.

+∞
∫

−∞

dx

1 + x2

Which of the following integrals are convergent, absolute conver-
gent or divergent?

5.239.

∞
∫

1

dx√
x+ x2

5.240.

1
∫

0

dx√
x+ x2

5.241.

∞
∫

2

dx

x ln2 x
dx 5.242.

∞
∫

1

dx√
x+ x3
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5.243.

+∞
∫

0

x2

x4 − x2 + 1
dx 5.244.

+∞
∫

1

x+ 1√
x4 + 1

dx

5.245.

∞
∫

1

x+ 1

x3 + x
dx 5.246.

1
∫

0

dx√
x+ x3

5.247.

π/2
∫

0

dx

sinx
5.248.

∞
∫

0

e−x
2

dx

5.249.

∞
∫

1

cosx

x2
dx 5.250.

∞
∫

1

lnx

x2
dx

5.251.

∞
∫

0

xe−x
2

dx 5.252.

∞
∫

0

x2e−x
2

dx

5.253.

+∞
∫

0

dx

x2
5.254.

+∞
∫

1

cosx

x2
dx



Chapter 6

Numerical Series

6.1 Convergence criteria.

— If the sum
∞
∑

n=1

an is convergent, then an → 0.

— Cauchy convergence test for series. The sum
∞
∑

n=1

an is convergent

if and only if

∀ε > 0 ∃n0 ∀n,m
(

n0 ≤ n ≤ m =⇒
∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

< ε

)

.

— Direct comparison test. If n ∈ N+ implies |an| ≤ bn except for

finitely many n and the sum
∞
∑

n=1

bn is convergent, then the sum
∞
∑

n=1

an

is absolute convergent.

— Limit comparison test. If the terms of the sums
∞
∑

n=1

an and
∞
∑

n=1

bn

are positive, and there exists the limit lim
n→∞

an
bn

= c and 0 < c < ∞,

then the two series are both convergent or both divergent.

— Ratio test. If the limit lim
n→∞

|an+1|
|an|

exists and equals to q, then q < 1

implies that
∞
∑

n=1

an is absolute convergent, q > 1 implies that the it is

divergent. In case of q = 1 the ratio test is inconclusive, and the series
may converge or diverge.
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— Root test. If the limit lim
n→∞

n
√

|an| exists and equal to q, then q < 1

implies that
∞
∑

n=1

an is absolute convergent, q > 1 implies that the series

is divergent. If q = 1, the root test is inconclusive, and the series may
converge or diverge.

— Integral test. If f is a monotonically decreasing function on the half-

line [1,∞), then the infinite series
∞
∑

n=1

f(n) and the improper integral

∞
∫

1

f(x) dx are both convergent or both divergent.

— Leibniz’s test or alternating series test. The sum

∞
∑

n=1

(−1)nan is

a Leibniz-sum, if the sequence (an) decreases monotonically to zero.
The Leibniz-sums are convergent.

6.1 Convergence of Numerical Series

Write down the nth partial sum of the following series! Find the
limits of the partial sums! Find the sums of the series!

6.1. 1 +
1

2
+

1

4
+ · · ·+ 1

2k
+ · · ·

6.2. 1 +
1

10
+

1

100
+ · · ·+ 1

10k
+ · · ·

6.3.
1

1 · 2 +
1

2 · 3 + · · ·+ 1

k · (k + 1)
+ · · ·

6.4.
1

1 · 4 +
1

4 · 7 + · · ·+ 1

(3k − 2) · (3k + 1)
+ · · ·

6.5.
1

1 · 4 +
1

2 · 5 + · · ·+ 1

k · (k + 3)
+ · · ·

Find the sum of the following series, if they are convergent!
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6.6.
∞
∑

n=1

4n

9n
6.7.

∞
∑

n=1

5n

9n

6.8.
∞
∑

n=1

4n + 5n

9n
6.9.

∞
∑

n=1

2 · 4n
(−9)n

6.10.
∞
∑

n=1

9n

4n + 5n
6.11.

∞
∑

n=1

(−2)n

5n

6.12.
∞
∑

n=1

3n

10n
6.13.

∞
∑

n=1

4n

(−3)n

6.14. Is the series
∞
∑

n=1

(−1)n convergent?

6.15. Prove that if
∞
∑

n=1

an is convergent, then lim
n→∞

an = 0 (see the criteria of

convergence about the terms converge to 0).

6.16. Prove that the harmonic series
∞
∑

n=1

1

n
is divergent!

Can the convergence or the sum of an infinite series change, if we

6.17. insert some new parentheses into the series?

6.18. eliminate some parentheses from the series?

6.19. insert finitely many new terms into the series?

6.20. delete finitely many terms from the series?

Are the following statements true?

6.21. If an → 0, then
∞
∑

n=1

an is convergent.
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6.22. If

∞
∑

n=1

an is convergent, then an → 0.

6.23. If an → 1, then
∞
∑

n=1

an is divergent.

6.24. If
∞
∑

n=1

an is divergent, then an → 1.

What are the limits of the sequences of the terms of the following
series? Are these series convergent?

6.25.
∞
∑

n=1

1

n+ 1
6.26.

∞
∑

n=1

1

n2

6.27.
∞
∑

n=1

1

n+ n2
6.28.

∞
∑

n=1

2

n2

6.29.
∞
∑

n=1

1

3n
6.30.

∞
∑

n=1

1√
n

6.31.
∞
∑

n=1

1
3
√
n

6.32.
∞
∑

n=1

1
n
√
3

6.33.
∞
∑

n=1

1
n
√
0, 01

6.34.
∞
∑

n=1

1
n
√
n

6.35.
∞
∑

n=1

sin(nπ) 6.36.
∞
∑

n=1

cos(nπ)

6.37. Prove that if for all positive integers n an > 0, an ≤ bn ≤ cn,
∞
∑

n=1

an = 7

and
∞
∑

n=1

cn = 10, then
∞
∑

n=1

bn is convergent!

6.38. Prove that if for all positive integers n an > 0, then
∞
∑

n=1

an is convergent

or equals to infinity.
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6.39. Let’s assume that

∞
∑

n=1

an is convergent, and that for all positive integers

n bn < an. Does it imply that
∞
∑

n=1

bn is convergent?

6.40. Let’s assume that
∞
∑

n=1

an is divergent, and that for all integers n bn >

an. Does it imply that
∞
∑

n=1

bn is divergent?

6.2 Convergence Tests for Series with Pos-

itive Terms

Decide whether the following series are convergent by applying the
ratio test!

6.41.
∞
∑

n=1

1

n+ 4
6.42.

∞
∑

n=1

1

2n+ 1

6.43.
∞
∑

n=1

1

n2 + 4
6.44.

∞
∑

n=1

1

2n

6.45. Let’s assume that for all positive integers n an > 0. What can we say

about the convergence of
∞
∑

n=1

an for sure, if

(a) lim
an+1

an
> 1, (b) lim

an+1

an
< 1, (c) lim

an+1

an
= 1?

Decide whether the following series are convergent by applying the
ratio test!

6.46.
∞
∑

n=1

1

n!
6.47.

∞
∑

n=1

n2

n!
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6.48.
∞
∑

n=1

3nn!

nn
6.49.

∞
∑

n=1

2nn!

nn

6.50. Let’s assume that for all positive integers n an > 0. What can we say

about the convergence of

∞
∑

n=1

an for sure, if

(a) lim n
√
an > 1 (b) lim n

√
an < 1 (c) lim n

√
an = 1

Decide whether the following series are convergent by applying the
root test!

6.51.
∞
∑

n=1

n

2n
6.52.

∞
∑

n=1

2n + 1

3n

6.53.
∞
∑

n=1

(

1

2
+

1

n

)n

6.54.
∞
∑

n=1

(

3

2
− 1

n

)n

6.55. Let’s assume that bn 6= 0 (n = 1, 2, 3, . . . ), and lim
n→∞

an
bn

= c > 0.

What can we say about the convergence of
∞
∑

n=1

an for sure, if

(a)
∞
∑

n=1

bn is convergent. (b)
∞
∑

n=1

bn is divergent.

6.56. Let’s assume that bn 6= 0 (n = 1, 2, 3, . . . ), and lim
n→∞

an
bn

= 0. What

can we say about the convergence of

∞
∑

n=1

an for sure, if

(a)
∞
∑

n=1

bn is convergent. (b)
∞
∑

n=1

bn is divergent.

6.57. Let’s assume that bn 6= 0 (n = 1, 2, 3, . . . ), and lim
n→∞

an
bn

= ∞. What

can we say about the convergence of
∞
∑

n=1

an for sure, if
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(a)

∞
∑

n=1

bn is convergent. (b)

∞
∑

n=1

bn is divergent.

Decide whether the following series are convergent by applying the
limit comparison test!

6.58.
∞
∑

n=1

n2 + 4

n4 + 3n
6.59.

∞
∑

n=1

2n3

n2 + 3

6.60.
∞
∑

n=1

√
2n6

n2 + 3
6.61.

∞
∑

n=1

3
√
3n9√
n4 + 3

6.62. Let’s assume that

∞
∫

1

f(x) dx = 5. Does it imply that
∞
∑

n=2

f(n) =

5?

6.63. Let’s assume that the improper integral

∞
∫

1

f(x) dx is convergent. Does

it imply that
∞
∑

n=2

f(n) is convergent?

6.64. Let’s assume that f(x) > 0, and f(x) is monotonically decreasing on
(1,∞), and
∞
∫

1

f(x) dx = 5. Does it imply that
∞
∑

n=2

f(n) = 5?

6.65. Let’s assume that f(x) > 0, f(x) is monotonically decreasing on (1,∞),

and the improper integral

∞
∫

1

f(x) dx is convergent. Does it imply that

∞
∑

n=2

f(n) is convergent?

Decide whether the following series are convergent by applying the
integral test!
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6.66.
∞
∑

n=2

1

n lnn
6.67.

∞
∑

n=2

1

n4/5

Decide whether the following series are convergent!

6.68.
∞
∑

n=1

1

n+
√
n

6.69.
∞
∑

n=1

4

n2 +
√
n

6.70.
∞
∑

n=1

(−1)n
1√
n

6.71.
∞
∑

n=1

(−1)n
1

n
√
n

6.72.
∞
∑

n=1

n2

3n
6.73.

∞
∑

n=1

(−1)n
n

√

1

2

6.74.
∞
∑

n=1

n2

2n
6.75.

∞
∑

n=1

(

1

2
− 1

n

)n

6.76.
∞
∑

n=1

(

−2

3

)n

6.77.
∞
∑

n=1

n!

nn

6.78.
∞
∑

n=1

1000n

n!
6.79.

∞
∑

n=2

1

n ln2 n

6.80.
∞
∑

n=1

n10

3n − 2n
6.81.

∞
∑

n=1

n

(

1

2

)n

6.82.
∞
∑

n=1

(−1)n
(

− 1

n

)n

6.83.
∞
∑

n=1

(

−3

2

)n

6.84.
∞
∑

n=1

(

n+ 200

2n+ 7

)n

6.85.
∞
∑

n=1

n5 + 3

n3 − n+ 2

6.86.
∞
∑

n=1

2n + 3n

5n
6.87.

∞
∑

n=1

(−1)n
n

√

1

2

6.88.
∞
∑

n=1

(

5

2

)n

6.89.
∞
∑

n=1

(

2

5

)n
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6.90.
∞
∑

n=1

(

1− 1

n

)

6.91.
∞
∑

n=1

(

1− 1

n

)n

6.92.
∞
∑

n=1

(

1 +
1

n

)

6.93.
∞
∑

n=1

(

1 +
1

n

)n

6.94.
∞
∑

n=1

(n+ 1)3

3n
6.95.

∞
∑

n=1

(−1)n
1

n
√
n2 + 1

6.96.
∞
∑

n=1

n(n+ 5) 6.97.
∞
∑

n=1

(√
n+ 1−√

n
)

6.98. Let’s assume that
∞
∑

n=1

an = A ∈ R and
∞
∑

n=1

bn = B ∈ R, and c is a real

number. Does it imply the following statements?

(a)

∞
∑

n=1

c · an = c ·A (b)

∞
∑

n=1

(an + bn) = A+B

(c)
∞
∑

n=1

(an − bn) = A−B (d)
∞
∑

n=1

(anbn) = AB

(e)
∞
∑

n=1

an
bn

=
A

B
(bn 6= 0) (f)

∞
∑

n=1

|an| = |A|

6.3 Conditional and Absolute Converge

6.99. Is that true that if the terms are alternating in a series, then the series
is convergent?

6.100. Is that true that if the sequence of the terms of an infinite series is
monotonically decreasing, then the series is convergent?

6.101. Is that true that if the terms of a series are alternating, and the sequence
of the absolute values of the terms is monotonically decreasing, then
the series is convergent?
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6.102. Is that true that if the sequence of the terms of an infinite series mono-
tonically decreasingly converges converges to 0, then the series is con-
vergent?

6.103. Is that true that if the terms of a series are alternating, and the sequence
of the absolute values of the terms converges to 0, then the series is
convergent?

Which series are Leibniz series? Which series are convergent?

6.104. 1− 1

2
+

1

3
− 1

4
+ · · ·

6.105. 1− 1

3
+

1

5
− 1

7
+ · · ·

6.106. 1− 1

1 · 3 +
1

3 · 5 − 1

5 · 7 + · · ·

6.107. 1− 1

2
+

1

4
− 1

8
+ · · ·

6.108. 1− 1√
2
+

1
3
√
3
− 1

4
√
4
+ · · ·

6.109. 1− 1

2 · 3 +
1

4 · 9 − 1

8 · 27 + · · ·

Are the following series convergent? Are the following series abso-
lute convergent?

6.110.
∞
∑

n=1

(−1)n 6.111.
∞
∑

n=1

(−2)n

6.112.
∞
∑

n=1

(

−1

2

)n

6.113.
∞
∑

n=1

(−1)n
1

n

6.114.
∞
∑

n=1

(−1)n
1

2n+ 1
6.115.

∞
∑

n=1

(−1)n
1

n · (n+ 1)

6.116.
∞
∑

n=1

(−1)n
1

n3
6.117.

∞
∑

n=1

(−1)n
1
5
√
n
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6.118.
∞
∑

n=1

(−1)n
1

n1,3
6.119.

∞
∑

n=1

(−1)n
1

n0,3

6.120.
∞
∑

n=1

sinn

n2
6.121.

∞
∑

n=1

(sinn)2

n2

6.122. Can the convergence or the sum of an infinite series with positive terms
change, if

(a) we insert some new parentheses into the series?

(b) we delete some parentheses from the series?

(c) we rearrange the sequence of the terms?



Chapter 7

Sequences of Functions and

Function Series

7.1 Properties of uniform convergence.

— Continuity. The limit function of a uniformly convergent sequence of
continuous functions is continuous.

— Differentiability. If a sequence of differentiable functions fn converges
pointwise to f , and f ′n converges uniformly to the function g on the
interval (a, b), then f is differentiable on (a, b) and f ′ = g, that is

lim
n→∞

f ′n =
(

lim
n→∞

fn

)′
= f ′.

— Integrability. If a sequence of integrable functions fn converges uni-
formly to the function f on the interval [a, b], then f is integrable, and

lim
n→∞

b
∫

a

fn(x) dx =

b
∫

a

(

lim
n→∞

fn(x)
)

dx =

b
∫

a

f(x) dx.

7.2 Weierstrass criterium for the uniform convergence. If the func-

tion series

∞
∑

n=1

fn(x) has a convergent numerical majorant on the set H,

that is, there is a sequence (Mn) such that for all n ∈ N and x ∈ H implies
that

|fn(x)| ≤Mn and
∞
∑

n=1

Mn <∞,

then the function series

∞
∑

n=1

fn(x) is absolute and uniformly convergent on

H.
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7.3 Range of the convergence of power series.

— The range of convergence of the power series
∞
∑

n=0

an(x−c)n is an interval

which (perhaps except the endpoints) is symmetric to the center of the
power series c.

The theorem above includes the cases in which the range of convergence
is the whole number line, or only the point c.

— Radius of convergence. If lim sup n
√

|an| = L or lim sup
|an+1|
|an|

= L,

then the radius of convergence is

R =



















1

L
if 0 < L <∞

∞ if L = 0

0, if L = ∞

— The convergence of a power series is uniform on any closed interval in
the interior of the range of convergence, therefore the power series can
be integrated and derived by terms.

7.4 If f is differentiable any times at point c, then we call the power series

∞
∑

n=0

f (n)(c)

n!
(x− c)n.

Taylor series of the function f around the point c, and the coefficients

an =
f (n)(c)

n!

are called Taylor coefficients.

7.5 Lagrange-form of the reminder. Let f be differentiable n+1 times
on the interval [c, x]. Then there is a number d ∈ (c, x) such that

f(x) =
n
∑

k=0

f (k)(c)

k!
(x− c)k +

f (n+1)(d)

(n+ 1)!
(x− c)n+1.

If f is differentiable n + 1 times on [x, c], then there is a number d ∈ (x, c)
such that the equation above holds.



7. Sequences of Functions and Function Series 130

7.6 A function with uniformly bounded derivatives is equal to its Taylor
series, that is f is differentiable on (a, b) at any times, and there is a number

M such that for any n ∈ N and x ∈ (a, b)
∣

∣

∣
f (n)(x)

∣

∣

∣
≤M , then for all c ∈ (a, b),

the Taylor series around c equals the function on the whole interval (a, b).

7.7 Taylor series of common functions.

ex =

∞
∑

n=0

xn

n!
if x ∈ R;

sinx =

∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!

if x ∈ R;

cosx =

∞
∑

n=0

(−1)n
x2n

(2n)!

if x ∈ R;

sinhx =

∞
∑

n=0

x2n+1

(2n+ 1)!

if x ∈ R;

coshx =

∞
∑

n=0

x2n

(2n)!

if x ∈ R;

1

1− x
=

∞
∑

n=0

xn if |x| < 1 ( Geometric series);

ln(1 + x) =

∞
∑

n=0

(−1)n
xn+1

n+ 1

if |x| < 1;

arctanx =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1

if |x| < 1.

7.8 Fourier series.

— If f : R → R is periodic with period 2π, and the function is integrable
on [0, 2π], then the trigonometric series

a0 +
∞
∑

n=1

(an cosnx+ bn sinnx)

is called Fourier series of the function f , where

a0 =
1

2π

2π
∫

0

f(x) dx, an =
1

π

2π
∫

0

f(x) cosnx dx,

bn =
1

π

2π
∫

0

f(x) sinnx dx
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are the Fourier coefficients of f .

— Cantor’s theorem. If f(x) = a0+
∞
∑

n=1

(an cosnx+bn sinnx) on [0, 2π],

then the coefficient a0, an ĂŠs bn are defined uniquely, that is, a func-
tion has only one Fourier series. If the convergence is uniform, then
f(x) is continuous, and it is the Fourier series of the function f .

— Pointwise convergence. If f is periodic with period 2π, and f is
piecewise continuously differentiable, then the Fourier series of f is
convergent everywhere, and it is equal to f at the points where f is
continuous, and the Fourier series equals to the arithmetic mean of the
left-hand side and right-hand side limits at the points where f is not
continuous, that is, for all x ∈ R

a0 +
∞
∑

n=1

(an cosnx+ bn sinnx) =
f(x+) + f(x−)

2
.

7.1 Pointwise and Uniform Convergence

Where are the following function sequences convergent, and what
are their pointwise limits? On which intervals are the convergences
uniform?

7.1. fn(x) = xn 7.2. fn(x) = xn − xn+1

7.3. fn(x) =
x

n
7.4. fn(x) =

xn

n!

7.5. fn(x) =
n
√

1 + x2n 7.6. fn(x) =
n
√

|x|

7.7. fn(x) =

√

x+
1

n
7.8. fn(x) =

√

x2 +
1

n2

7.9. fn(x) =
sinx

n
7.10. fn(x) = sin

x

n

7.11. fn(x) =







1, if x =
1

n
0, otherwise

7.12. fn(x) =







1 if 0 < x <
1

n
0 otherwise
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Which statement implies the other?

7.13. P: ∀x ∈ [a, b] lim
n→∞

fn(x) = 5 Q: ∀n ∈ N lim
x→∞

fn(x) = 5

7.14. P: ∀x ∈ [a, b] lim
n→∞

fn(x) = f(x) Q: ∀x ∈ [a, b] lim
n→∞

(fn(x) −
f(x)) = 0

7.15. P: fn is pointwisely convergent on I. Q: fn is uniformly convergent on
I.

7.16. Prove that the sequence fn(x) = cos nx is convergent at the points x =
2kπ (x ∈ Z). Is the sequence convergent at points x = kπ (x ∈ Z)?

7.17. Give 3 different examples of sequences of functions such that all of three
sequences converge to the constant function 5 on [0, 1].

7.18. Are there any sequences of functions such that they converge to the
constant function 5 on [0, 1], and any functions of the sequence are not
continuous on [0, 1]?

7.19. Give an example of a sequence of functions such that every term is
discontinuous at every point of [0, 1], but the sequence of functions
converges uniformly to a continuous function on [0, 1].

7.20. Give an example of a sequence of functions such that all terms are
continuous at every point, and the sequence converges to

f(x) =

{

1 if x = 5

0 otherwise

Can the convergence be uniform?

7.21. Give 3 different sequences of functions such that all 3 sequences con-
verge uniformly to the Dirichlet-function

D(x) =

{

1 if x ∈ Q

0 otherwise

on [0, 1]. Can all of the terms of the sequence be continuous functions?
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7.22. Let fn(x) = n2(xn−1 − xn). Prove that

(a) ∀x ∈ [0, 1] lim
n→∞

fn(x) = 0

(b) lim
n→∞

1
∫

0

fn(x) dx 6= 0

(c) fn does not converge uniformly to the constant function 0 on [0, 1].

7.23. Let fn(x) =

√

x2 +
1

n
. Prove that

(a) ∀n fn(x) is differentiable at 0.

(b) lim
n→∞

fn(x) = |x|

(c) fn converges uniformly to |x|.
(d) |x| is not differentiable at 0.

7.24. What is the limit function of fn(x) = xn − xn+1 on [0, 1]? Is the
convergence uniform?

Prove that the following function series are uniformly convergent
by applying the Weierstrass criterium, that is, find a convergent
numerical series of whose terms are larger than the absolute values
of the terms of the function series!

7.25.
∞
∑

n=1

1

n2 + n4x2n
7.26.

∞
∑

n=1

1

n2
sinn x

Are the following function series convergent or uniformly conver-
gent on R?

7.27.
∞
∑

n=1

1

x2 + n2
7.28.

∞
∑

n=1

(xn − xn−1)

7.29.
∞
∑

n=1

(−1)n

x4 + 2n
7.30.

∞
∑

n=1

(arctan(n+ 1)x− arctan (nx))

7.31.
∞
∑

n=1

sinnx

n!
7.32.

∞
∑

n=1

2nxn
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7.33.
∞
∑

n=1

1

n2[1 + (nx)2]
7.34.

∞
∑

n=1

sinnx

n2

7.35.
∞
∑

n=1

cosnx

n! + 2n
7.36.

∞
∑

n=1

1

xn

7.37.
∞
∑

n=1

x4

x4 + 2n
7.38.

∞
∑

n=1

(−1)n

x6 + 3n

7.39. Where is the function series
∞
∑

n=1
xn convergent? Is the convergence

uniform at the range of convergence?

7.40. Is
∞
∑

n=1

sin(2n− 1)x

2n− 1
uniformly convergent?

7.2 Power Series, Taylor Series

7.41. Is the power series
∞
∑

n=0

(2n + 3n)xn convergent at the points x =

1

6
, x = 0.3 x =

1

2
, x = 1?

For what x are the following series convergent?

7.42.
∞
∑

n=0

n!

nn
xn 7.43.

∞
∑

n=1

(−1)n+1x
n

n2

7.44.
∞
∑

n=1

(

1 +
1

n

)n2

xn 7.45.
∞
∑

n=1

nxn

7.46.
∞
∑

n=1

xn

n
7.47.

∞
∑

n=1

xn

n7

Find the radius of convergence of the following power series!
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7.48.
∞
∑

n=0

n2xn 7.49.
∞
∑

n=1

xn

n2

7.50.
∞
∑

n=1

1000n

n!
(x− 2)n 7.51.

∞
∑

n=1

(n− 1)!

nn
(x− 3)n

7.52.
∞
∑

n=1

n

2n
xn 7.53.

∞
∑

n=1

(x+ 4)n

7.54.
∞
∑

n=1

(x+ 5)n

n · 2n
7.55.

∞
∑

n=1

(x− 6)n

n!

7.56.
∞
∑

n=1

n!(x+ 7)n 7.57.
∞
∑

n=1

(x+ 1)n√
n

7.58.
∞
∑

n=1

1000n

n2 + 1
xn 7.59.

∞
∑

n=1

2n + 3n

nn
xn

7.60.
∞
∑

n=1

xn

n · 3n
7.61.

∞
∑

n=1

xn

nn

7.62.
∞
∑

n=1

2nxn 7.63.
∞
∑

n=1

(−1)n+1 x
n

√
n

7.64.
∞
∑

n=0

(n!)2

(2n)!
xn 7.65.

∞
∑

n=0

n!xn

Are the following statements true?

7.66.

0,3
∫

−0,2

( ∞
∑

n=0

xn

)

dx =

∞
∑

n=1





0,3
∫

−0,2

xn dx





7.67.

3
∫

−2

( ∞
∑

n=0

xn

)

dx =
∞
∑

n=1





3
∫

−2

xn dx





7.68. ∀x ∈ R

( ∞
∑

n=0

1

n+ 1
xn+1

)′

=
1

1− x



7. Sequences of Functions and Function Series 136

7.69. ∀ |x| < 1

( ∞
∑

n=0

1

n+ 1
xn+1

)′

=
1

1− x

Find the radius of convergence for the following power series! Find
the sum function in the range of convergence!

7.70. 1 + x+ x2 + x3 + · · · 7.71. 1− x+ x2 − x3 + · · ·

7.72. x+
x2

2
+
x3

3
+ · · · 7.73. 1− x2 + x4 − x6 + x8 − · · ·

7.74. x+
x3

3
+
x5

5
+ · · · 7.75. x+ 2x2 + 3x3 + · · ·

Where are the following power series convergent? Give the sum
functions!

7.76.
∞
∑

n=0

(sinx)n 7.77.
∞
∑

n=1

(1 + x2)n

7.78.
∞
∑

n=1

(

1

0, 1 + 0, 2 cos2 x

)n

7.79.
∞
∑

n=1

1

2nxn

Find the radius of convergence and the sum of the following power
series!

7.80. f(x) =

∞
∑

n=1

xn

n(n+ 1)
7.81.

∞
∑

n=0

xn

n+ 1

7.82. f(x) =

∞
∑

n=1

nxn 7.83.
∞
∑

n=1

n2xn

7.84. f(x) =
∞
∑

n=1

n(n+ 1)xn 7.85.
∞
∑

n=0

x2n+1

2n+ 1

Give Taylor series of the following function around a = 0. Find the
intervals of convergence! Is the sum equal to the function?
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7.86. ex 7.87. e2x

7.88. e−x 7.89. e−x
2

7.90. sinhx 7.91. coshx

7.92.
1

1− x
7.93.

1

1 + x

7.94.
1

1 + x2
7.95.

x3

1− x2

7.96. ln(1 + x) 7.97. arctanx

7.98.
1

2 + x
7.99. f(x) =

1

1 + x+ x2

7.100. sinx 7.101. cosx

7.102. sin(2x) 7.103. cosx2

7.104. sin2 x 7.105. cos2 x

Let the function f : R → R be differentiable any times at 0. Are
the following statements true? Always justify your answers!

7.106. f has always a Taylor series.

7.107. The Taylor series of f is convergent at all real x.

7.108. If the Taylor series of f is convergent at x0, then the sum of the Taylor
series at this point is f(x0).

7.109. If
∞
∑

n=0
anx

n is equal to the function f , then this power series is the

Taylor series of f .
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7.110. If the Taylor series of f(x) is
∞
∑

n=0
anx

n, then for all real x
∞
∑

n=0
anx

n =

f(x).

7.111. Calculate the values of sin 1 and e with precision 10−2.

7.112. Find the sum 1− π2

2
+
π4

4!
− π6

6!
+ · · ·+ (−1)n

π2n

(2n)!
+ . . .

7.113. Prove that the function f(x) =

∞
∑

k=0

x3k

(3k)!
satisfies the equation f ′′′(x) =

f(x).

7.114. Write down the Taylor series of f(x) =

x
∫

0

e−t
2

dt. Calculate the value

of

1
∫

0

e−x
2

dx with two-digit precision!

7.115. Prove that the number e is irrational!

Find the derivatives at x = 0.

7.116.

(

1

1− x

)(135)

7.117.
(

ex
2
)(136)

7.118. (arctanx)(356) 7.119. (arctanx)(357)

7.120. Write down the third Taylor polynomial of f(x) = tanx at 0.

7.121. The function sinx is approximated by x in the law about the movement
of pendulum. What can the error at most be if the amplitude is at most
5◦ < 0.1 radian?

7.122. How many terms of the Taylor series of sinx should we add such that

the error is less than 10−6 if |x| < 0.1?
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7.123. How many terms of the Taylor series of sinx should we add such that

the error is less than 10−3, if x < 1 <
π

3
(= 60◦)?

7.124. Write down the power series of the function f(x) = x2 + x+ 1

(a) around 0; (b) around 1.

7.125. Write down the power series of the function f(x) =
1

2 + x

(a) around 0; (b) around 1.

7.3 Trigonometric Series, Fourier Series

Write down the Fourier series of the following functions!

7.126. sin2 x 7.127. cos2 x

Find the Fourier series of the functions on the interval (−π, π).

7.128. f(x) = sgnx −π < x < π

7.129. f(x) =

{

1 if 0 < x < π
0 if − π < x < 0

7.130. f(x) = | sgnx| −π < x < π

The three functions above are equal on the interval (0, π).

7.131. f(x) = x −π < x < π

7.132. f(x) = |x| −π < x < π

The two functions above are equal on the interval (0, π).

7.133. f(x) =

{

x2 if 0 < x < π
−x2 if − π < x < 0
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7.134. Let f(x) be the periodic function with period 2π such that f(x) =
π − x

2
, if x ∈ (0, 2π) and f(0) = 0. This function is called sawtooth

function as well.

(a) Find the Fourier series of f(x) on the open interval (0, 2π).

(b) Find the sum
∞
∑

n=0

(−1)n
1

2n+ 1
.

7.135. Let f be the periodic function with period 2π such that f(x) = x2 if
x ∈ [−π, π].

(a) Find the Fourier series of f(x) on [−π, π].

(b) Find the sum

∞
∑

n=1

1

n2
.

We plotted the graphs of some functions from the previous prob-
lems, and their 10th (in one case 5th) Fourier approximations.
What are these functions?

7.136.

x

K4 K3 K2 K1 1 2 3 4

x

K4 K3 K2 K1 1 2 3 4

7.137.

x

K4 K3 K2 K1 0 1 2 3 4

x

K4 K3 K2 K1 0 1 2 3 4
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7.138.

x

K4 K3 K2 K1 1 2 3 4

x

K4 K3 K2 K1 1 2 3 4

7.139.

x

K4 K3 K2 K1 0 1 2 3 4

x

K4 K3 K2 K1 0 1 2 3 4

7.140.

x

K4 K3 K2 K1 0 1 2 3 4

x

K4 K3 K2 K1 0 1 2 3 4
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7.141.

x

K4K3K2K1 1 2 3 4

x

K4K3K2K1 1 2 3 4

Find the Fourier series of the following functions on (−π, π)

7.142. ex 7.143. e2x

7.144. sinhx 7.145. sinh 3x

7.146. coshx 7.147. cosh 4x



Chapter 8

Differentiation of Multivari-

able Functions

8.1 Topology of the Euclidean Space

— The set G ⊂ Rn is open if and only if the set does not contain any of
its boundary points.

— The following statements are equivalent for the set F ⊂ Rn:

- The set F is closed.

- F contains all of its boundary points.

- A sequence cannot “converge out” from F :

{pn : n ∈ N} ⊂ F, if pn−→ p, then p ∈ F.

— The following statements are equivalent for the set K ⊂ Rn:

- The set K is compact.

- The set K is bounded and closed.

- For all sequences in K there is a subsequence which converges to
a point in K.

8.2 Multivariable Bolzano-Weierstrass theorem. Every bounded se-
quence of points has a convergent subsequence.

8.3 Multivariable Weierstrass theorem. The image of a compact set is
compact. Especially, if a function is continuous on a compact set, then the
function has a minimum and a maximum.

8.4 Multivariable Bolzano’s theorem. If a function is continuous on a
connected set, then its image is connected, as well.

8.5 Multivariable derivative.

— If f is (totally) differentiable at the point p , then the function is contin-
uous at this point, all of its partial derivatives exist, and the coordinates
of the derivative are the partial derivatives.
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— If the partial derivatives of f exist on a neighbourhood of point p , and
they are continuous at p (continuously differentiable at p ), then
f is differentiable at p .

— If f is (totally) differentiable at p , then it is differentiable at all v 6= 0
directions, and

∂

∂v
f(p ) =

1

|v |v · grad f(p ).

The consequence of this:

max

{∣

∣

∣

∣

∂

∂v
f(p )

∣

∣

∣

∣

: |v | = 1

}

= |grad f(p)|2 .

— If f : Rn → R is differentiable at p , then its graph has a tangent
hyperplane on the point p , and the equation of the tangent plane is

y = f(p ) + grad f · (x − p ).

8.6 Young’s theorem. If the n-variable function f is two times continu-
ously differentiable on a neighbourhood of point p , then for all 1 ≤ i, j ≤ n

f ′′xixj
(p ) = f ′′xjxi

(p ).

8.7 Multivariable extrema.

— If the n-variable function f : Rn → R has a local extremum at the p
inner point of its domain, and the partial derivatives exist at p , then
grad f(p ) = 0 .

— Let’s assume that the function f : Rn → R is twice continuously differ-
entiable at point p , and grad f(p ) = 0 . Let’s denote by H the sym-
metrical Hessian matrix consisting of the second order partial deriva-
tives of f at the point p , and the quadratic formula belonging to H is
Q(x ) = x ·Hx . In this case

- if Q is positive definite, then there is a local minimum at p ;

- if Q is negative definite, then there is a local maximum at p ;

- if Q is indefinite, there is no local extremum at (but is a saddle
point) p ;

- if Q is semidefinite, then this test is inconclusive at p .
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Especially for two-variable functions if

D = detH =

∣

∣

∣

∣

∣

f ′′xx f ′′xy

f ′′yx f ′′yy

∣

∣

∣

∣

∣

is the determinant of the Hessian matrix at point p , then

- there is a minimum if D > 0 and f ′′xx > 0;

- there is a maximum if D > 0 and f ′′xx < 0;

- there is no local extremum if D < 0;

- this test is inconclusive if D = 0.

8.8 Conditional extrema, Lagrange-multiplier.
If the function f : Rn → R has a local extremum at point a subject to the
constraints

gk(x ) = 0, k = 1, 2, . . . , p,

then there are λ1, λ2, . . . , λp real numbers such that

∂

∂xi
f(a ) +

p
∑

k=1

λk
∂

∂xi
gk(a ) = 0, i = 1, 2, . . . , n.

8.1 Basic Topological Concepts

Find the distance of the given points!

8.1. p ,q ∈ R2 p = (−1, 3) q = (5,−4)

8.2. p ,q ∈ R3 p = (−1, 3, 5) q = (5,−4, 0)

8.3. p ,q ∈ Rn p = (p1, p2, . . . pn) q = (q1, q2, . . . qn)

8.4. Write down the inequality defining the points of the (open) sphere in

Rk whose center is the origin, and its radius is 1, where k = 1, 2, 3, n.

8.5. Write down the inequality defining the points of the (open) sphere in Rk

whose center is the origin, and its radius is r, where k = 1, 2, 3, n.
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Plot the following sets, find the interior, the exterior and the
boundary points, and decide which sets are closed, which ones are
open, and which ones are bounded!

8.6. {h ∈ R : −3 < h ≤ 5}

8.7. {(x, y) ∈ R2 : x2 + y2 = 1}

8.8. {(x, y) ∈ R2 : 1 < x2 + y2 < 4}

8.9. {(x, y) ∈ R2 : −3 < x < 5}

8.10. {(x, y) ∈ R2 : x2 + y2 ≥ 4}

8.11. {(x, y) ∈ R2 : −1 ≤ x, y ≤ 1}

8.12. {(x, y) ∈ R2 : x2 + y2 ≥ 0}

8.13. {(x, y) ∈ R2 : x2 + y2 ≤ −4}

Which of the following sets are open, closed, both open and closed,
neither open nor closed? Give the reasons for all answers! Note
that x and y are real numbers in these problems.

8.14. H = {x : 0 < x < 1} 8.15. H = {(x, 0) : 0 < x < 1}

8.16. H = {x : 0 ≤ x ≤ 1} 8.17. H = {(x, 0) : 0 ≤ x ≤ 1}

8.18. H = {x : 0 ≤ x < 1} 8.19. H = {(x, 0) : 0 ≤ x < 1}

8.20. H = {(x, y) : x2 + y2 < 1}

8.21. H = {(x, y, 0) : x2 + y2 < 1}

8.22. H = {(x, y) : x ∈ Q, y ∈ Q}

8.23. H = {(x, y) : 0 < x < 1, 0 < y < 1}
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Find the interior, the exterior and the boundary points of the fol-
lowing sets!

8.24. H = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ x ≤ 1}

8.25. H = {(x, y) : 0 ≤ x < 1, 0 < y ≤ 1}

8.26. H = {(x, y) : x ∈ Q, y ∈ Q, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

8.27. H = {(x, y) : 0 < x < 1, y = 0}

Find the interior, the exterior and the boundary points of the fol-
lowing sets in the space!

8.28. H = {(x, y, z) : x2 + y2 + z2 < 1}

8.29. H = {(x, y, z) : x2 + y2 + z2 ≤ 1}

8.30. H = {(x, y, z) : x ∈ Q, y ∈ Q, z ∈ Q, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

8.31. H = {(x, y, z) : x ∈ Q, 0 < x < 1, y = z = 0}

8.32. Let H ⊂ Rn. Are the following statements true?

(a) If x ∈ H, then x is an interior point of H.

(b) If x /∈ H, then x cannot be an interior point of H.

(c) If x ∈ H, then x cannot be a boundary point of H.

(d) If x /∈ H, then x cannot be a boundary point of H.

(e) There is a set such that all points of the set are boundary points.

(f) There is a set such that all points of the set are interior points.

(g) There is a set which has no interior points.

8.2 The Graphs of Multivariable Functions

Find the value of the following functions at the given p points!
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8.33. f(x, y) = x+ y2 p = (2, 3)

8.34. f(x, y) = arctanx+ arcsinxy p = (π/4, 0)

8.35. f(x, y, z) = x(y
z) p = (4, 3, 2)

8.36. f(x, y, z) = xy
z

p = (4, 3, 2)

Find the value of the following functions at the points of the given
curves!

8.37. f(x, y) = x2 + y2, y = x, and x2 + y2 = 1

8.38. f(x, y) = x− y, y = x, and y = x2

8.39. f(x, y) = sinx, x = π/4, and y = π/4

8.40. f(x, y) = sinxy, x = π/4, and y = π/4

8.41. Pair the graphs with the following two-variable functions!

(a) x2 + y2 (b) (x+ y)2 (c) x2 − y2

(d) xy (e) sinx+ sin y (f) sinx sin y

(A)

-4

-4

y

-2

-2

x

-2

-1

0

0

0

1

2

2

2

4

4

(B)

-3

-2

y

-3

-1

x

-2

-1

0

0

0,0

1

2,5

5,0

2

1

7,5

3

10,0

2

12,5

15,0

17,5
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(C)

-3

-2

-9,0

3

y

-6,5

2

-1

-4,0

1

-1,5

0

0

1,0

x

-1

3,5

-2

1

6,0

-3

8,5

2

3

(D)

-3

-2

y

-3

-1

x

-2

-1

0

0

0

1

5

2

3

1

10

15

20

2

25

30

35

(E)

-4

-4

-2

y

-1,0

x

-2

-0,5

0

0,0

0

0,5

2

1,0

2

4

4

(F)

-3

-2

y

-1

-3

-9,0

-2

x

-6,5

-4,0

-1

-1,5

0

0

1,0

3,5

1

6,0

2

8,5

3

1

2

3

8.42. We plotted the contours of the previous functions. Find the formulas
belonging to the graphs!

(A)

x

K3 K2 K1

0

1 2 3

y

K3

K2

K1

1

2

3 (B)

x

K3 K2 K1

0

1 2 3

y

K3

K2

K1

1

2

3
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(C)

x

K4 K3 K2 K1

0

1 2 3 4

y

K4

K3

K2

K1

1

2

3

4 (D)

x

K3 K2 K1

0

1 2 3

y

K3

K2

K1

1

2

3

(E)

x

K3 K2 K1

0

1 2 3

y

K3

K2

K1

1

2

3 (F)

x

K4 K3 K2 K1 0 1 2 3 4

y

K4

K3

K2

K1

1

2

3

4

Plot the contours of the following functions! Make a spatial effect
sketch of the graphs!

8.43. (x+ y)2 8.44.
√

x2 + y2

8.45. xy 8.46. (x− y)2

8.47. x2 + y2, 8.48. |x|

8.49. x2 − y2 8.50. |x+ y|

Find the contour surfaces of the following functions!
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8.51. f(x, y, z) = x+ y + z 8.52. f(x, y, z) = x2 + y2 + z2

8.53. f(x, y, z) = x+ y 8.54. f(x, y, z) = y2

Decide whether the following spatial sets can be the graphs of some
two-variable functions. If yes, then give examples for the functions!

8.55. plane 8.56. surface of a sphere

8.57. cone lateral 8.58. cylinder lateral

8.59. lateral of a half cylinder 8.60. surface of a half sphere

Find the maximal domain of the following functions!

8.61. f(x, y) =
x+ y

x− y
8.62. f(x, y) =

√
1− x2 +

√

y2 + 1

8.63. f(x, y) =
1

x2 + y2
8.64. f(x, y) =

√

1− x2 − y2

8.65. f(x, y, z) =
z

sinx
cos y 8.66. f(x, y, z) =

x

y − z
+

y

x+ z
−

z

x2 − y2

8.3 Multivariable Limit, Continuity

Does the limit of the following functions exist at the given points?
If yes, what is the limit? Where are the following functions con-
tinuous?

8.67. f(x, y) = 7 p = (0, 0)

8.68. f(x, y) = x+ y p = (3, 5)
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8.69. f(x, y) =
x

y
p = (3, 0)

8.70. f(x, y) =
sinxy

x
p = (0, 2)

8.71. f(x, y) =
sinxy

tan 2xy
p = (0, 3)

8.72. f(x, y) =
sinx− sin y

x− y
p = (0, 0)

8.73. f(x, y) =
sinx− sin y

ex − ey
p = (0, 0)

8.74.
√

x+ y − 1 p = (0, 0)

8.75. xy ln(x2 + y2) p = (0, 0)

8.76. f(x, y) =

{

1 if x 6= 0 and y 6= 0

0 if x = 0 or y = 0
p = (0, 0), q = (0, 1)

8.77. f(x, y) =

{

1 if x 6= 0

0 if x = 0
p = (0, 0), q = (0, 1), r = (1, 0)

8.78. f(x, y) =

{

1 if x2 + y2 6= 0

0 otherwise
p = (0, 0), q = (0, 1)

8.79. f(x, y) =

{

x if x = y

0 otherwise
p = (0, 0), q = (0, 1)

8.80. f(x, y) =

{

1 if x = y

0 otherwise
p = (0, 0), q = (0, 1)

8.81. Let f(x, y) =
x− y

x+ y
. Do the following limits exist?

(a) lim
(x,y)→(0,0)

f(x, y) (b) lim
x→0

(

lim
y→0

f(x, y)

)

(c) lim
y→0

(

lim
x→0

f(x, y)
)

(d) lim
x→0

f(x, x)

8.82. Let f(x, y) = (x+ y) sin
1

x
sin

1

y
. Do the following limits exist?
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(a) lim
(x,y)→(0,0)

f(x, y) (b) lim
x→0

(

lim
y→0

f(x, y)

)

(c) lim
y→0

(

lim
x→0

f(x, y)
)

(d) lim
x→0

f(x, x)

8.83. Let

f(x, y) =







2xy

x2 + y2
, if x2 + y2 6= 0

0, otherwise
.

Prove that the functions g(x) = f(x, 0) and h(y) = f(0, y) are con-
tinuous at x = 0 and y = 0. Prove that the function f(x, y) is not
continuous at (x, y) = (0, 0).

8.84. Prove that if f(x, y) is continuous on the plane, then

(a) G = {(x, y) : f(x, y) > 0} is an open set;

(b) F = {(x, y) : f(x, y) ≥ 0} is a closed set!

8.4 Partial and Total Derivative

8.85. Give an example of a two-variable function such that both partial
derivatives exist at the origin, but the function is not totally differ-
entiable at the origin!

Calculate the partial derivatives of the following functions!

8.86. f(x, y) = x sin y

8.87. f(x, y) = sin(xy)

8.88. f(x, y) = (x+ 2y) sin(x+ 2y)

8.89. f(x, y) = 3x2y4 − 4

8.90. f(x, y) =
x+ y

x− y2

8.91. f(x, y) = (5x+ y2)e
x2

+3y
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8.92. g(x, y, z) = sin z · (cosx)ln y

8.93. g(x, y, z) =

(

x

y

)z

8.94. f(x, y) = x2 + xy + y2

8.95. f(x, y) = ex−y

8.96. g(x, y, z) = xy
z

8.97. g(x, y, z) =
z arctanx2y

1 + ln(xy3 + 2x
√
z)

8.98. f(x, y, z) = sin(x2 + y3 + z4)

8.99. f(x, y) = arctan
1− x

1− y

8.100. f(x, y) = xy + yx

8.101. f(x, y, z) = xyz

8.102. Is the function f(x, y) = |x| + |y| partially differentiable at the point
(0, 0)?

8.103. Which statement implies the other?

P: f(x, y) is continuous at (0, 0) Q: The partial deriva-
tives of f(x, y) exist at (0, 0).

8.104. We know that f(1, 2) = 3, and that for all (x, y) points f ′x(x, y) = 0

and f ′y(x, y) = 0. Find the value of f(5, 10).

8.105. Where are the partial derivatives of the following function continuous?

f(x, y) =







(x+ y) sin
1

x
sin y if x 6= 0 and y 6= 0

0 if x = 0 or y = 0



8. Differentiation of Multivariable Functions 155

Find the second order partial derivatives of the following functions!

8.106. g(x, y, z) = xy2 sin z

8.107. g(x, y, z) =
x

y + z

8.108. g(x, y, z) = 2 + x+ y2 + z3

8.109. g(x, y, z) = ln(x+ y2 + z3)

Find the directional derivatives of the following functions along the
given vectors at the given points!

8.110. f(x, y) = x+ y2 p = (2, 3), v = (3, 4)

8.111. f(x, y) = sinxy p = (0, 0), v = (1,−1)

8.112. f(x, y) = ex+y · ln y p = (0, 1), v = (−4, 3)

8.113. f(x, y) =
x

y
p = (1, 1), v = (−1,−1)

Find the directional derivatives of the following functions at the
point (3, 5) and the angle of the direction is α = 30◦.

8.114. f(x, y) = x2 − y2 8.115. h(x, y) = xey

In what direction is the directional derivative maximal or minimal
at the point (−4, 2)?

8.116. f(x, y) = (x− y)2 8.117. g(x, y) = x2 +
2

xy

The surface of a model layout is given by the function f(x, y). In
what direction does a ball start rolling on the surface at points
A = (1, 2), B = (2, 1), C = (2, 0) and D = (−2, 1)?
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8.118. e−(x2+y2) 8.119. x3 + y3 − 9xy

8.120. The surface of the hill is given by the function f(x, y) = −x2 + sin y if
−2 ≤ x ≤ 2,−10 ≤ y ≤ 10. In what direction should the skier start
from the point p = (1, π/3) if he wants to ski on the maximal angle
slope?

8.121. Let f(x, y) =
√

1− x2 − y2. Find the equation of the contour going
through the point (1/2, 1/2), and write down the tangent line of the
contour at the point (1/2, 1/2). Calculate the gradient of the function
at (1/2, 1/2). What is the angle between the tangent line and the
contour?

8.122. Give an example of a function f(x, y) which has gradient, but the gra-
dient is not perpendicular to the tangent line of the contour!

Hint: Examine the function

f(x, y) =











0 if (x− 1)2 + y2 = 1

y if x = 0 ĂŠs y 6= 0

x otherwise

at the origin!

8.123. Let f(x, y) =
√

1− x2 − y2. Verify that the gradient and the tan-
gent line of the contour are perpendicular to each other at the point
(1/2, 1/2).

8.124. Write down the gradients of the function f(x, y) = sgnx sgn y at the
points where the gradient exists!

8.125. Let f(x, y) =















xy
x2 − y2

x2 + y2
if x2 + y2 6= 0

0 if x2 + y2 = 0

(a) Find the values of f ′x(0, 0) and f
′
y(0, 0).

(b) Find the values of f ′x(0, y), if y 6= 0 and the values of f ′y(x, 0), if
x 6= 0.

(c) Find the values of f ′′xy(0, 0) and f
′′
yx(0, 0).
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(d) Why doesn’t this contradict Young’s theorem?

(e) Is the function f differentiable two times at (0, 0)?

8.126. Let f : Rn → R. Which of the following statements are true, and which
ones are false? If a statement is false, give a counterexample!

(a) If f is continuous at the point p , then f is differentiable at that
point.

(b) If f is differentiable at p , then f is continuous at p .

(c) If f has partial derivatives at the point p , then f is continuous at
p .

(d) If f has continuous partial derivatives at p , then f is differentiable
at p .

(e) If f has continuous partial derivatives at p , then f is continuous
at p .

(f) If f is differentiable at p , then f has partial derivatives at p .

(g) If f has second order partial derivatives at p , then f is differen-
tiable two times at p .

(h) If f has continuous second order partial derivatives at p , then f
is differentiable two times at p .

(i) If f is differentiable two times at p , then f has second order partial
derivatives at p .

(j) If f is differentiable two times at p , then f has continuous partial
derivatives at p .

Is there a function f : R2 → R such that

8.127. f ′x(x, y) = sin y, f ′y(x, y) = x cos y

8.128. f ′x(x, y) = exy, f ′y(x, y) = cos(x− y)

Find the equations of the tangent planes or hyperplanes for the
following functions at the given points!

8.129. f(x, y) = xy p = (2, 3)

8.130. f(x, y) = sin(xy) p = (1/2, π)
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8.131. f(x, y, z) = xy2 − z3 p = (3, 2, 1)

8.132. f(x1, . . . , xn) = x1 · x2 · . . . · xn p = (1, 2, . . . , n)

Write down the composite functions G(t) = F (r (t)). Find the
derivatives G′(t) directly from the formulas, and by using the chain
rule!

8.133. F (x, y) = x2 + y2 r (t) = cos t · i + sin t · j t ∈ [0, 2π]

8.134. F (x, y) = x2 − y2 r (t) = cos t · i + sin t · j t ∈ [0, 2π]

8.135. F (x, y) = x2 + y2 r (t) = t · i + 3t · j t ∈ [0, 10]

Write down the Jacobian matrices of the following composite func-
tions!

8.136. g(t) = (sin t, cos t), f(x, y) = x+ y, h = f ◦ g.

8.137. f(u, v) = (sinuv, cosuv), g(x, y) = x2 + y2, h = g ◦ f

8.138. f(u, v) =

(

u2v2,
1

uv

)

, g(x, y) = lnx+ ln y, h = g ◦ f .

Give the Jacobian matrices of the following mappings!

8.139. v = sinxy · i + x cos y · j

8.140. v =
xy

1 + x2
· i + x

x2 + y2
· j

8.141. v = (lnx+ ln y) · i + x2 · j

8.142. v = sin(x+ 3y2) · i + exy · j

8.143. Let F (x, y) = xy, and f : R2 → R, g : R2 → R be differentiable
functions! Write down the derivative of the composite function F (f, g)
by using the chain rule!
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8.144. Let the function r : R → R2 be differentiable, and f(x, y) = x + y.
Write down the derivative of f ◦ r by using the chain rule!

Write down the tangent lines of the contours of the following func-
tions going through the point P !

8.145. f(x, y) = xy, P (3, 5)

8.146. f(x, y) = x2 − y2 P (5, 3)

8.5 Multivariable Extrema

Are there absolute extrema of the following functions on the given
sets? Justify your answers!

8.147. f(x) =
1

x
H = {(x) : x 6= 0}

8.148. f(x) = sin2
7
√
x3 H = {(x) : x ∈ R}

8.149. f(x, y) =
y

x
H = {(x, y) : x 6= 0}

8.150. f(x, y) = x2 + ey sin
(

x3y2
)

H = {(x, y) : x2 + y2 ≤ 1}

8.151. f(x, y) = x2 + y2 H = {(x, y) : x2 + y2 < 1}

8.152. f(x, y) = x+ y H = {(x, y) : 0 < x < 1, 0 < y < 1}

8.153. f(x, y) = xy H = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

8.154. f(x, y, z) = xyz H = {(x, y, z) : (x−1)2+(y+2)2+(z−3)2 ≤ 4}

Find the absolute extrema of the following functions on the given
sets!

8.155. f(x, y) = x3y2(1−x−y) H = {(x, y) : 0 ≤ x, 0 ≤ y, x+y ≤ 1}

8.156. f(x, y) = x2 + y2 + (x+ y + 1)2 H = R2
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8.157. f(x, y) = x− y − 3 H = {(x, y) : x2 + y2 ≤ 1}

8.158. f(x, y) = lnx·ln y+1

2
lnx+

1

2
ln y H = {(x, y) : 1

e
≤ x ≤ e,

1

e
≤ y ≤ e}

8.159. f(x, y) = sinx+sin y+sin(x+y) H = {(x, y) : 0 ≤ x ≤ π

2
, 0 ≤ y ≤ π

2
}

8.160. f(x, y) = x2−2xy+2y2−2x+4y H = {(x, y) : |x| ≤ 3, |y| ≤ 3}

Find the locations of the local extrema of the following functions,
if there are any!

8.161. f(x, y) = 3x2 + 5y2 8.162. f(x, y) = (2x− 5y)2

8.163. f(x, y) = 2x2 − 3y2 8.164. f(x, y) = 2x2 − y2 + 4x+ 4y − 3

8.165. f(x, y) = x2 + y2 − 6x+ 8y + 35

8.166. f(x, y) = 3−
√

2− (x2 + y2)

8.167. f(x, y) = −y2 + sinx

8.168. f(x, y) = e−(x2+y2)

8.169. f(x, y) = (x− y2)(2x− y2)

8.170. f(x, y) = −2x2 − 2xy − 2y2 + 36x+ 42y − 158

8.171. Is there any one-variable polynomials whose range is (0,∞)? If there
is, then give an example! Is there any two-variable polynomials which
range is (0,∞)? If there is, then give an example!

8.172. Give an example of a two-variable function, which has infinitely many
strict local maximum, but has no local minimum at all!

8.173. Find the maximum and the minimum of the function 2x+ 3y + 4z on
the surface of the sphere with origin center, and radius 1.
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8.174. Find the distance of the lines p (t) = 2t · i + t · j + (1 − t) · k and
q (t) = 3t · i + t · j + (2t− 1) · k .

8.175. Are the following statements true?

(a) If f ′x(x0, y0) = 0, then f has a local extremum at the point (x0, y0).

(b) If f ′x(x0, y0) = 0 and f ′y(x0, y0) = 0, then f has a local extremum
at the point (x0, y0).

(c) If f ′′xy(x0, y0) = 0 and f ′′yx(x0, y0) = 0, then f has a local extremum
at the point (x0, y0).

(d) If f ′′xx(x0, y0)f
′′
yy(x0, y0) − (f ′′xy(x0, y0))

2 < 0, then f has no local
extremum at the point (x0, y0).

(e) If f ′′xx(x0, y0)f
′′
yy(x0, y0) − (f ′′xy(x0, y0))

2 ≤ 0, then f has no local
extremum at the point (x0, y0).

(f) If f ′′xx(x0, y0) < 0, then f has no local extremum at the point
(x0, y0).

At which (x, y) ∈ R2 points are both partial derivatives of the
function f(x, y) zero? At which (x, y) ∈ R2 points has the function
f(x, y) local extrema?

8.176. f(x, y) = x3 8.177. f(x, y) = x2

8.178. f(x, y) = x2 − y2 8.179. f(x, y) = x2 + y2

8.180. f(x, y) = (x+ y)2 8.181. f(x, y) = x3 + y3

8.182. f(x, y) = e−(x2+y2) 8.183. f(x, y) = x2 + sin y

8.184. f(x, y) = 3x2 + 5y2 8.185. f(x, y) =
2

3
x3 + y4 + xy

8.186. f(x, y) = xy 8.187. f(x, y) = ey
2−x2

8.188. f(x, y, z) = xyz + x2 + y2 + z2

8.189. f(x, y) = x3 − y3
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8.190. f(x, y) = x4 + y4 8.191. f(x, y) = −2x2 − y4

8.192. f(x, y) = (2x− 5y)2 8.193. f(x, y) = (1 + ey) cosx− yey

The surface of a hill is given by the function F (x, y) = 30− x2

100
−

y2

100
. Find the maximal height of the path whose coordinates satisfy

the following equations:

8.194. 3x+ 3y = π sinx+ π sin y

8.195. 4x2 + 9y2 = 36

8.196. y =
1

1 + x2

8.197. x2 + y2 = 25

Find the maximum of f with the given constraint!

8.198. f(x, y) = xy, x2 + y2 = 1

8.199. f(x, y, z) = x− y + 3z, x2 +
y2

2
+
z2

3
= 1

8.200. f(x, y, z) = xyz, x2 + y2 + z2 = 3

8.201. f(x, y) = xy, x+ y + z = 5

8.202. f(x, y) = xyz, xy + yz + xz = 8

8.203. f(x, y) = xyz, xy + yz + xz = 8, x, y, z ≥ 0

8.204. A particle can move on the circle path x2+y2 = 25 on the plane, where

its potential energy at the point (x, y) is E(x, y) = x2+24xy+8. Does
the particle have stable equilibrium at any points?
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8.205. The amount of the products made in a factory depends on the param-
eters x and y:
M(x, y) = xy. The product cost is C(x, y) = 2x + 3y. What amount
can the factory produce at most, if it has C(x, y) = 10 money unit for
the product cost?

8.206. With a given volume, which brick has the minimal surface?

8.207. Find the angles of the triangle with maximal area, if its perimeter is K.

8.208. Find the equation of the tangent plane of the 3x2+2y2+z2 = 9 ellipsoid,
where the point of tangent is (1,−1, 2).

8.209. Let P = (3,−7,−1), Q = (5,−3, 5), and S be a plane going through
Q, and the plane be perpendicular to the line segment PQ.

(a) Find the equation of the plane S!

(b) Write down the distance between a point of the plane and the
origin!

(c) Which point of the plane S is closest to the origin?

(d) Show that the line segment between the previous point and the
origin is perpendicular to the plane S. Give a geometric reason
for this fact!



Chapter 9

Multivariable Riemann-inte-

gral

9.1 Properties of Jordan measurable sets.

— If A ⊂ Rn is bounded, then b(A) = b(intA), k(A) = k
(

A
)

.

— The bounded set A ⊂ Rn is Jordan measurable if and only if its bound-
ary is a null set.

— If A ⊂ Rn is Jordan measurable and f : A → R is bounded, then f is
integrable if and only if the graf f ⊂ Rn+1 is a null set.

9.2 Properties of the integral.

— If A is a Jordan measurable set, then t(A) =

∫

A

χA, where χA is the

characteristic function of the set A, that is,

χA(x) =

{

1 if x ∈ A
0 if x /∈ A

— If the sets A and B are bounded, intA∩ intB = ∅ (non-overlapping),
and f is integrable both on A and B, then f is integrable on the set
C = A ∪B, and

∫

C

f =

∫

A

f +

∫

B

f.

— A continuous function is integrable on a measurable closed set.

— If f and g are equal on the measurable set A except on a null set, and
f is integrable on A, then g is integrable on A, and

∫

A

f =

∫

A

g.
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— If f and g are integrable on the set A, and c is an arbitrary real number,
then f + g and c · f are also integrable on A, and

∫

A

(f + g) =

∫

A

f +

∫

A

g,

∫

A

(c · f) = c

∫

A

f.

9.3 Integration Methods.

— Successive integration - Fubini’s theorem.

Let A ⊂ Rn−1 be a closed, Jordan measurable set, B = [a, b]×A ⊂ Rn

and f : B → R be continuous, then

∫∫

B

f(x, y) dx dy =

b
∫

a





∫

A

f(x, y) dy



 dx

— Integration between continuous functions.

Let A ⊂ Rn−1 be a closed Jordan measurable set, ϕ : A→ R, ψ : A→
R two continuous functions, ϕ ≤ ψ at the points of A,

N = {(x, y) : x ∈ A,ϕ(x) ≤ y ≤ ψ(x)} ⊂ Rn, f : N → R

be a continuous function. In this case N is Jordan measurable, f is
integrable on N , and

∫∫

N

f(x, y) dx dy =

∫

A







ψ(x)
∫

ϕ(x)

f(x, y) dy






dx.

— Integral Transform.

Let A ⊂ Rn be a closed, Jordan measurable set, Φ : A → Rn be
continuous, and on intA bijection and continuously differentiable, B =
{Φ(x) : x ∈ A} = Ψ(A), and f : B → R be a continuous function. In
this case B is a (closed) Jordan measurable set and

∫

B

f(y) dy =

∫

A

|J | f(Ψ(x)) dx,

where J = det(Ψ′) is the Jacobian determinant of Ψ.
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9.1 Jordan Measure

Is there area of the boundary of the following sets on the plane? If
yes, then calculate the area!

9.1. H = {(x, y) : 0 ≤ x < 1, 0 < y ≤ 1}

9.2. H = {(x, y) : x ∈ Q, y ∈ Q, 0 ≤ x ≤ 1, 0 ≤ x ≤ 1}

Is there volume of the boundary of the following spatial sets? If
yes, then calculate the volume!

9.3. H = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1}

9.4. H = {(x, y, z) : x ∈ Q, y ∈ Q, z ∈ Q, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

Find the outer and inner Jordan measure of the following sets!
Which set is measurable?

9.5. H = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

9.6. H = {(x, y) : 0 ≤ x < 1, 0 < y ≤ 1}

9.7. H = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}

9.8. H = {(x, y) : x ∈ Q, y ∈ Q, 0 ≤ x ≤ 1, 0 ≤ x ≤ 1}

Find the outer and inner measure of the following sets! Which set
is measurable?

9.9. H = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

9.10. H = {(x, y, z) : 0 ≤ x < 1, 0 < y < 1, 0 < z < 1}

9.11. H = {(x, y, z) : 0 < x < 1, 0 < y < 1, 0 < z < x+ y}
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9.12. H={(x, y, z) : x ∈ Q, y ∈ Q, z ∈ Q, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

9.13. Prove that a bounded set is measurable if and only if its boundary is a
null set!

9.14. Prove that if the set H1 and H2 are measurable, then the sets H1 ∪
H2, H1 \H2, H1 ∩H2 are measurable, too!

9.15. Are there bounded planar sets A and B such that

(a) b(A ∪B) > b(A) + b(B)? (b) k(A ∪B) < k(A) + k(B)?

9.16. Are there bounded and disjoint planar sets A and B such that

(a) b(A ∪B) > b(A) + b(B)? (b) k(A ∪B) < k(A) + k(B)?

9.17. Let’s assume that the area of the boundary of a bounded set H is 0.
Does it imply that the interior of the set H is empty?

9.18. Let’s assume that the interior of the bounded set H is empty. Does it
imply that H is measurable?

9.19. Let R be a brick whose edges are parallel to the axes, and let H ⊂ R
an arbitrary set. Prove that b(H) + k(R \H) = t(R)!

9.20. Let R be a brick whose edges are parallel to the axes, and let H ⊂ R
be an arbitrary set. Prove that H is measurable if and only if k(H) +
k(R \H) = t(R)!

9.21. Is there a bounded set H such that

(a) k(H) > b(H) (b) k(H) < b(H)

(c) t(∂H) > b(H) (d) t(∂H) > k(H)?

9.22. Is there a measurable H set such that
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(a) k(H) > b(H) (b) t(∂H) = 1?

9.23. Let’s assume that the set H is bounded. Is it true that if H is measur-
able, then H ∪ ∂H is also measurable?

9.24. Let Kn be a circle on the plane with center at the origin and radius

1/n. Find the area of the set
∞
⋃

n=1

Kn!

9.25. Let Kn be a circle on the plane with center (1/n, 1/n) and radius 1/n!

Find the area of the set
⋃∞
n=1Kn!

9.26. Let f : [a, b] → R be a bounded function, and Gf = {(x, y) : a ≤ x ≤
b, y = f(x)} be the graph of the function. Prove that Gf is Jordan
measurable if and only if f is integrable.

9.27. Calculate the outer and inner measure of the set of the points with
rational coordinates of the unit square!

9.28. Find a bounded, open set on the plane, which has no Jordan area.

9.29. Find a bounded, closed set on the plane, which has no Jordan area.

9.30. Prove that for an arbitrary bounded set A ⊂ Rn

b(A) = 0 ⇐⇒ intA = ∅.

9.31. Prove that if A ⊂ Rn is Jordan measurable, then ∀ ε > 0 ∃ K ⊂ A
closed and ∃ G ⊃ A open measurable sets such that

t(A)− ε < t(K) ≤ t(A) ≤ t(G) < t(A) + ε.

9.32. Let C ⊂ R be the Cantor set. H = C × [0, 1] ⊂ R2. Is H Jordan
measurable? If yes, what is its area?

9.33. Let H =
⋃∞
n=1Kn, where Kn is a circle line with the center at the

origin, and radius 1/n.
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(a) Is H measurable?

(b) Is there an S ⊂ R2 (measurable) set such that ∂ S = H?

(c) Is there an S ⊂ R2 (measurable) set such that ∂ S ⊃ H?

9.2 Multivariable Riemann integral

9.34. Let H = [−1, 1]× [0, 1], and

f(x, y) =

{

|x| if y ∈ Q

0 if y /∈ Q

Show that

1
∫

0





1
∫

−1

f(x, y) dx



 dy = 0, and f is not integrable on H!

9.35. Let H = {x2 + y2 ≤ 1}, and

f(x, y) =

{

1 if x ≥ 0

−1 if x < 0

Calculate the lower and upper integral of f on the set H! Is f integrable
on the set H?

Are the following functions integrable on the unit square N =
[0, 1] × [0, 1]? If the answer is yes, calculate the values of the inte-
grals!

9.36. f(x, y) =

{

0 if y > x

1 if y ≤ x

9.37. f(x, y) =

{

1 if y ≥ x

0 if y < x

9.38. f(x, y) =

{

0 if xy 6= 0

1 if xy = 0

9.39. f(x, y) =

{

1 if x, y ∈ Q

0 otherwise
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9.40. f(x, y) =

{

1 if x ≥ 1/2

2 if x < 1/2

9.41. f(x, y) =

{

1 if y ≥ 1/2

2 if y < 1/2

9.42. f(x) = D(x)D(y), where D(t) =

{

1 if t ∈ Q

0 if t /∈ Q
is the Dirichlet func-

tion.

9.43. Let f(x, y) =

{

n if x+ y = 1/n, n ∈ N+

0 otherwise
.

Show that f is not integrable on the N unit square, but

1
∫

0





1
∫

0

f(x, y) dx



 dy = 0 and

1
∫

0





1
∫

0

f(x, y) dy



 dx = 0.

Calculate the following integrals on the set N = [0, 1]×[0, 1]! Apply
Fubini’s theorem!

9.44.

∫∫

N

sinx dx dy 9.45.

∫∫

N

sin y dx dy

9.46.

∫∫

N

sin(x+ y) dx dy 9.47.

∫∫

N

sinxy dx dy

9.48.

∫∫

N

e2x+y dx dy 9.49.

∫∫

N

xy dx dy

Let N = [0, 1]2 ⊂ R2, the unit square. Integrate the following
f(x, y) functions on N :

9.50. f(x, y) = x 9.51. f(x, y) = x3 − x2y +
√
y

9.52. f(x, y) = ex+2y 9.53. f(x, y) = xexy
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9.54. f(x, y) =

{

1 if x = y
0 if x 6= y

9.55. f(x, y) =

{

1 if x = y
0 if x < y

9.56. f(x, y) =

{

1 if x+ y = 1
0 otherwise

9.57. f(x, y) =

{

1 if x = 1/n, n ∈ N+

0, otherwise

Find the following integrals on the given rectangles:

9.58.

∫∫

T

(x+ y) dx dy T : 0 ≤ x ≤ 1, 1 ≤ y ≤ 3

9.59.

∫∫

T

xy dx dy T : 0 ≤ x ≤ 1, 1 ≤ y ≤ 3

9.60.

∫∫

T

ex+y dx dy T : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

9.61.

∫∫

T

xey dx dy T : 1 ≤ x ≤ 2, 3 ≤ y ≤ 4

9.62.

∫∫

T

x

y
dx dy T : 1 ≤ x ≤ 2, 3 ≤ y ≤ 4

9.63.

∫∫

T

x sin y dx dy T : 0 ≤ x ≤ 1, 2 ≤ y ≤ 3

Calculate the following integrals on the set H = {(x, y) : 0 ≤ x ≤
π/2, 0 ≤ y ≤ sinx}! Apply Fubini’s theorem!

9.64.

∫∫

H

(x− y) dx dy 9.65.

∫∫

H

xy dx dy

9.66.

∫∫

H

y sinx dx dy 9.67.

∫∫

H

x
√

1 + y2
dx dy

Find the following integrals on the given sets:
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9.68.

∫∫

T

(x+ y) dx dy T : x2 + y2 ≤ 1

9.69.

∫∫

T

xy dx dy T : (x− 1)2 + (y + 1)2 ≤ 4

9.70.

∫∫

T

xy dx dy T :
(x− 1)2 + y2 = 1
(x− 2)2 + y2 = 4

domain bounded by
the circles.

9.71.

∫∫

T

(x− xy) dx dy T : (x− 2)2 + (y + 3)2 ≤ 4

9.72.

∫∫

T

e−x
2

dx dy T : 0 ≤ x ≤ 1, 0 ≤ y ≤ x

9.73.

∫∫

T

(x2 + y2)3/2 dx dy T : x2 + y2 ≤ 1

Let T = [0, 1] × [0, 2] × [0, 3] ⊂ R3. Calculate the integrals on the
brick T :

9.74.

∫∫∫

T

(x+ y + z) dx dy dz 9.75.

∫∫∫

T

xyz dx dy dz

9.76.

∫∫∫

T

ex+y+z dx dy dz 9.77.

∫∫∫

T

(xz + y2) dx dy dz

Find the area of the domains bounded by the following curves!

9.78. y = x2, x = y2

9.79. y = 2x− x2, y = x2

9.80. 2y = x2, y = x

9.81. 4y = x2 − 4x, x− y − 3 = 0

9.82. y = x2, y = 2x2, xy = 1, xy = 2
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9.83. x2 − y2 = 1, x2 − y2 = 4, xy = 1, xy = 2

9.84. Find the area of the set H = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤
√

1− x2}.

9.85. Calculate the area of the two-dimensional shape bounded by the parabo-

las y = x2, y = 2x2, and the line x = 1.

9.86. Calculate the volume of the solid body
bounded by the cylinder lateral x2 +
y2 = 1, and the planes x + y + z = 2,
z = 0. The sought solid body:

9.87. Calculate the volume of the solid body
bounded by the cylinder x2 + y2 = 1,
and the planes x + y + z = 1, z = 0.
The sought solid body:

9.88. Calculate the volume of the solid body below the function f(x, y) =

1− x2

2
− y2

2
and above the set H, if H = [0, 1]× [0, 1]!

9.89. Calculate the volume of the solid body below the graph of the function
f(x, y) = x+ y and above the set H, if H = {0 ≤ x+ y ≤ 1, 0 ≤ x, 0 ≤
y}!
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Plot the solid body whose volume can be calculated by the following
integrals. Calculate the integrals!

9.90.

1
∫

0





1−x
∫

0

(

x2 + y2
)

dy



 dx

9.91.

∫∫

|x|+|y|≤1

(

x2 + y2
)

dy dx

Calculate the volume of the solid bodies bounded by the following
surfaces!

9.92. x+ y + z = 6, x = 0, z = 0, x+ 2y = 4

9.93. x− y + z = 6, x+ y = 2, x = y, y = 0, z = 0

9.94. z = 1− x2 − y2, x2 + y2 ≤ 1

9.95. z = cosx cos y, |x+ y| ≤ π

2
, z = 0

Calculate the volumes of the following solid bodies!

9.96. sphere 9.97. ellipsoid

9.98. circular cylinder 9.99. circular cone

Let us assume that the two-dimensional range H consist of some
material with density ̺(x, y). The mass of the shape:

M =

∫∫

H

̺(x, y) dx dy,

the coordinates of the center of mass are

Sx =
1

M

∫∫

H

x̺(x, y) dx dy, Sy =
1

M

∫∫

H

y̺(x, y) dx dy.

Find the coordinates of the center of mass if H = [0, 1]× [0, 1] and
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9.100. ̺(x, y) = x2 9.101. ̺(x, y) = x+ y

9.102. ̺(x, y) = xy 9.103. ̺(x, y) = x2 + y2

Find the center of mass of the two-dimensional shape which is
bounded by the lines y = 0, x = 2, y = 1, y = x, and its density is

9.104. ̺(x, y) = 1 9.105. ̺(x, y) = x

9.106. ̺(x, y) = y 9.107. ̺(x, y) = xy

9.108. ̺(x, y) =
1

x+ y3
9.109. ̺(x, y) = ex+y

The moment of inertia of a rigid body on the plane xy with respect
to z axis is

Θ =

∫∫

H

r2(x, y)̺(x, y) dx dy,

where r(x, y) is the distance of the point (x, y) from the z axis.
Find the moment of inertia of the unit square on the xy plane with
density ̺ with respect to the z axis if one vertex of the square is
on the z axis.

9.110. ̺(x, y) = 1 9.111. ̺(x, y) = xy

9.112. Find the moment of inertia of the squares in the previous problems with
respect to the z axis if the midpoint of one side of the square is on the
z axis!

9.113. A thin membrane is bounded by the line y = 0, x = 1 and y = 2x. The
density of the membrane is ̺(x, y) = 6x+6y+6. Find the mass of the
membrane and coordinates of the center of mass!

9.114. A rigid body is in the first octant, it is bounded by the coordinate
planes and the plane x + y + z = 2, and its density is ̺(x, y, z) = 2x.
Find the mass of the membrane and the coordinates of the center of
mass!
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9.115. We pump the water to the surface from a sump whose depth is 1 meter.
What amount of work is needed against the gravitation if the sump is

(a) a cube (b) a half sphere?



Chapter 10

Line Integral and Primitive

Function

10.1 Tangent line. The equation of the spatial curve r (t) at the point
r 0 = r (t0) is

r = r 0 + v · t,
where v = ṙ (t0) is the direction vector of the tangent line.

10.2 Arc length for planar and spatial curves.

— If the planar curve r : [a, b] → R2 is continuously differentiable, then it
is rectifiable, and the length of its arc is

L =

b
∫

a

|ṙ | dt =
b
∫

a

√

ẋ2 + ẏ2 dt.

— If f : [a, b] → R is continuously differentiable, then its graph is rectifi-
able, and the length of its arc is

L =

b
∫

a

√

1 + (f ′)2 dx.

— If the spatial curve r : [a, b] → R3 is continuously differentiable, then
it is rectifiable, and the length of its arc is

L =

b
∫

a

|ṙ | dt =
b
∫

a

√

ẋ2 + ẏ2 + ż2 dt.

10.3 Tangent plane. The equation of the tangent plane of the surface
r (u, v) at the point r 0 = r (u0, v0) is

n · r = n · r 0,
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where n = r ′
u(u0, v0)× r ′

v(u0, v0) is the normal vector to the tangent plane.
Especially, the tangent plane of the graph of z = f(x, y) at the point (x0, y0)
is

z = f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0).

10.4 Surface area. If the surface r : A→ R3 is continuously differentiable,
then the (finite) area of the surface exists, and

S =

∫∫

A

|r ′
u × r ′

v| du dv.

Especially, the surface of the graph of the continuously differentiable function
z = f(x, y) over the measurable planar region A is

S =

∫∫

A

√

1 + (z′x)
2 + (z′y)

2 dx dy.

10.5 Calculating the line integral. If the vector field v = v1(x, y, z) · i +
v2(x, y, z) · j + v3(x, y, z) · k is continuous on the region G, and r : [a, b] →
G, r (t) = x(t) · i + y(t) · j + z(t) · k is continuously differentiable, then the
line integral of v exists along the curve Γ : r (t), and

∫

Γ

v dr =

b
∫

a

v (r (t)) · ṙ (t) dt.

With coordinates
∫

Γ

v1(x, y, z) dx+ v2(x, y, z) dy + v3(x, y, z) dz =

=

b
∫

a

[v1(x, y, z)ẋ+ v2(x, y, z)ẏ + v3(x, y, z)ż] dt.

In the case of planar vector field and curve

∫

Γ

v1(x, y) dx+ v2(x, y) dy =

b
∫

a

[v1(x, y)ẋ+ v2(x, y)ẏ] dt.
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10.6 Conservative vector field.

— The vector field v is conservative on the region G if and only if along
all closed and rectifiable Γ curves inside G

∮

Γ

v dr = 0,

that is, all closed line integrals are zero.

— Newton-Leibniz formula for line integrals.

If the vector field v is conservative on the region G, U(r ) is a primitive
function of v on G, and Γ is a continuously differentiable curve in G
with starting point a and endpoint b , then

∫

Γ

v dr = U(b )− U(a ).

— If v is a continuously differentiable and conservative vector field on the
region G, then

curlv = 0 ,

that is, the vector field is irrotational.

— If the vector field v is continuously differentiable on the simply con-
nected domain G, and at the point of G curlv = 0 , then v is conser-
vative.

10.1 Planar and Spatial Curves

Plot the following planar curves!

10.1. r = t · i + t2 · j
t ∈ [0, 4]

10.2. r = t2 · i + t · j
t ∈ [0, 16]

10.3. r =
√
t · i + t · j

t ∈ [0, 16]

10.4. r = t · i +
√
t · j

t ∈ [0, 4]
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10.5. r = 2t · i + 4t2 · j
t ∈ [0, 2]

10.6. r = t2 · i + t2 · j
t ∈ [0, 4]

10.7. r = cos t · i + sin t · j
t ∈ [0, 2π]

10.8. r = cos t · i + sin t · j
t ∈ [0, π]

10.9. r = cos t · i + sin t · j
t ∈ [−π/2, π/2]

10.10. r = 2 cos t · i + 4 sin t · j
t ∈ [0, 2π]

10.11. r = 4 cos t · i + 2 sin t · j
t ∈ [π/2, 3π/2]

10.12. r = cos t · i + t sin t · j
t ∈ [0, 2π]

10.13. r = t cos t · i + sin t · j
t ∈ [0, 6π]

10.14. r = t cos t · i + t sin t · j
t ∈ [0, 4π]

Plot the following spatial curves!

10.15. r = t · i + 2t · j + 3t · k t ∈ [2, 4]

10.16. r = −2t · i + t · j − (t/3) · k t ∈ [2, 4]

10.17. r = cos t · i + sin t · j + t · k t ∈ [0, 6π]

10.18. r = t · i + sin t · j + cos t · k t ∈ [0, 6π]

10.19. r = 2 sin t · i − t2 · j + cos t · k t ∈ [2, 6π]

10.20. r = t cos t · i + t sin t · j + t · k t ∈ [2, 6π]

10.21. Give an example of a curve which is a

(a) cylindrical spiral;

(b) conical spiral!

10.22. Find the arc length of the previous curves if the height and radius of
the cylinder, the circle at the bottom of the cone are given!
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Plot the following curves! Write down the equation of the tangent
lines at t = π/4!

10.23. r (t) = 2 cos t · i + 3 sin t · j t ∈ [0, 8π]

10.24. r (t) = t cos t · i + t sin t · j t ∈ [0, 8π]

Write down the equation of the following planar curves at the given
points!

10.25. x2 − xy3 + y5 = 17 P (5, 2)

10.26. (x2 + y2)2 = 3x2y − y3 P (0, 0)

Calculate the equations of the tangent lines of the following spatial
curves at the given points!

10.27. r (t) = (t−3)·i +(t2+1)·j +t2 ·k t = 2

10.28. r (t) = sin t · i +cos t · j + 1

cos t
·k p = j + k

Find the arc length of the following planar curves!

10.29. (cykloid)

x = r(t− sin t)
y = r(1− cos t)

0 ≤ t ≤ 2π

10.30. (Archimedean spiral)

r = aϕ 0 ≤ ϕ ≤ 2π

10.31. y =
√
x 0 ≤ x ≤ a
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10.2 Scalar and Vector Fields, Differential

Operators

10.32. Which geometric transformation corresponds to the mapping

f(x, y) =

(

x

x2 + y2
,− y

x2 + y2

)

on the plane?

Give examples of mappings f : R2 → R2 such that their domain is
H, and their range is K!

10.33. H = {(x, y) : 0 < x < 1, 0 < y < 1}
K = {(x, y) : 0 < x < 2, 0 < y < 4}

10.34. H = {(x, y) : 0 < x < 1, 0 < y < 1, x+ y < 1}
K = {(x, y) : 0 < x < 1, 0 < y < 1}

10.35. H = {(x, y) : 0 < x ≤ 1, y = 0} K = {(x, y) : x2 + y2 = 1}

10.36. H = {(x, y) : 0 < x < 1, 0 < y < 2} K = {(x, y) : x2 + y2 < 1}

Find grad f = ∇f if

10.37. f(x, y) = x2 − y2 10.38. f(x, y) = x2 + y2

10.39. f(x, y) = x4 − 6x2y2 + y4 10.40. f(x, y) =
√

x2 + y2

Write down the gradients of the following functions at the given
points!

10.41. f(x, y) = x2 sin y p = (π/3,−π/4)

10.42. f(x, y) =
√
x lnxy p = (e2, e4)
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10.43. f(x, y, z) = x+ xy2 + x2z3 p = (2,−1, 1)

10.44. f(x, y, z) = x sin y + z2 cos y p = (π/2, π/6)

Calculate the gradients of the following scalar fields, where ’a ’ is a
fixed constant vector, and ’r ’ is a vector variable:

10.45. U(r ) = a · r 10.46. U(r ) = |a × r |

10.47. U(r ) = r 2 +
1

r 2
10.48. U(r ) =

a 2

r 2

Find the tangent planes of the following surfaces at the given points:

10.49. r = (u2 − v) · i + (u− v3) · j − (u+ v·)k ; u = 1, v = 2

10.50. z = x2 + y2; x = 1, y = 2

Calculate the areas of the following surfaces:

10.51. r = u cos v · i + u sin v · j + u · k 0 ≤ u ≤ 1; 0 ≤ v ≤ π

10.52. z =
x2

2y
0 ≤ x ≤ 1; 1 ≤ y ≤ 2

10.3 Line Integral

Let v = (x + y) · i + (x − y) · j . Calculate the line integral of v
along the following curves!

10.53. Γ : t · i t ∈ [0, 1]

10.54. Γ :

{

t · i + (t+ 1) · j if t ∈ [−1, 0]

t · i + (−t+ 1) · j if t ∈ (0, 1]

10.55. Γ : cos t · i + sin t · j t ∈ [0, π]
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10.56. Γ :







(1 + cos t) · i + sin t · j , if t ∈ [0, π]
t− π

π
· i , if t ∈ (π, 2π]

Let v = (x2 − 2xy) · i + (y2 − 2xy) · j . Calculate the line integrals
of v along the following curves!

10.57. Γ : t · i + t2 · j t ∈ [−1, 1]

10.58. Γ : t · i + j t ∈ [−1, 1]

Let the curve Γ1 be the line segment between A(0, 0) and B(1, 1),
and Γ2 the unit parabola arc between A(0, 0) and B(1, 1), that is,
the graph of the function y = x2 between 0 and 1. Calculate the
line integrals of the following mappings along these curves!

10.59. v = (x− y) · i + (x+ y) · j

10.60. v = x · i + y · j

10.61. v = y · i + x · j

10.62. v = (x2 + y2) · i + (x2 − y2) · j

Let the curve Γ be the polygonal chain connecting the points
A(0, 0), B(1, 0) and C(0, 1). Calculate line integrals of the following
mappings on this curve!

10.63. v = −2x · i + y · j 10.64. v = i + x2 · j

10.65. v = y2 · i − j 10.66. v = xy · i + (x+ y) · j

10.67. Let the curve Γ be the line segment between the points A(−2, 0) and
B(1, 0). Calculate the line integral of the mapping

v =
2x3 − 3x

x2 + y2
· i + 1

x2 + y2
· j

on this curve!
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Let v = (x + y) · i + (y + z) · j + (z + x) · k . Calculate the line
integral of v on the following curves!

10.68. Γ : t · i + 2t · j + 3t · k t ∈ [0, 1]

10.69. Γ : t · i + t2 · j t ∈ [1, 2]

10.70. Γ : cos t · i + sin t · j + t · k t ∈ [0, π]

10.71. Γ : cos t · i + sin t · j + t · k t ∈ [π, 2π]

Let the curve Γ be the line segment between the points A(0, 0, 0)
and B(1, 1, 1). Calculate the line integrals of the following map-
pings on that curve!

10.72. v = xz · i + yx · j + xy · k

10.73. v = (x− y) · i + (x+ y) · j + z · k

10.74. v = xy · i + yz · j + xz · k

10.75. v = y2 · i + z2 · j + x2 · k

10.76. Let the curve Γ be the line segment between the points A(−2, 0, 1) and
B(1, 0, 3). Find the line integral of the mapping

v =
x

x2 + y2 + z2
· i + 1

x2 + y2 + z2
· j + z

x2 + y2 + z2
· k

on this curve!

Find the line integrals below:

10.77.

∫

C

(x2 − 2xy) dx+ (y2 − 2xy) dy Γ : y = x2 (−1 ≤ x ≤ 1)

10.78.

∮

C

(x+ y) dx+ (x− y) dy Γ :
x2

a2
+
y2

b2
= 1
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10.79.

∫

C

y dx+ z dy + x dz C :

{

x = a cos t
y = a sin t
z = bt

0 ≤ t ≤ 2π

Have the following planar vector fields got primitive functions? If
yes, then find them!

10.80. v = y · i + x · j

10.81. v = x · i + y · j

10.82. v = (x− y) · i + (y − x) · j

10.83. v = (x4 + 4xy3) · i + (6x2y2 − 5y4) · j

10.84. v = (x+ y) · i + (x− y) · j

10.85. v = ex · i + ey · j

10.86. v = ey · i + ex · j

10.87. v = ex cos y · i − ex sin y · j

10.88. v = (x2 + y) · i + (x+ cot y) · j

10.89. v = sin y · i + sinx · j

10.90. v = cosxy · i + sinxy · j

10.91. v = y sinxy · i + x sinxy · j

10.92. v =
x

x2 + y2
· i + y

x2 + y2
· j

10.93. v =
x

x2 + y2
· i − y

x2 + y2
· j

10.94. v =
y

x2 + y2
· i + x

x2 + y2
· j

10.95. v =
y

x2 + y2
· i − x

x2 + y2
· j
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10.96. v =
y

(x2 + y2)
2 · i + x

(x2 + y2)
2 · j

10.97. v = − y

(x2 + y2)
2 · i + x

(x2 + y2)
2 · j

Calculate the line integrals of the mappings of the problems from
10.80. to 10.97.

10.98. on the unit circle with center the origin in positive direction;

10.99. on the boundary of the square with verticesA(−1,−1), B(1,−1), C(1, 1)
and D(−1, 1) in positive direction.

Are the following force fields conservative on the whole plane? If
yes, give a potential function!

10.100. E = 9, 81 · j

10.101. E = (y + x) · i + x · j

10.102. E = (y + sgnx) · i + x · j

10.103. E = (x+ y) · i + (x+ [y]) · j

10.104. E = x · i + 2y · j

10.105. E = (x2 − 2xy) · i + (y2 − 2xy) · j

10.106. E = − y

x2 + y2
· i + x

x2 + y2
· j

10.107. E =
x

(x2 + y2)
3/2

· i + y

(x2 + y2)
3/2

· j

Have the following spatial vector fields got primitive functions? If
yes, find them!

10.108. v = yz · i + xz · j + xy · k

10.109. v = xy · i + yz · j + xz · k
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10.110. v = (x+ y) · i + (z − y) · j + xz · k

10.111. v =
−x2 + y2 + z2

x2 + y2 + z2
· i + x2 − y2 + z2

x2 + y2 + z2
· j + x2 + y2 − z2

x2 + y2 + z2
· k

10.112. v = 2xy3z4 · i + 3x2y2z4 · j + 4x2y3z3 · k

10.113. v = 3xy3z4 · i + 3x2y2z4 · j + x2y3z3 · k

10.114. v = sin y · i + x cos y · j + 2z · k

10.115. v = exz sin y · i + exz cos y · j + ex sin y · k

10.116. Which line integrals of the mappings of the problems between 10.108.
and 10.115. are 0 on the boundary of an arbitrary spatial circle with
center (3, 4, 5) and radius 1?

10.117. Calculate the line integral below, and show that the cross derivatives
are equal:

∮

C

y dx− x dy

x2 + y2
, Γ : x2 + y2 = R2

Find the primitive function z(x, y):

10.118. dz = (x2 + 2xy − y2) dx+ (x2 − 2xy − y2) dy

10.119. dz =
y dx− x dy

3x2 − 2xy + 3y2

10.120. dz =
(x2 + 2xy + 5y2) dx+ (x2 − 2xy + y2) dy

(x+ y)3

Find the primitive function u(x, y, z):

10.121. du = (x2 − 2yz) dx+ (y2 − 2xz) dy + (z2 − 2xy) dz

10.122. du =

(

1− 1

y
+
y

z

)

dx+

(

x

z
+

x

y2

)

dy − xy

z2
dz
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10.123. du =
(x+ y) dx+ (x+ y) dy + z dz

x2 + y2 + z2 + 2xy

The gravitation force between the mass point M at the origin and
the mass point m at the point (x, y, z) is

c
Mm

x2 + y2 + z2
,

where c is a constant. The direction of the force is the same as the
line segment with initial point (x, y, z) and origin terminal point.
Calculate the work of the gravitational force, if the mass point m
moves on the following curves:

10.124. Γ : cos t · i + sin t · j t ∈ [0, 2π]

10.125. Γ : cos t · i + sin t · j t ∈ [0, π]

10.126. Γ : t · i + 2t · j + 3t · k t ∈ (0, 1]

10.127. Γ : the boundary of the square with vertices

A(−1,−1, 0), B(1,−1, 0), C(1, 1, 0), D(−1, 1, 0)

in positive direction.

10.128. Find the potential function of the gravitational force in the previous
problems!

The force between the point charge Q at the origin and the point
charge q at the point (x, y, z) is

c
Mm

x2 + y2 + z2
,

where c is a constant, and the initial point of the force vector is
the origin, and the terminal point is (x, y, z).

10.129. Find the work of the electrostatic force, when the charge q moves from
the point (1, 2, 3) to the point (5, 6, 7). Does the work depend on the
path?



10. Line Integral and Primitive Function 190

10.130. Find the work of the electrostatic force, when the charge q moves from
the point (1, 2, 3) to infinity! Does the work depend on the path?

10.131. Find the potential function of the electrostatic force in the previous
problems!

10.132. The force of friction between the surface of a table and a slipping body
with mass m is c ·m, where c is a constant. The direction of the force
is the opposite of the direction of the displacement. Find the work of
the slip force when the body moves from the point (0, 0) to the point
(3, 4) along the line segment! Find the work of the slip force when the
body moves along the connecting polygonal chain of the points (0, 0),
(3, 0) and (3, 4). Does the work depend on the path?

10.133. Has the slip force in the previous problem got a potential function?



Chapter 11

Complex Functions

11.1 Cauchy-Riemann’s differential equations. If f(z) = f(x+ iy) =
u(x, y) + i · v(x, y) is differentiable at the point z0 = x0 + iy0, then

u′x(x0, y0) = v′y(x0, y0), u′y(x0, y0) = −v′x(x0, y0).

In reverse, if the equations above are fulfilled at the point (x0, y0), and u
and v are totally differentiable (as two-variable real functions) at the point
(x0, y0), then the complex function f(z) is complex differentiable at z0.

11.2 Cauchy’s integral theorem. If f is analytic on the interior of the
simple closed curve Γ, that is on the set Ω, and f is continuous at the points
of Γ, then

∮

Γ

f(z) dz = 0.

11.3 Cauchy’s integral formula. If f is analytic at a, Γ is a closed circle
line going around a in positive direction inside the domain where f is regular,
then

f (n)(a) =
n!

2πi

∮

Γ

f(z)

(z − a)n+1
dz.

11.4 Holomorphic functions.

— Maximum modulus principle. If f is a holomorphic function on a
simple connected domain, then the modulus |f | cannot have a (local)
maximum within the simple connected domain.

— Liouville’s theorem. Every bounded entire function must be con-
stant.

— Rouché’s theorem. Let Γ be a simple, closed curve on the complex
plane, its interior is Ω, f and g are continuous complex functions on
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Ω = Ω∪ Γ, and f and g are holomorphic on Ω, and assume that for all
z ∈ Γ

|g(z)| > |f(z)− g(z)| .
In this case the two functions have the same number of roots counted
with multiplicity on Ω.

11.5 Meromorphic functions.

— If f(z) can be expressed as a Laurent series around a,

f(z) =
∞
∑

n= −∞
an(z − a)n,

then

Res(f, a) = a−1 =
1

2πi

∮

Γ

f(z) dz,

where Γ is a positive directional circle line with radius less than the
radius of convergence of the Laurent series.

— Residue theorem. If D ⊂ C is a simple connected open subset of the
complex plane, f is meromorphic on D, and Γ is a simple, closed curve
on D, and Γ does not meet any of the poles, then

∮

Γ

f(z) dz = 2πi
∑

{Res(f, a) : a ∈ Ω} ,

where Ω is the interior of the curve Γ.

11.1. Prove that the reciprocal of the complex conjugate of a complex number
z equals to the complex conjugate of the reciprocal of the complex
number z!

11.2. Let’s assume that |z| < 1 and |α| < 1. Prove that

∣

∣

∣

∣

z − α

1− zα

∣

∣

∣

∣

< 1.

Prove that the Cauchy-Riemann’s differential equations are fulfilled
for the following functions.

11.3. f(z) = z2 11.4. f(z) = zn, n ∈ N+
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11.5. f(z) =
1

z
, z 6= 0 11.6. f(z) =

1

z2 + 1

11.7. Check whether Cauchy-Riemann’s differential equations are fulfilled for

the function f(z) =
√

|xy| at z = 0, where x = Re(z), y = Im(z). Is
the function differentiable at z = 0?

11.8. Prove that the function f(z) = 2x2+3y2+xy+2x+ i(4xy+5y) is not
differentiable on any domains of the plane!

Find the points, where f is differentiable!

11.9. f(x+ iy) = xy + iy

11.10. f(x+ iy) =
(

2x2 − y
)

+ i
(

x2 + y2
)

Find the differentiable function f(x + iy) = u(x, y) + iv(x, y), if

11.11. u(x, y) = x2 − y2 + xy, f(0) = 0

11.12. v(x, y) =
x2

x2 + y2
, f(2) = 0

Find the radius of convergence of the following power series!

11.13.
∞
∑

n=1

1

n
(z − i)n 11.14.

∞
∑

n=1

2n(z + i)n

11.15.
∞
∑

n=1

n2(z − 2− 2i)n 11.16.
∞
∑

n=1

(n− 1)!

n!
zn

11.17.
∞
∑

n=0

(n2)!

3n!
zn 11.18.

∞
∑

n=1

ln(n!)zn
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11.19.
∞
∑

n=1

1

n
zn 11.20.

∞
∑

n=0

(

in

n+ 1

)n2

zn

Find the radius of convergence and the sum of the following power
series.

11.21.
∞
∑

n=1

zn 11.22.
∞
∑

n=0

inzn

11.23.
∞
∑

n=0

(n+ 1)zn 11.24.
∞
∑

n=0

(n+ 2)(n+ 1)zn

Prove the Euler-formulas using the suitable power series:

11.25. eiz = cos z + i sin z 11.26. e−iz = cos z − i sin z

11.27. cos z =
1

2

(

eiz + e−iz
)

11.28. sin z =
1

2i

(

eiz − e−iz
)

11.29. Applying the Euler-formulas prove that ez has a period 2πi.

11.30. Prove that the complex functions sin z and cos z have the same roots
as the real functions sinx and cosx.

Integrate the following functions on the curve Γ: |z| = 1 in positive
direction.

11.31. f(x+ iy) = x 11.32. f(x+ iy) = y

11.33. f(x+ iy) = x− iy 11.34. f(x+ iy) = x+ iy

Integrate the following functions on the curve Γ: |z| = R in positive
direction.
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11.35. f(z) =
1

z
11.36. f(z) =

1

z2

Find the integral of f(z) = |z| on the following curves from the
point z1 = −1 to the point z2 = i. Decide whether the value of the
integral is independent of the curves.

11.37. Γ = {e−it : t ∈ [π, 3π/2]} 11.38. Γ = {t : t ∈ [−1, 0]}⋃{it : t ∈
[0, 1]}

11.39. Find the line integral

∫

(x2 − y2) dx− 2xy dy with the help of the real

primitive function on the line segment with starting point 1 + i and
endpoint 3 + 2i.

11.40. Find the line integral

∫

(x2 − y2) dx − 2xy dy by using the Cauchy’s

integral theorem on the line segment with starting point 1 + i and
endpoint 3 + 2i.

Let Γ : z(t) = 1 + it, t ∈ [0, 1]. Find the integrals of the following
functions by using the Cauchy’s integral theorem on the curve Γ.

11.41. f(z) = 3z2 11.42. f(z) =
1

z

11.43. f(z) = ez 11.44. f(z) = zez
2

Find the value of the complex line integrals of

∫

Γ

1

z2 + 1
dz, where

γ is the following simple closed curve.

11.45. Γ : |z| = 1/2 11.46. Γ : |z| = 3

11.47. Γ : |z − i| = 1 11.48. Γ : |z + i| = 1

Find the power series of the following function around the given
point a!
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11.49.
1

(1− z)2
, a = 3 11.50.

1

(z − 2)(z − 3)
, a = 5

11.51.
1

1− z + z2
, a = 0 11.52.

3z − 6

(z − 4)(z + 25)
, a = 10

Find the residue of the function f(z) at z0 = 0.

11.53. f(z) =
ez

z2
11.54. f(z) =

cos z

sin z

Find the residue of the function f(z) =
1

z3 − z5
at z0.

11.55. z0 = 0 11.56. z0 = 1

11.57. z0 = −1 11.58. z0 = i

Find the residue of the function f(z) =
z2

(z2 + 1)
2

at z0.

11.59. z0 = i 11.60. z0 = −i

Find the complex line integrals of the form

∫

|z|=4

f(z) dz!

11.61. f(z) =
ez sin z

z − 1
11.62. f(z) =

esin z

z2

11.63. f(z) =
esin z

z − 2
11.64. f(z) =

esin z

(z − 1)(z − 2)

11.65. f(z) =
ez cos z

z − π
11.66. f(z) =

esin z

z2 − 1

Let Γ : z(t) = t + it, t ∈ [0, 1]. Integrate the following functions on
the curve Γ.
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11.67. f(z) = z2 11.68. f(z) = ez

Let Γ be the circle line |z − 2i| = 1, and find the integrals of the
following functions in positive direction on the curve Γ.

11.69. f(z) = z2 11.70. f(z) =
1

z

11.71. f(z) = z2 +
1

z
11.72. f(z) = z +

1

z

How many roots do the following equations have on the disk |z| <
1? (Hint: apply Rouché’s theorem.)

11.73. z6 − 6z + 10 = 0 11.74. z4 − 5z + 1 = 0

11.75. Find the integral

∞
∫

−∞

1

(x2 + 1)
2 dx by integration over a curve on the

complex plane!

11.76. Find the image of the circle with center z = 0 and radius 1, if the

transformation is f(z) =
az + b

cz + d
.

11.77. Find an f(z) transformation which is a mapping between the upper
halfplane and the circle with center z = 0 and radius 1.

Find the curves or domains given by the following conditions!

11.78. |z − 2| < |z| 11.79.
∣

∣z2 − 1
∣

∣ < 1

11.80. Im
1

z
= 2 11.81. Re z = Im z

The function w = f(z) maps the plane z = x + iy to the plane
w = u + iv. Find the images of the given T domains!
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11.82. w = z2, T = {x+ iy : x ≥ 0, y ≥ 0}

11.83. w = ez, T = {x+ iy : 0 < y <
π

2
}



Solutions

Basic Notions, Real Numbers

1.1 Elementary Exercises

1.1. The solution is the open interval (2, 8).

 

2 5 8

 

1.2. The solution is the same as in the previous exercise.

1.3. Solution: (4, 6).

 

4 5 6

 

1.5. The original inequality:
1

5x+ 6
≥ −1

Let’s multiply both sides of the inequality by 5x + 6. We have two
cases:

Case I: 5x+ 6 > 0, that is x > −6/5. Now the new inequality:

1 ≥ −(5x+ 6), 5x ≥ −7, x ≥ −7/5

In this case this is only possible if x > −6/5.

Case II: 5x+6 < 0, that is x < −6/5. Now the inequality sign changes:

1 ≤ −(5x+ 6), 5x ≤ −7, x ≤ −7/5

In this case this is only possible if x ≤ −7/5.

Therefore, the solution is the union of a closed and an open half-line:

x ∈ (−∞,−7/5] ∪ (−6/5,∞).

1.7. The original inequality:

10x2 + 17x+ 3 ≤ 0.

The main coefficient of the quadratic polynomial on the left side is
positive, so the points of the parabola are below the x axis (in the
interval) between the roots. Let’s find the roots:

10x2 + 17x+ 3 = 0
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x1 = −3

2
, x2 = −1

5

Therefore the solution is:

x ∈ [−3/2,−1/5].

1.9. The original inequality:

8x2 − 30x+ 25 ≥ 0

Let’s find the roots of the quadratic equation:

8x2 − 30x+ 25 = 0

x1,2 =
30±

√
900− 800

16
, x1 =

5

2
, x2 =

5

4

Since the main coefficient is positive, the quadratic polynomial is posi-
tive outside of [x2, x1], therefore the solution is:

x ∈ (−∞, 5/4] ∪ [5/2,∞).

1.11. The original inequality:

9x2 − 24x+ 17 ≥ 0.

Let’s find the roots of the quadratic equation:

9x2 − 24x+ 17 = 0.

Since the discriminant of the equation is negative (−36), the quadratic
polynomial has no roots. Since the main coefficient is positive, for all
x ∈ R

9x2 − 24x+ 17 > 0.

Therefore the solution is all real numbers: x ∈ R.

1.14. For which x ∈ R is it true:

|x+ 1|+ |x− 2| ≤ 12 ?

There are three cases, according to the sign of x+ 1 and x− 2.
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Case I: x < −1, that is both terms are negative.

−(x+ 1)− (x− 2) ≤ 12, −2x ≤ 11, x ≥ −11

2

The solution in this case:

x ∈ [−11/2;−1)

Case II: −1 ≤ x < 2, that is the first term is nonnegative, the second
term is negative.

(x+ 1)− (x− 2) ≤ 12, 3 ≤ 12, x arbitrary

The solution in this case:

x ∈ [−1; 2)

Case III: x ≥ 2, that is neither of the terms are negative.

(x+ 1) + (x− 2) ≤ 12, 2x ≤ 13, x ≤ 13

2

The solution in this case:

x ∈ [2; 13/2]

Therefore, the solution of the exercise:

x ∈ [−11/2; 13/2].

1.16. For which x ∈ R
∣

∣

∣

∣

x+ 1

2x+ 1

∣

∣

∣

∣

>
1

2
?

Case I: x < −1, that is the numerator and the denominator are negative.

x+ 1

2x+ 1
>

1

2
, 2(x+ 1) < 2x+ 1, 2 < 1

There is no solution in this case.

Case II: x > −1/2, that is the numerator and the denominator are
positive.

x+ 1

2x+ 1
>

1

2
, 2(x+ 1) > 2x+ 1, 2 > 1
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The solution in this case:

x ∈ (−1/2;∞)

Case III: −1 < x < −1/2, that is the numerator is positive, the denom-
inator is negative.

∣

∣

∣

∣

x+ 1

2x+ 1

∣

∣

∣

∣

= − x+ 1

2x+ 1
>

1

2
, −2(x+ 1) < 2x+ 1, 4x > −3, x > −3

4

The solution in this case:

x ∈ (−3/4;−1/2)

There are no other cases, because the numerator is positive if the de-
nominator is positive. Therefore the solution is:

x ∈ (−3/4;−1/2) ∪ (−1/2;∞).

1.18. √
x+ 3 + |x− 2| = 0

Both terms are nonnegative, so the sum can be zero only if both terms
are zero. Therefore,

x+ 3 = 0 and x− 2 = 0.

There is no x, for which these two equations are fulfilled at the same
time.

1.2 Basic Logical Concepts

1.22. Yes:
(b)+(c) =⇒ All animals are either mammals or have a gill.
(b)+(a) =⇒ If an animal is a mammal, then it has a gill.
Therefore an animal is either a mammal or it is not, in any case it has
a gill.

1.25. For this sentence we cannot assign a truth value, if there is only one
Mohican. If the sentence were true, then the last of the Mohicans would
have lied, therefore the sentence would be false. If the sentence were
false, then the last of the Mohicans would tell the truth, that is, not all
of the Mohicans are liars.
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1.27. Only the statement (c), moreover the two statements are equivalent:

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A)

1.29. For 298 subsets it is true, for 2100 − 298 = 3 · 298 it is not true.

1.31. 1 is an element: 299 subsets.

2 is not an element: 299 subsets.

1 is an element and 2 is not an element: 298 subsets.

1 is an element or 2 is not an element: 299 + 299 − 298 = 3 · 298

The complement: There are 298 subsets, such that 1 is not an element
and 2 is an element of the subset.

1.33. (b) =⇒ (a), (c) =⇒ (d).

The other implications are not true.

1.3 Methods of Proof

1.34. Let us assume indirectly that there is p, q ∈ N+ such that
√
3 =

p

q
. We

can also assume that p and q are relatively primes.

3 =
p2

q2
, 3q2 = p2.

Therefore, p2 is divisible by 3, but since 3 is a prime number, p is
divisible by 3: p2 = 9r2. Therefore,

3q2 = 9r2, q2 = 3r2.

Repeating the previous reasoning for q instead of p, we have that q
is divisible by 3, which contradicts the assumption that p and q are
relatively primes.

1.36. Let us assume indirectly that

r =

√
2 + 1

2
+ 3

4
+ 5
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is rational. But in this case

(r − 5) · 4 =

√
2 + 1

2
+ 3

is also rational. Continuing this reasoning, we have that
√
2 rational.

This is a contradiction. We can prove that
√
2 is irrational with the

same reasoning as we proved that
√
3 is irrational.

1.38. (a) Cannot: if x+ y were rational, then (x+ y)− x = y would be also
rational.

(b) Cannot: if x− y were rational, then x− (x− y) = y would be also
rational.

(c) Can, but only if x = 0.

(d) Can, but only if x = 0.

1.40. (a) True.

(b) False: e.g. a =
√
2, b = −

√
2

(c) False: e.g. a+ b is irrational.

(d) True.

1.42. Proof by induction:
n = 1 : 16|16
For n+1: Since if k|a− b and k|b, then k|a, it is enough to prove

that
16|(5n+2−4(n+1)−5)−(5n+1−4n−5), that is, 16|4·(5n+1−1).

It is fulfilled if 4|5n+1 − 1. It is easy to prove this by induction.

1.43. Indirect proof: Let us assume that tan 1◦ is rational. Now we prove by

induction that tann◦ is rational for all n ∈ N+, n < 90. We can prove
this by using the trigonometric addition formula:

tan(n+ 1)◦ =
tann◦ + tan 1◦

1 + tann◦ · tan 1◦ .
In this rational formula all terms are rational, so the result is also
rational. Since tan 30◦ irrational, we have a contradiction.

1.44. According to the inequality of arithmetic and geometric means

n
√
n! =

n
√
1 · 2 · · ·n ≤ 1 + 2 + · · ·n

n
=
n+ 1

2
.

Let’s raise both sides to the power of n, we have the result.
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1.45. Yes, it is true. Let us assume indirectly that for all n we have an ≥
10−6, and therefore a2n ≥ d = 10−12 > 0. Therefore, an+1 ≤ an − d,

and in general an+k ≤ an − k · d. Therefore, let k = 1012 =
1

d
, so

a1+k ≤ 0.9− 1 < 0 < 10−6. That is a contradiction.

1.47. (a) Let us denote the sum by sn, that is

sn =
1

1 · 2 +
1

2 · 3 + · · ·+ 1

(n− 1) · n.

We calculate the value of sn for n = 2, 3, 4.

s2 =
1

2
, s3 =

2

3
, s4 =

3

4
, · · ·

The sum is:

sn =
n− 1

n
= 1− 1

n
.

Proof by induction: It is true for n = 2. Let us assume that the
formula is valid for n.

sn+1 =
1

1 · 2 +
1

2 · 3 + · · ·+ 1

(n− 1) · n +
1

n · (n+ 1)

= sn +
1

n · (n+ 1)
=
n− 1

n
+

1

n · (n+ 1)

=
(n− 1)(n+ 1) + 1

n · (n+ 1)
=

n

n+ 1

(b) Let sn = 1 + 3 + . . .+ (2n− 1), the sum of the odd numbers.

s1 = 1, s2 = 4, s3 = 9, s4 = 16, · · ·
The sum: sn = n2.

By induction: the statement is true for n = 1. Let us assume that
the statement is true for n.

sn + 1 = 1 + 3 + . . .+ (2n− 1) + (2n+ 1) = sn + (2n+ 1)

= n2 + 2n+ 1 = (n+ 1)2

1.58. By induction: the statement is true if n = 0. Let us assume that it is
true for n, and the positive k is a divisor of both un+1 and un+2. In
this case k is also a divisor of un+2 − un+1 = un. According to the
assumption un and un+1 are relatively primes, so k = 1, therefore un+1

and un+2 are also relatively primes.
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1.59. By induction:
It is easily proved for n = 1 and n = 2.
Let us assume that n > 2, and the statement is true for n−1 and n−2.

un = un−1 + un−2 >
1.6n−1

3
+

1.6n−2

3
=

1.6n−2

3
(1.6 + 1) >

1.6n−2

3
1.62 =

1.6n

3
On the other hand,

un = un−1 + un−2 < 1.7n−1 + 1.7n−2 = 1.7n−2(1.7 + 1) <
1.7n−21.72 = 1.7n.

1.60. By induction: For n = 1 the given statements are true in every exercise.
Let us assume that the given statement is true for n, and we have to
prove the statement for n+ 1.

(a) (u1 + u2 + · · ·un) + un+1 = un+2 − 1 + un+1 = un+3 − 1

(b) u2n+1−unun+2 = u2n+1−un(un+1+un) = un+1(un+1−un)−u2n =
un+1un−1 − u2n = −(−1)n+1 = (−1)n+2

(c) (u21+u
2
2+ · · ·+u2n)+u2n+1 = unun+1+u

2
n+1 = un+1(un+un+1) =

un+1un+2

1.61. The following expressions are easily proved by induction:

(a) sn = α · u2n+1 + β = u2n+1 − 1.

(b) sn = α · u2n+2 + β = u2n+2.

(c) sn = α · u3n+2 + β =
u3n+2 − 1

2
.

(d) sn = u22n

1.63. The proof only works if n is at least 2. But for n = 1 and n = 2 the
statement is not proved.

1.67. a2bc has four factors. We can write the 3-terms sum as a 4-terms sum,
and we can apply the arithmetic and geometric means inequality for
the 4 terms:

a

2
+
a

2
+ b+ c

4
≥ 4

√

a

2
· a
2
· b · c = 4

√

1

4
a2bc.

Therefore,

18

4
=

9

2
≥ 4

√

1

4
a2bc
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a2bc ≤ 4

(

9

2

)4

.

The number on the right-hand side is the maximum, because there is

equality, if
a

2
= b = c =

18

4
=

9

2
.

1.69. Apply the arithmetic and geometric means inequality.

abc

ab+ bc+ ac
=

1

3
· 3
1

c
+

1

a
+

1

b

≤ 1

3
· a+ b+ c

3
=

18

9
= 2

The equation is true if and only if a = b = c = 6.

1.71.

2a+ b+ c = 3 · 2a+ b+ c

3
≥ 3 3

√

(2a)bc = 3
3
√
2 · 18 = 3

3
√
36

There is equality if and only if 2a = b = c =
3
√
36.

1.73. Apply the arithmetic and geometric means inequality.

a2 + b2 + c2 = 3

(
√

a2 + b2 + c2

3

)2

≥ 3
(

3
√
abc
)2

= 3
(

3
√
18
)2

There is equality if and only if a = b = c =
3
√
18.

1.75.

a+
1

a
= 2 ·

a+
1

a
2

≥ 2 ·
√

a · 1
a
= 2

1.79.

f(x) = x(1− x) =
(

√

x(1− x)
)2

≤
(

x+ (1− x)

2

)2

=
1

4

There is equality if x = 1− x =
1

2
.
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1.80.

f(x) = x+
4

x
= 2 ·

x+
4

x
2

≥ 2 ·
√

x · 4
x
= 4

The minimum is at the point where the equality holds: x =
4

x
= 2.

1.82. Applying the arithmetic and geometric means inequality:

x2(1− x) = 4 · x
2
· x
2
· (1− x) ≤ 4 ·





x

2
+
x

2
+ (1− x)

3





3

=
4

27

There is equality if
x

2
= 1− x, that is, x =

2

3
.

Therefore the maximum:
4

27
.

1.86. Using the notations of the figure, the area of the rectangle:

T = 4F , where F = x ·y and x2+y2 = 1.

Therefore F = x
√

1− x2. Calculate the
maximum of F 2:

F 2 = x2(1−x2) ≤
(

x2 + (1− x2)

2

)2

=
1

4
.

There is equality if x2 = 1− x2, that is,

x = y =
1√
2
.

Therefore the maximal area: T = 2, in
the case of a square.

(x,y)

 

 

1.4 Sets

1.87. This statement is true.

x ∈ (A \B) ⇐⇒ (x ∈ A) ∧ (x /∈ B) ⇐⇒ (x ∈ A) ∧ (x ∈ B) ⇐⇒
⇐⇒ x ∈ (A ∩B)
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1.90. This statement is false. Counterexample: A = B = {1} ⊂ R. There-

fore, A \B = A = R \ {1}, but A \B = A = {1}.

1.91. This statement is false. Counterexample: Let A = B = {1}, then
(A ∪B) \A = ∅ 6= B.

1.94. This statement is true.

Proof 1.

We show that A \B ⊂ A \ (A∩B), and also that A \ (A∩B) ⊂ A \B.

Let x ∈ A \ B be arbitrary. In this case x /∈ B, so x /∈ A ∩ B. Since
x ∈ A, so x ∈ A \ (A ∩B).

Let x ∈ A\(A∩B) be arbitrary. In this case x /∈ A∩B. Since x ∈ A, so
x /∈ B \A. Therefore, x /∈ (B \A)∪ (A∩B) = B. Therefore x ∈ A \B.

Proof 2.

A \ (A ∩B) = A ∩ (A ∩B) = A ∩ (A ∪B) = (A ∩A) ∪ (A ∩B)

= ∅ ∪ (A ∩B) = (A ∩B) = A \B

1.98.

A \ (B ∪ C)

1.100.

((A ∩B) ∪ (A ∩ C) ∪ (B ∩ C)) \ (A ∩B ∩ C)

1.102.

x ∈ (A ∪B) ⇐⇒ x /∈ (A ∪B) ⇐⇒ (x /∈ A) ∧ (x /∈ B) ⇐⇒
⇐⇒ (x ∈ A) ∧ (x ∈ B) ⇐⇒ x ∈ (A ∩B)

1.5 Axioms of the Real Numbers

1.106. (a) That is false, counterexample: x = −1, A = 0.

(b) That is true. Since the left-hand side of the first inequality, |x| <
A, is not negative, we can multiply it by itself, that is, |x|2 < A2.
Since |x|2 = |x2|, therefore |x2| < A2.

1.109. (a) The set H has no minimum. (The set H has no minimal element.)
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(b) The set H has no maximum.

(c) The set H has a maximum.

(d) The set H has a minimum.

1.111. Statement (b) is false, the other ones are true.

1.112.
∞
⋂

n=1

An = {0} 1.113.
∞
⋂

n=1

Bn = ∅

1.117. Formally:

∃x ∈ H ∀y ∈ H (x > 2 ∧ y ≥ x2)

This statement is not true for any set H ⊂ R, because if y = x, then
x > 2 (x > 1) implies x < x2.

1.118. M =

∞
⋂

n=1

In = {0}

For all n ∈ N+ implies −1/n ≤ 0 ≤ 1/n that is 0 ∈ In, so 0 ∈ M .
If x 6= 0, then there exists k ∈ N+ such that 1/k < |x|. For this k
x /∈ Ik = [−1/k, 1/k].

1.119. M =

∞
⋂

n=1

In = {0}

1.124. M =
∞
⋂

n=1

In = {0}

Since for all n ∈ N+ 0 < 1/n holds, that is, 0 ∈ In, so 0 ∈ M . If
x 6= 0, then there exists k ∈ N+ such that 1/k < |x|. For this k
x /∈ Ik = [0, 1/k).

1.125. M =

∞
⋂

n=1

In = ∅

Since for all n ∈ N+ 0 /∈ In holds, so 0 /∈M . If x 6= 0, then there exists
k ∈ N+ such that 1/k < |x|. For this k x /∈ Ik = (0, 1/k].

1.126. Only the statement 1.126.e is true.

1.128. Cannot be, because of the Cantor axiom.
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1.134. Cannot be. The intersection of any number of closed intervals can be
empty, or a single point, or a closed interval. Therefore, the intersection
cannot be an open interval.

1.135. Can be, but only if the intervals are the same, if the index is large
enough.

Let In = (an, bn). The word “nested” means that for all n it is true
that an ≤ an+1 < bn+1 ≤ bn.

Let a = sup an, b = inf bn. We know that a ≤ b.

There are four cases:

1) a = max an and b = min bn. It is true if and only if from a certain

index an = an+1 and bn = bn+1. Therefore,
∞
⋂

n=1

In = IN = (a, b).

2) a = max an and there is no minimal among the bn. Therefore,
∞
⋂

n=1

In = (a, b], which is empty if a = b, and a not empty left-open,

right-closed interval if a < b.

3) There is no maximal among the an, but b = min bn. In this case
∞
⋂

n=1

In = [a, b).

4) There is no maximal among the an, and there is no minimal among

the bn. In this case

∞
⋂

n=1

In = [a, b].

1.136. All of them except the Cantor’s axiom.

1.140. All of the finite decimal numbers are rational, but for example 1/3 has
no finite decimal form.

Exactly those rational numbers have finite decimal form, which can be
written as the quotient of two integers, in which the denominator has
no other prime divisor, but 2 and 5.

1.142. There are two assumptions for the sequence of intervals In.

1. The intervals In are closed and bounded.

2. The intervals In are “nested”, that is, the interval of larger index is
a subset of the interval of smaller index.
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If we omit the first assumption, then, for example, the intersection of
the open intervals In = (0, 1/n) is empty.

If we omit the second assumption, then, for example, the intersection
of the closed intervals In = [n, n+ 1] is empty.

Remark:

The second assumption can be exchanged with the weaker condition
that the intersection of any finite number of intervals is not empty.

If the presented intervals are of arbitrary type, and neither the se-
quences of the left endpoints, nor the sequences of the right endpoints
are “stabilized”, that is, there are infinitely many left and right end-
points, then the intersection of the intervals is not empty with the
second assumption.

1.6 The Number Line

1.145. B = (2, 6) 1.147. D = {2, 3, 4, 5, 6}

1.148. E = [2, 6] 1.149. F = (2, 6]

1.150. G = [2, 6) 1.151. H = [2, 6]∩Q, it is not an interval!

1.155. The set A =

{

1

n
: n ∈ N+

}

is bounded from below, the maximal lower

bound is 0. The set is bounded from above, because it has a maximum,
the maximal element is 1. Since the set is bounded from below and
bounded from above, the set is bounded.

1.160. The set Ip = {n ∈ N : n is prime ∧ n+ 2 is prime}, the set of the so-
called twin primes, is bounded below, for example, 0 is a lower bound.
We still don’t know today (March 4, 2014), whether the set is bounded
from above, since we don’t know if there exist infinitely many twin
primes or do not.

1.162. For example: an = (−1)n ·
(

1− 1

n

)

, that is,

an =















1− 1

n
if n is even

−1 +
1

n
if n is odd
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1.165. ∀x ∈ A ∃y ∈ A (y < x)

1.168. sup(A∪B) = max {supA, supB} , sup(A∩B) = min {supA, supB}.
If sup(A \B) 6= ∅, that is, A * B, then sup(A \B) ≤ supA.

1.173. A =

{

1

2n− 1
: n ∈ N+

}

, inf A = 0, supA = maxA = 1, there is

no minimum.

1.175. A =

{

1

n
+

1√
n
: n ∈ N+

}

implies inf A = 0, supA = maxA = 2, there

is no minimum.

1.178. If A =

{

1

n
+

1

k
: n ∈ N+

}

, then inf A = 0, supA = maxA = 2, and

there is no minimum.

1.181. Let A =
{

n
√
2 : n ∈ N+

}

. It is obvious that supA = maxA = 2. We

show that inf A = 1. Since n
√
2 > 1, so 1 is a lower bound. We show

that for any x > 0 we have that 1 + x is not a lower bound:

According to Bernoulli’s inequality (1 + x)n ≥ 1 + nx and 1 + nx > 2

if n >
1

x
, therefore there exists an n such that 1 + x > n

√
2.

1.182. Let A =
{

n
√
2n − n : n ∈ N+

}

. Since for all n ∈ N+ we have 2n ≥ n+1
according to Bernoulli’s inequality, therefore supA = minA = 1.

On the other hand, 2n − n < 2n, so 2 is an upper bound of A. The
number 2 is also the supremum of A, that is, supA = 2, because

n
√
2n − n ≥ n

√

2n − 2n−1 = 2 · 1
n
√
2
,

and according to the previous exercise

sup

{

1
n
√
2
: n ∈ N+

}

=
1

inf
{

n
√
2 : n ∈ N+

} = 1.

Since 2 /∈ A, therefore the set A has no maximum.

1.186. Because of the definition of the supremum, it is enough to show that
every upper bound of A is an upper bound of B, as well.

Let K be an arbitrary upper bound of B, and a ∈ A be arbitrary.
According to the assumption, there exists b ∈ B such that a ≤ b. Since
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K is an upper bound, so b ≤ K. Therefore, any a ∈ A implies a ≤ K,
that is, K is an upper bound of A.

1.189. Q=⇒P:

|x−y| = |(x−A)+(A−y)| ≤ |x−A|+|A−y| = |x−A|+|y−A| < ε+ε = 2ε.

P 6=⇒Q:

For example, x = y = 0, ε = 1 and A = 2.

1.194. P 6=⇒ Q: For example, H = (1, 2]. In this case P is true, but with
the choice a = 1 we can show that Q is not true.

Q 6=⇒ P: For example, H = {−1}.
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Convergence of a Sequence

2.1 Limit of a Sequence

2.1. Since an → 1, we can give a threshold.

(a) ε = 0.1

|an − 1| =
∣

∣

∣

∣

1 +
1√
n
− 1

∣

∣

∣

∣

=
1√
n
< 0.1 ⇐⇒ √

n > 10 ⇐⇒ n > 102

Therefore, the choice n0 = 102 meets the requirements .

(b) ε = 0.01 If we change 0.1 to 0.01 in the previous solution, we got
n0 = 106.

2.2. There is no such n0 threshold. According to the solution of part (a) of
the previous exercise, if
n > 104, then |an − 1| < 0.1. So for these n we have

|an − 2| = |(an − 1)− (2− 1)| ≥ |1− |an − 1|| > 1− 0.1 = 0.9 > 0.001.

2.3. These exercises show the importance of the orders and types of the logic
symbols in the definition of convergence.

(a) True. Generalizing the exercise easily can be seen that an → 1,
and this is identical with the formula.

(b) False. This formula fulfills for a sequence (an) if and only if the
terms of the sequence equal 1 from some index. The given sequence
does not fulfill that.

(c) True. This formula fulfills for a sequence (an) if and only if the
sequence is bounded. The given sequence is bounded.

(d) False. This formula fulfills for a sequence (an) if and only if there
is an open interval around 1 with radius ε, which contains only
finitely many terms of the sequence.

(e) True. This formula fulfills for a sequence (an) if and only if the first
term of the sequence a1 = 1 because the choice n0 = 1 corresponds
for all ε.

(f) False. This formula fulfills for a sequence (an) if and only if the
first term of the sequence a1 6= 1.
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2.4. We show that for all n large enough bn > an:

10n2 + 25 ≤ 10n2 + n2 = 11n2 if n ≥ 5.

On the other hand 11n2 < n3 if n > 11.

So with the choice N = 11, we have bn > an if n > N .

2.6. We show that for all n large enough bn > an:

3n − n2 > 2n + n ⇐⇒ 3n > 2n + n2 + n.

At first we show that from a certain index 2n > n2. Using the binomial
expansion,

2n = (1 + 1)n =

n
∑

k=0

(

n

k

)

>

(

n

3

)

=
n(n− 1)(n− 2)

6
>
(n

2

)3

· 1
6

=
n3

48
> n2.

That is fulfilled if n− 2 >
n

2
, that is, n > 4, and n > 48. Therefore,

n > 48 = 23 · 6 implies

2n + n2 + n < 2n + 2n + 2n = 3 · 2n < 3n.

The inequality is certainly fulfilled if

(

3

2

)n

= (1 + 0.5)n > 3.

But according to Bernoulli’s inequality that is true if n > 4.

Summarizing the requirements for the number N , the choice N = 48 is
a solution.

2.8. (bn) is the greater one from some index:

If n > 3, then

n! = 6 · (4 · 5 · · ·n) > 6 · 4n−3 =
6

43
22n > 2n.

The inequality fulfills if 2n >
43

6
=

27

3
, and that fulfills if n > 8.

Therefore, the choice N = 8 works.
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2.16.
n
√
2 < 1.01 = 1 + 0.1 ⇐⇒ 2 < (1 + 0.1)n

According to Bernoulli’s inequality

(1 + 0.1)n ≥ 1 + 0.1n > 0.1n > 2,

if n > 20.

2.17.
n
√
n < 1.0001 ⇐⇒ n <

(

1 + 10−4
)n

Using the binomial expansion

(

1 + 10−4
)n

=
n
∑

k=0

(

n

k

)

10−4k >

(

n

2

)

10−8 =
n(n− 1)

2 · 108 >
n2

8 · 108 > n

if n > 8 · 108.

2.25.

√

n2 + 5−n = (
√

n2 + 5−n)·
√
n2 + 5 + n√
n2 + 5 + n

=
5√

n2 + 5 + n
<

5

n
< 0.01

if n > 500.

2.28. P =⇒ Q because the smallest term is a lower bound, and the greatest
term is an upper bound.

Q 6=⇒ P, counterexample: the sequence an =
1

n
is bounded, but there

is no smallest and there is no greatest term in the sequence.

2.29. (b) is true, the others are false.

2.40.

lim
n→∞

2n6 + 3n5

7n6 − 2
=

2

7
∣

∣

∣

∣

2n6 + 3n5

7n6 − 2
− 2

7

∣

∣

∣

∣

=
7(2n6 + 3n5)− 2(7n6 − 2)

7(7n6 − 2)
=

21n5 + 4

7(7n6 − 2)
<

<
21n5 + 4n5

7(7n6 − 2n6)
=

25

35
· 1
n
<

1

n
< ε.
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The last inequality certainly fulfills if n >
1

ε
, so a threshold is

n0 =

[

1

ε

]

+ 1.

2.47. lim
n→∞

(
√

n2 + 1 − n) = lim
n→∞

(
√

n2 − 1 − n) = 0, so lim
n→∞

(
√

n2 + 1 +
√

n2 − 1− 2n) = 0.

Let’s find thresholds for
ε

2
separately for an =

√
n2 + 1 − n and bn =

√
n2 − 1− n.

|an| =
√

n2 + 1− n =
1√

n2 + 1 + n
<

1

n
<
ε

2

fulfills if n >
2

ε
.

|bn| = n−
√

n2 − 1 =
1

n+
√
n2 − 1

<
1

n
<
ε

2
.

This also fulfills if n >
2

ε
, so n0 =

[

2

ε

]

is a good threshold:

∣

∣

∣

√

n2 + 1 +
√

n2 − 1− 2n
∣

∣

∣ ≤
∣

∣

∣

√

n2 + 1− n
∣

∣

∣+
∣

∣

∣

√

n2 − 1− n
∣

∣

∣

<
ε

2
+
ε

2
= ε

if n > n0.

2.49. (a) The sequence (an) is oscillating divergent.

(b) The sequence (an) is convergent, an → 4.

(c) The sequence (an) is divergent, an → ∞.

(d) The sequence (an) is oscillating divergent.

2.55. For example, an =
1

n
, bn =

1

n2
.

2.58. Since a > 0, the sequence (an) has only finitely many negative terms,
therefore from some index

√
an is valid.

∣

∣

√
an −√

a
∣

∣ =
|an − a|√
an +

√
a
≤ |an − a|√

a
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Since an → a, we can choose such an n0 threshold that n > n0 implies
|an − a| < ε · √a. This n0 is a good threshold:

∣

∣

√
an −√

a
∣

∣ ≤ |an − a|√
a

<
ε · √a√

a
= ε,

if n > n0.

2.61. All of the statements are true. Only the statement (d) is equivalent to
an → ∞.

2.66. The limit cannot be ∞, but it can be −∞ or a real number.

2.69. The limit cannot be −∞, but it can be ∞ or a real number.

2.74.

√
1 +

√
2 + · · ·+√

n

n
>

√

[n

2

]

+ · · ·+√
n

n
>

1

n
· n
2
·
√

[n

2

]

>

>
1

n
· n
2
·
√

n

2
− 1 > K

if n > 8K2 + 2. Therefore, a threshold is n0 = [8K2 + 2] + 1.

2.81. According to the condition there exists a number N such that

an+1 − an > d =
c

2
> 0.

We can prove by induction that n > N implies

an > aN + d · (n−N).

Since lim
n→∞

(aN + d · (n−N)) = ∞, so according to the squeezing the-

orem (or sandwich theorem, or two policemen theorem) lim
n→∞

an = ∞.

2.2 Properties of the Limit

2.84. Since
1

n
→ 0 and

2

n
→ 0, so according to the squeezing theorem bn → 0.

2.89. We cannot say anything about (bn), the limit can be anything, or the
sequence can be oscillating divergent, too.
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2.91. It is enough to prove that a2n and a2n+1 have the same limit because
the bigger of the thresholds we got for the two subsequences works for
the whole sequence. Since a6n is a common subsequence of a2n and
a3n, therefore

lim
n→∞

a2n = lim
n→∞

a3n.

On the other hand a6n+3 is common subsequence of a2n+1 and a3n,
therefore

lim
n→∞

a2n+1 = lim
n→∞

a3n.

2.95. Since a > 0, from some index
a

2
< an < 2a, therefore

n

√

a

2
< n

√
an <

n
√
2a.

Since for arbitrary c ∈ R+ implies n
√
c→ 1, so according to the squeez-

ing theorem
n
√
an → 1.

2.100.

bn =
an − 1

an + 1
=
an + 1− 2

an + 1
= 1− 2

an + 1
→ 0

Let’s express an with the help of bn:

2

an + 1
= 1− bn, an + 1 =

2

1− bn
, an =

2

1− bn
− 1

Applying the operational rules of the limit, we get: an → 1.

2.102. From some index 0 ≤ n
√
an < 0.5 , so 0 ≤ an < 0.5n → 0.

2.107. P 6=⇒Q: for example, an =
1√
n

Q=⇒P: Let lim
n→∞

an = a > 0.

Case 1: a = ∞. In this case there is a threshold N such that n > N
implies

an > 1 ≥ 1

n
.

Case 2: 0 < a <∞: Choose for ε =
a

2
a threshold N , such that

|an − a| < ε and
1

n
< ε
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if n > N . But in this case

1

n
< ε =

a

2
= a− ε < an.

2.111. The statement implies that an → ∞, “squeezing theorem for infinity”:

Let K ∈ R be arbitrary. Since bn → ∞, there exists a threshold N such
that n > N implies K < bn. But according to the condition for these
n numbers K < an is true.

2.114. The statement implies nothing:

(an) can be convergent, for example if an = 0,

it can go to ∞, for example if an = bn − 1

or can go to −∞, for example if an = −n,
or it can be oscillating divergent, for example if an = (−1)n.

2.118. The sequence is bounded because it is convergent,

lim
n→∞

√
1 +

√
2 + · · ·+√

n

n2
= 0

because

0 <

√
1 +

√
2 + · · ·+√

n

n2
≤

√
n+

√
n+ · · ·+√

n

n2
=
n
√
n

n2
=

1√
n
→ 0.

2.120. Since from some index 2n <
1

2
3n, therefore

3
n
√
2
=

n

√

3n − 1

2
3n < n

√
3n − 2n <

n
√
3n = 3,

if n is large enough. The left-hand side of the inequality is
3
n
√
2
→ 3,

and because of the squeezing theorem

n
√
3n − 2n → 3.

2.125. Simplify the terms of the sequences:

an =
1− 2 + 3− · · · − 2n√

n2 + 1
=

(1− 2) + (3− 4) + · · ·+ (2n− 1− 2n)√
n2 + 1

= − n√
n2 + 1
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Dividing the numerator and the denominator by the order of magnitude
of the denominator, n, we get that

an = − n√
n2 + 1

= − 1
√

1 +
1

n2

→ −1.

2.131. According to exercise 2.181.

(

1 +
1

n

)n

is a monotonically increasing

sequence, therefore

(

1 +
1

n

)n

≥ 2.

an =

(

1 +
1

n

)n2

=

[(

1 +
1

n

)n]2

≥ 2n → ∞.

2.140. At this fraction the “order of growth” of the denominator is 7n, but the

alternating sign causes a problem. We show that an =
2n + 3n

4n + (−7)n
→ 0.

It is enough to show that |an| → 0.

|an| =
∣

∣

∣

∣

2n + 3n

4n + (−7)n

∣

∣

∣

∣

≤ 2n + 3n

7n − 4n
=

(

2

7

)n

+

(

3

7

)n

1−
(

4

7

)n → 0.

2.146. P 6=⇒ Q: let

an =

{

1 if n is even
1/n if n is odd

, bn =

{

1/n if n is even
1 if n is odd

Q 6=⇒ P: let an =
1

n
, bn = n

Remark: If one of the sequences goes to 0, and the other one is bounded,
then an · bn goes to 0.

2.152. (a)
an
bn

is convergent and lim
n→∞

an
bn

> 0: an = n, bn = n+ 1.

(b)
an
bn

is convergent and lim
n→∞

an
bn

= 0: an = n, bn = n2.

(c)
an
bn

is divergent and lim
n→∞

an
bn

= ∞: an = n2, bn = n.
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(d)
an
bn

is oscillating divergent: an =

{

n if n is even
n2 if n is odd

, bn =
{

n2 if n is even
n if n is odd

2.155. P 6=⇒ Q: For example an = n+ 1, bn = n.

Q =⇒ P: Since bn → ∞, so
1

bn
→ 0, and

an − bn
bn

=
an
bn

− 1 → 0.

2.3 Monotonic Sequences

2.159. – The product of two positive, monotonically increasing/decreasing
sequences is monotonically increasing/decreasing.

– The product of two negative, monotonically increasing/decreasing
sequences is monotonically decreasing/increasing.

– The product of one positive and one negative, monotonically de-
creasing sequences is monotonically decreasing.

– The product of one positive, monotonically decreasing and one
negative, monotonically increasing sequence is monotonically in-
creasing.

In the other cases we cannot say anything about the monotonity.

2.164. We can prove by induction that an > a1 · (1.1)n−1. Therefore, it

is enough to find an n, such that 1.1n−1 >
106

a1
. According to the

Bernoulli’s inequality

1.1n−1 = (1 + 0.1)n−1 ≥ 1 + (n− 1) · 0.1 > (n− 1) · 0.1 > 106

a1
.

This certainly holds, if n− 1 >
107

a1
, that is n >

107

a1
+ 1.

2.168. At first we prove that all terms of the sequence are positive, which is
obvious by induction. Now we can give a better lower estimate for the
terms of the sequence: according to the (two terms) inequality between
the arithmetic and the geometric means

an+1 =
1

2

(

an +
a

an

)

≥
√

an · a
an

=
√
a.
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We prove that the sequence (an) is monotonically decreasing from n =
2. Using that an > 0

1

2

(

an +
a

an

)

≤ an ⇐⇒ a2n + a ≤ 2a2n ⇐⇒ a2n ≥ a ⇐⇒ an ≥ √
a.

But we already proved that an ≥ √
a for all n ≥ 2, therefore the se-

quence is monotonically decreasing and bounded from below, therefore
convergent. Let lim

n→∞
an = b, and b ≥ √

a, so lim
n→∞

an+1 = b. On the

other hand

an+1 =
1

2

(

an +
a

an

)

→ 1

2

(

b+
a

b

)

.

Therefore,
1

2

(

b+
a

b

)

= b ⇐⇒ b =
√
a.

2.173. It is easy to read from the recurrence formula that an ≥ 0 (even more

an ≥
√
2, if n > 1). On the other hand we can prove by induction that

an < 2. It is true for n = 1. Let’s assume that it is true for n. Then

an+1 =
√
2 + an <

√
2 + 2 = 2.

We’ll show that the sequence is monotonically increasing. Let’s solve
the inequality √

2 + x ≥ x

on the set of nonnegative numbers:

√
2 + x ≥ x ⇐⇒ 2 + x ≥ x2 ⇐⇒ x2 − x− 2 ≤ 0 ⇐⇒ 0 ≤ x ≤ 2.

Since we already proved that 0 ≤ an < 2, so we can write an instead
of x, so an+1 ≥ an. Therefore, (an) is monotonically increasing, and
bounded (from above), therefore convergent. Let a = lim

n→∞
an. Since

the terms of the sequence are nonnegative, so a ≥ 0. Because of the
operational rules of the limit and the recurrence formula

a =
√
2 + a ⇐⇒ a = 2.

2.180. a1 > 0, and if an > 0 then an+1 = an +
1

a3n + 1
> 0, so for all n

an > 1. According to the recurrence formula

an+1 − an =
1

a3n + 1
> 0,
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therefore the sequence is monotonically increasing. We prove by con-
tradiction that the sequence is not convergent, and therefore it is not
bounded. If lim

n→∞
an = a, then a ≥ 0 because an ≥ 0, therefore

a3 + 1 6= 0.

a = a+
1

a3 + 1
.

But this equation has no solution. Therefore, (an) is monotonically
increasing and not bounded, so an → ∞.

2.181. We show that the sequence is strictly monotonically increasing. Apply-
ing the inequality between the arithmetic and the geometric means

(

1 +
1

n

)n

= 1 ·
(

1 +
1

n

)n

<









1 + n ·
(

1 +
1

n

)

n+ 1









n+1

=

(

1 +
1

n+ 1

)n+1

.

Now we prove that
(

1 +
1

n

)n

< 4 ⇐⇒ 1

4

(

1 +
1

n

)n

< 1.

Now applying the inequality between the arithmetic and the geometric
means for n+ 2 terms

1

4

(

1 +
1

n

)n

=
1

2
· 1
2

(

1 +
1

n

)n

<









1

2
+

1

2
+ n ·

(

1 +
1

n

)

n+ 2









n+2

= 1.

Therefore, the sequence

(

1 +
1

n

)n

is convergent. We call the limit

of the sequence Euler’s constant, and denote it by e. It can be
proved that 2 < e < 3, e is irrational (moreover transcendent), and
e = 2.71 . . . .

2.4 The Bolzano–Weierstrass theorem and the
Cauchy Criterion

2.186. P 6=⇒ Q: let an = (−1)n.

Q =⇒ P: if (an) are convergent, then all of its subsequences are con-
vergent (with the same limit).
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2.189. This condition is not sufficient (but necessary) for the convergence. If,

for example, an =
√
n, then

√
n+ 1−√

n→ 0, but
√
n→ ∞.

2.195. According to the Bolzano-Weiertrass theorem, the sequence (an) has
no convergent subsequence if and only if the sequence has no bounded
subsequence.

And it is true, if for all real number K > 0 , there are only finitely
many terms of the sequence in the interval [−K,K], that is with the
exception of finitely many n, |an| > K.

That means |an| → ∞.

2.198. We show that the sequence satisfies the Cauchy’s criterion. Let ε > 0,
and n < m.

|an − am| = |(an+1 − an) + (an+2 − an+1) + · · ·+ (am − am−1)| ≤
≤ |an+1 − an|+ |an+2 − an+1|+ · · ·+ |am − am−1| ≤
≤ 2−n + 2−(n+1) + · · ·+ 2−(m−1) =

= 2−n · 2 ·
(

1− 2−(m−n)
)

< 2−(n−1).

Since 2−(n−1) → 0, therefore from some index

|an − am| < 2−(n−1) < ε.

2.5 Order of Growth of the Sequences

2.203.

nn ∼ n! + nn,
√
n ∼

√
n+ 1.

There is no other asymptotically equal pairs among the sequences.

However,
n
√
2

n
√
n
→ 1, but these sequences don’t go to ∞.

2.210.

3.01n

2n + 3n
=

(

3.1

3

)n

(

2

3

)n

+ 1

.
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Here the numerator goes to ∞ because
3.1

3
> 1, and the denominator

goes to 1, because
2

3
< 1. Therefore

lim
n→∞

3, 01n

2n + 3n
= ∞.

2.216. The order of growth of the denominator is 2n.

n!− 3n

n10 − 2n
=

n!

2n
−
(

3

2

)n

n10

2n
− 1

.

Since
n10

2n
→ 0, therefore the denominator goes to −1. But the nu-

merator is still critical, the difference of two sequences going to infinity.

Using that n! >
(n

4

)n

,

n!

2n
−
(

3

2

)n

>
(n

8

)n

−
(

3

2

)n

>

(

24

8

)n

−
(

3

2

)n

> 2 ·
(

3

2

)n

−
(

3

2

)n

=

(

3

2

)n

,

if n ≥ 24. Therefore, the numerator goes to ∞, and

n!− 3n

n10 − 2n
→ −∞.

2.6 Miscellaneous Exercises

2.222. The sequence is not the sum of finitely many copies of the (1/n)
sequences because the number of terms in an goes to infinity. Therefore,
the first reasoning has the error.

2.225. an → 0.

Because there is a threshold N , such that if n > N , then

0 < n
√
an <

2

3
⇐⇒ 0 < an <

(

2

3

)n

.

Since

(

2

3

)n

→ 0, so according to the squeezing theorem an → 0.
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2.228. ann → 0.

There exists a threshold N such that if n > N , then

0 < an <
2

3
, ⇐⇒ 0 < ann <

(

2

3

)n

.

Since

(

2

3

)n

→ 0, so applying the squeezing theorem ann → 0.

2.232. For example, an =
1

n
.
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Limit and Continuity of Real Functions

3.1 Global Properties of Functions

3.3. Yes, this is a function. It is the Dirichlet function.

3.8. −∞ < x < 0.

3.11. Let’s find the domain of the functions, and let’s write the formulas in
a more simple way:

(a) f1(x) = x,
Df1 = (−∞,∞)

(b) f2(x) =
√
x2 = |x| ,

Df2 = (−∞,∞)

(c) f3(x) =
(√
x
)2

= x
Df3 = [0,∞)

(d) f4(x) = ln ex = x
Df4 = (−∞,∞)

(e) f5(x) = eln x = x
Df5 = (0,∞)

(f) f6(x) =
(√

−x
)2

= |x|
Df6 = (−∞, 0]

Two functions are equivalent if and only if their domain is the same,
and the values are the same at every point, therefore only f1 and f4 are
equivalent.

3.14. Odd. 3.19. Even.

3.22. Even and odd. 3.25. Neither even, nor odd.

3.28. True.

3.29. False, e.g. f(x) =

{

x if x 6= −5
5 if x = −5

3.34. Functions cotx and
1

x
are (strictly) monotonically decreasing in the

whole domain, the other functions have monotonically increasing inter-
vals, too.
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(a)

] ][ [

 

 

(b)

[ ] [ ]

 

 

(c)

]

 

 

(d)

()

 

 

(e)

]

 

 

(f)

] [ ]

 

 

(g)

 

 

(h)

( )( () () )

 

 

3.38. True.
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3.39. Generally false, e. g. if f(x) = g(x) = −x, then f(x) · g(x) = x2 which
is not monotonically decreasing.

But if both functions are positive, the statement is true.

3.43. Bounded from below, the greatest lower bound is 0. Not bounded from
above.

3.47. Bounded from below, the greatest lower bound is 0. Bounded from
above the least upper bound is 1.

3.51. ∀x ∈ R (f(x) ≤ f(3)). E.g. f(x) = −(x− 3)2.

3.54. ∀x ∈ R ∃y ∈ R (f(y) < f(x)). For example f(x) = x.

3.57. m = 0, M does not exist. 3.60. m = −1, M = 1.

3.63. m = −1, M = 0.

3.66. E. g. arctanx.

3.68. For example f(x) =

{

x if − 1 < x < 1
0 if x = −1 or x = 1

3.74. 2π 3.76. 4π

3.78. 2π 3.79. 2π

3.82. All nonzero rational numbers are periods of the Dirichlet function,
therefore the Dirichlet function has no least positive period.

3.86. The
√
x function is (strictly) concave in the (0,∞) half-line.

It is enough to prove that for all 0 < a < x < b

√
x >

√
b−√

a

b− a
(x− a) +

√
a

that is, √
x−√

a

x− a
>

√
b−√

a

b− a
.
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From this

1√
x+

√
a
>

1√
b+

√
a

⇐⇒
√
b+

√
a >

√
x+

√
a ⇐⇒

√
b >

√
x.

Since 0 < x < b, the last inequality is true.

3.92. P 6=⇒ Q: For example f(x) = sinπx

Q =⇒ P: If f(x) is convex in (−1, 3), then for all −1 < a < b < 3 and
0 < t < 1

f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b).

With the choice a = 0, b = 2, t =
1

2
we get the inequality in statement

P.

3.96. The equation of the chord is

h(x) =
log7 4− log7 2

4− 2
(x− 2) + log7 2 =

log7 2

2
x.

Substitute 3 for x. Since log7 x is concave, so

log7 3 ≥ h(3) =
3 log7 2

2
=

log7 8

2
=

log7 2 + log7 4

2
.

3.100. Since the function is both con-
vex and concave in the interval
[2, 4], therefore the function must
be linear in this interval. For ex-
ample

f(x) =







(x− 2)2 if 1 ≤ x ≤ 2
0 if 2 < x ≤ 4

−(x− 4)2 if 4 < x ≤ 5

 

 

3.112. The functions x, x3, 3
√
x and f(x) =

{

1/x if x 6= 0
0 if x = 0

are bijections,

the other functions are not.

3.114. f(x) = x2 has an inverse in [0,∞), the inverse is f−1(x) =
√
x, and has

an inverse in (−∞, 0], the inverse is f−1(x) =
√
−x.
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3.116. f(x) = sinx has an inverse in intervals [−π/2 + nπ, π/2 + nπ], for any
n ∈ Z. The domain of the inverse function is the closed interval [−1, 1].
If we denote by arcsinx the inverse of sinx in [−π/2, π/2], then in the
interval [−π/2 + nπ, π/2 + nπ] the inverse is

f−1(x) =

{

nπ + arcsinx if n even
nπ − arcsinx if n odd

or

f−1(x) = nπ + (−1)n arcsinx.

3.122. (a) There exists, but the only one is the constant zero function.

The symmetry line of a function graph is the axis x if and only if
f(x) = −f(x) for all x ∈ Df .

(b) For example f(x) = x2.

The symmetry line of a function graph is the axis y if and only if
f(−x) = f(x) for all x ∈ Df , that is, the function is even.

3.125. We show that 4 is a period of f(x). Since

f(x+ 2) =
1 + f(x+ 1)

1− f(x+ 1)
=

1 +
1 + f(x)

1− f(x)

1− 1 + f(x)

1− f(x)

= − 1

f(x)

is true for all x, so

f(x+ 4) = − 1

f(x+ 1)
= − 1

− 1

f(x)

= f(x)

3.128. The domain of the function h = g ◦ f is R, and h(x) = g(f(x)) = x.
But the function g(x) is not the inverse of f because the domain of g
is larger than the range of f .
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f(x)

 

 

g(x)

 

 

f−1(x)

3.2 Limit

3.130.

(a) lim
x→−2

f(x) = 0 (b) lim
x→−1

f(x) = −1

(c) lim
x→0

f(x) does not exist.

3.133. True: (b), (d), (e), (f).

False: (a), (c), (g), (h), (i), (j), (k), (l).

3.136. lim
x→3

5x = 5 · lim
x→3

x = 5 · 3 = 15

3.139. lim
x→1

−2

7x− 3
=

−2

7 · 1− 3
= −1

2

3.142. lim
x→π/2

x sinx =
π

2
sin

π

2
=
π

2

3.148.
t2 + t− 2

t2 − 1
=

(t− 1)(t+ 2)

(t− 1)(t+ 1)
=
t+ 2

t+ 1
−→
t→1

=
3

2

3.149.
t2 + 3t+ 2

t2 − t− 2
=

(t+ 1)(t+ 2)

(t+ 1)(t− 2)
=
t+ 2

t− 2
−→
t→−1

−1

3

3.154. Rationalizing the numerator:

√
x− 1

x− 1
=

(
√
x− 1)(

√
x+ 1)

(x− 1)(
√
x+ 1)

=
x− 1

(x− 1)(
√
x+ 1)

=
1√
x+ 1

−→
x→1

1

2
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3.155. With the t = 1 + x2 substitution and using the result of the previous
problem:

lim
x→0

√
1 + x2 − 1

x2
= lim
t→1

√
t− 1

t− 1
=

1

2
.

Without substitution, with rationalization:

√
1 + x2 − 1

x2
=

√
1 + x2 − 1

x2
·
√
1 + x2 + 1√
1 + x2 + 1

=
x2

x2(
√
1 + x2 + 1)

=
1√

1 + x2 + 1
−→
x→0

1

2
.

3.156. Since sinx is odd, it is enough to find the right-hand side limit. If

0 < x <
π

2
, then

0 < sinx < x < tanx.

Let’s divide the inequalities by the positive sinx:

1 <
x

sinx
<

1

cosx
.

Since all of the expressions are positive, we can take the reciprocals:

cosx <
sinx

x
< 1.

Since cosx is continuous at 0, so lim
x→0

cosx = 1. We can use the squeeze

theorem:

lim
x→0

sinx

x
= 1.

3.157.

1− cosx

x2
=

(1− cosx)(1 + cosx)

x2(1 + cosx)
=

sin2 x

x2
· 1

1 + cosx
→ 1

2

3.162.
tan 2x

x
=

tan 2x

2x
· 2 =

sin 2x

2x
· 2

cos 2x
=

sin t

t
· 2

cos t
−→
t→0

2.

We used that t = 2x→ 0 if x→ 0.
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3.167. Let’s divide the numerator and the denominator by the order of the

denominator, x. After that the limit is not critical, not the case of
∞
∞ .

If x > 0, then

2x2 − 7x+ 1√
x2 + 1 + 1

=
2x− 7 +

1

x
√

1 +
1

x2
+

1

x

→ ∞ if x→ ∞.

We get the same limit at −∞, if we choose |x| for the order of denom-
inator when x < 0.

3.172.
2
√
x+ x−1

3x− 7
=

2

√
x

x
+

1

x2

3− 7

x

→ 0 + 0

3− 0
= 0

3.176.
2x2 − 7x+ 1√
x4 + 1 + 1

=
2− 7

x
+

1

x2
√

1 +
1

x4
+

1

x2

→ 2

3.180. lim
x→2−

3

x− 2
=

3

0−
= −∞, lim

x→2+

3

x− 2
= ∞.

3.184. lim
x→7+

4

(x− 7)2
= lim
x→7−

4

(x− 7)2
= ∞

3.190. Let a = k
√
e > 1.

xk

ex
=
( x

ax

)k

→ 0.

3.191. With the t = lnx substitution

k
√
x =

k
√
et =

(

k
√
e
)t

= at,

so

lim
x→∞

lnx
k
√
x
= lim
t→∞

t

at
= 0.

3.196. For example

f(x) =

{

x2 if x ∈ Q
1 if x /∈ Q
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This function has limits at x = −1 and x = 1, but has no limits at
other points.

3.198. Let p > 0 a (positive) period, and a and b two real numbers such that
f(a) 6= f(b). Therefore

xn = a+ n · p→ ∞, f(a) = f(xn) → f(a),

yn = b+ n · p→ ∞, f(b) = f(yn) → f(b).

Because of the relationship between the limit of functions and the limit
of sequences lim

x→∞
f(x) does not exist.

3.203. P =⇒ Q: According to the multiplication rule

lim
x→∞

f2(x) =
(

lim
x→∞

f(x)
)

·
(

lim
x→∞

f(x)
)

= 5 · 5 = 25.

Q 6=⇒ P: For example, f(x) = −5.

3.206. (a) an = sin(nπ) = 0 → 0.

(b) f(x) = sinx is a periodic and non-constant function, therefore it
has no limit at infinity (see problem 3.198.).

(c) an =

[

1

n

]

= 0 if n > 1, therefore an → 0.

(d) Since lim
x→0+

[x] = 0 6= −1 = lim
x→0−

[x], so f(x) = [x] (integer part of

x) has no limit at 0.

3.208. P 6=⇒ Q: For example, f(x) =

{

5 if x = 1/n for some n
0 otherwise

.

The function has no limit at 0, but f

(

1

n

)

= 5 → 5.

Q =⇒ P: Because of the relationship between the limits of functions

and sequences,
1

n
→ 0 and lim

x→0
f(x) = 5, so f

(

1

n

)

→ 5.

3.3 Continuous Functions

3.216. (a) This function is the Dirichlet-function, which is not continuous at
any points, even more the function has no limit at any points.
For any a ∈ R there are sequences xn ∈ Q and yn /∈ Q such
that a 6= xn, a 6= yn, xn → a and yn → a. So D(xn) → 1 and
D(yn) → 0. Because of the relationship of the limits of functions
and sequences, the D(x) function has no limit at a.
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(b) f(x) is continuous at 0 (but not continuous at other points). For
ε > 0, δ = ε.

If |x− 0| = |x| < δ, then |f(x)− f(0)| = |f(x)| = |x| < ε = δ.

3.221. (a) h = f + g is not continuous at 3. Proof by contradiction: if
h = f + g would be continuous, then g = h − f would also be
continuous.

(b) f · g can be continuous at 3, but only if f(3) = 0. For example,
f(x) = 0 and g(x) = D(x), the Dirichlet function.

3.226.
√
x is continuous, if x > 0. At 0, it is continuous from right-hand side.

3.229. f(x) =

{

x2 + 2 if x ≥ 0
mx+ c if x < 0

is continuous at 0 if and only if it is

continuous both from left-hand side and right-hand side. From right-
hand side, that is for x ≥ 0 f(x) equals to x2 + 2, which is continuous
at every point, including 0.

For x < 0 f(x) equals to mx + c, whose left-hand side limit is c at 0.
Therefore f is continuous at 0 if and only if

2 = f(0) = c.

3.233. Let p(x) be a third degree polynomial. It is enough to examine the case

in which the main coefficient of p(x) (that is coefficient of the term x3)
is positive. In this case

lim
x→∞

p(x) = ∞, lim
x→−∞

p(x) = −∞.

Therefore p(x) must have both positive and negative values as well.
But because of the intermediate value theorem there is a point at which
p(x) = 0.

3.236. Let h(x) = f(x) − g(x). The function h is continuous in [a, b], and
h(a) ≥ 0, h(b) ≤ 0. According to the intermediate value theorem there
is a c ∈ [a, b] such that h(c) = f(c)− g(c) = 0.

3.237. Let h(x) = g(x) − f(x). This h(x) is positive and continuous in [a, b].
According to the Weierstrass theorem h(x) has a minimum, that is,
there is c ∈ [a, b] such that for all x ∈ [a, b]

0 < m = h(c) ≤ h(x) = g(x)− f(x).
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3.242. P 6=⇒ Q: For example, f(x) =

{

x2 if x ∈ (1, 2)
2 if x = 1 or x = 2

Q =⇒ P: The maximum of f is an upper bound, and the minimum is
a lower bound.

3.245. For example, f(x) = x.

3.249. [x] is monotonically increasing, therefore it has a maximum in every
bounded closed interval. Therefore

max {[x] : x ∈ [77, 888]} = [888] = 888.

3.250. f(x) = {x} has no maximum in such [a, b] intervals whose length is at
least 1, since

sup {f(x) : x ∈ [a, b]} = sup {f(x) : x ∈ [a, a+ 1]}
= sup {f(x) : x ∈ [0, 1]} = 1,

since number 1 is a period of {x}. On the other hand, f(x) = {x} 6= 1.

3.254. For example a continuous function:

f(x) =























0 if 0 < x < 1/3

3x− 1 if 1/3 ≤ x ≤ 2/3

1 if 2/3 < x < 1

3.257. Yes, there is. The solution of problem 3.254. is a continuous example.

3.258. Such a function does not exist. Let’s assume that f(x) is continuous in
the closed interval [0, 1], and its range is the open (0, 1) interval. Ac-
cording to the Weierstrass theorem f(x) has a maximum. Let’s denote
this maximum by M . Because of the assumption M < 1, and since M
is maximum, f(x) /∈ (M, 1).

This statement can be proved more generally as well, see problem 3.260.

3.260. Let f be continuous in [a, b]. According to the Weierstrass theorem, f
has a minimum m, and a maximum M . So R(f) ⊂ [m,M ].

On the other hand according to the Bolzano theorem every value be-
tween m and M is in the range of f , that is, R(f) ⊃ [m,M ].
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3.263. Let xn =
π

2
+ 2πn, yn =

3π

2
+ 2πn. If n > 100, then

xn sinxn = xn > 2πn > 100 and yn sin yn = −yn < −100.

According to the intermediate value theorem for all n > 100 there is
zn ∈ [xn, yn] such that

zn sin zn = 100.

Since the [xn, yn] intervals are disjunct, so the roots zn are different.

3.271. f(x) =
1

x

(a) is not uniformly continuous in (0,∞). We’ll show that for ε = 1
there is no “good” δ > 0. For any arbitrary δ > 0 we can choose
an n ∈ N+ positive integer such that

1

n
− 1

n+ 1
< δ.

In this case
∣

∣

∣

∣

f

(

1

n

)

− f

(

1

n+ 1

)∣

∣

∣

∣

= 1 ≮ ε.

(b) is uniformly continuous in [1, 2] according to the Heine-Borel the-
orem.

(c) is uniformly continuous in (1, 2) because it is uniformly continuous
in the greater [1, 2].

(d) is uniformly continuous in [1,∞). Let ε > 0 be arbitrary, δ = ε.
If x, y ≥ 1 and |x− y| < δ, then

|f(x)− f(y)| =
∣

∣

∣

∣

1

x
− 1

y

∣

∣

∣

∣

=
|x− y|
xy

≤ |x− y| < δ = ε.
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Differential Calculus and its Applications

4.1 The Concept of Derivative

4.2. If lim
x→3

f(x)− f(3)

x− 3
= 4, then according to the definition of the deriva-

tive f(x) is differentiable at 3 and f ′(3) = 4. According to the theorem
4.2 f(x) is continuous at 3.

4.3. It does not imply, for example f(x) = |x− 3|.

4.5. This limit is equal to the derivative of the function
√
x at any x > 0

point.

√
x+ h−√

x

h
=

√
x+ h−√

x

h
·
√
x+ h+

√
x√

x+ h+
√
x
=

1√
x+ h+

√
x

−→
h→0

1

2
√
x

4.10. Let x0 6= 0 be arbitrary.

1/x− 1/x0
x− x0

=
x0 − x

xx0(x− x0)
= − 1

xx0
−→
x→x0

− 1

x20

Therefore, the derivative of the function
1

x
is − 1

x2
.

4.14. f(x) =
∣

∣x2 − 1
∣

∣ is continuous everywhere, and differentiable except at
1 and −1 because it is composed by “this type” of functions, that is, we
can use the differentiation rules. We show that at 1 the left-hand side
and the right-hand side limits of the difference quotient are different, so
the function is not differentiable at 1. Now we may assume that x > 0.

f(x)− f(1)

x− 1
=

∣

∣x2 − 1
∣

∣

x− 1
= (x+ 1)

|x− 1|
x− 1

= (x+ 1) sgn(x− 1) →
{

2 if x→ 1+

−2 if x→ 1−

Since the function is even, it is not differentiable at −1.

4.18. At first find the values of b and c such that the function

h(x) =

{

(1− x)(2− x) if x ≥ −3
bx+ c if x < −3
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is continuous at −3.

lim
x→−3+

h(x) = lim
x→−3

(1− x)(2− x) = 20,

lim
x→−3−

h(x) = lim
x→−3

(bx+ c) = −3b+ c

Therefore, the function is continuous at −3 if and only if

−3b+ c = 20.

The function h(x) is differentiable at −3 if the left-hand side and the
right-hand side limits of the difference quotient are equal. Since h1(x) =
(1−x)(2−x) and h2(x) = bx+c are differentiable at −3, the two limits
are equal, if h′1(−3) = h′2(−3).

h′1(x) = ((1−x)(2−x))′ = −(2−x)−(1−x) = 2x−3, h′1(−3) = −9,

h′2(x) = (bx+ c)′ = b

Therefore, h(x) is differentiable at −3 if and only if it is continuous,
that is, −3b+ c = 20 and b = −9. From the two equations

b = −9, c = −7.

4.19. f(x) is differentiable everywhere except x = 0, and f ′(x) is continuous
because of the basic derivative rules. Since f(x) is a product of a func-
tion going to zero and a function which is bounded in a neighbourhood
of 0, so lim

x→0
f(x) = 0 = f(0) (see 3.2). Therefore according to 3.3 f(x)

is continuous at 0.

f(x) is not differentiable at 0, because the difference quotient

g(x) =
f(x)− f(0)

x
= sin

1

x

has no limit at 0.

We can see in the figure that the function g(x) = sin
1

x
is between the

lines x and −x.
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4.20. f(x) is differentiable at every point. This is trivial for each x 6= 0. We
show that the limit of the difference quotient at x = 0 is 0.

lim
x→0

f(x)− f(0)

x
= lim
x→0

x sin
1

x
= 0,

since g(x) = x sin
1

x
is product of a function going to zero and a bounded

function around 0, (see 3.2). The derivative

f ′(x) =











2x sin
1

x
− cos

1

x
if x 6= 0

0 if x = 0

is continuous, if x 6= 0, but has no limit at 0, therefore it is not contin-
uous at 0.

We can see on the figure that f(x) = x2 sin
1

x
is between the parabolas

x2 and −x2.

 

 

4.25. The function f(x) is continuously differentiable except at the points 1
and 2. It is continuous at the two exceptional points. Let’s calculate
the derivative and the tangent lines of the“middle part”, that is, g(x) =
(1− x)(2− x) = x2 − 3x+ 2 at 1 and 2:

g′(x) = 2x− 3, g′(1) = −1, g′(2) = 1

e1(x) = 1− x, e2(x) = x− 2 = −(2− x).

Since the function g(x) “continues” at both points by the tangent line,
therefore the function is continuously differentiable at both points.
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4.31. If f(x) = sinx, then

f ′(x) = cosx, f ′′(x) = − sinx, f (n)(x) =



















sinx if n = 4k

cosx if n = 4k + 1

− sinx if n = 4k + 2

− cosx if n = 4k + 3

4.32. If f(x) = cosx, then

f ′(x) = − sinx, f ′′(x) = − cosx, f (n)(x) =



















cosx if n = 4k

− sinx if n = 4k + 1

− cosx if n = 4k + 2

sinx if n = 4k + 3

4.2 The Rules of the Derivative

4.33. P =⇒ Q: Since f(x) = f(−x), therefore f ′(x) = f ′(−x) · (−1) =

−f ′(−x).
Q =⇒ P: Let g(x) = f(−x). Since f ′(x) = −f ′(−x), therefore g′(x) =
−f ′(−x) = f ′(x). So the derivatives of f and g are equal everywhere,
so according to the basic theorem of anti-derivatives there is a c ∈ R
such that

g(x) = f(x) + c, that is, f(−x) = f(x) + c.

Since this statement is true for all x, applying it for x = 0

f(0) = f(0) + c ⇐⇒ c = 0.

4.34. P =⇒ Q: Since f(x) = −f(−x), so f ′(x) = −f ′(−x) · (−1) = f ′(−x).
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Q 6=⇒ P: For example, f(x) = x+ 1.

If we also assume that f(0) = 0, then it is true that f is odd:

Let g(x) = −f(−x). Since f ′(x) = f ′(−x), so g′(x) = f ′(−x) = f ′(x).
Therefore, the derivatives of f and g are equal everywhere, so according
to the basic theorem of anti-derivatives there is a c ∈ R, such that

g(x) = f(x) + c, that is − f(−x) = f(x) + c.

Since it is true for all x, so applying for x = 0

0 = f(0) = f(0) + c ⇐⇒ c = 0.

4.38. P =⇒ Q:

lim
h→0

f(a+ h)− f(a− h)

2h
=

1

2
lim
h→0

(

f(a+ h)− f(a)

h
+
f(a)− f(a− h)

h

)

=
1

2
lim
h→0

f(a+ h)− f(a)

h
+ lim
h→0

f(a)− f(a− h)

h

=
1

2
(f ′(a) + f ′(a)) = f ′(a).

Q 6=⇒ P: For example, a = 0, f(x) = |x|.

4.42. Verify that the given point is on the curve! It means that the value of

the function at 1 is 6: f(1) = 13 − 2 · 12 + 3 · 1 + 4 = 6.

The equation of the tangent line is y = m(x − x0) + y0, where x0 =
1, y0 = 6 and m = f ′(1).

The derivative of the function f ′(x) = 3x2−4x+3. Hence, m = f ′(1) =
2. Therefore, the equation of the tangent line at the given point:

y = 2(x− 1) + 6, or otherwise y = 2x+ 4.

4.56. Let f(x) =

√

x

√

x
√
x. In this case Df = [0,∞) ĂŠs Df ′ = (0,∞).

Let’s write down f(x) in a “fraction exponent form”:

f(x) =

√

x

√

x
√
x =

(

x ·
(

x · (x)1/2
)1/2

)1/2

=

(

x ·
(

x3/2
)1/2

)1/2

=
(

x7/4
)1/2

= x7/8
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Therefore,

f ′(x) =
7

8
x−1/8 =

7

8 8
√
x

4.57. Let f(x) =

√

x+

√

x+
√
x. So Df = [0,∞) and Df ′ = (0,∞).

f ′(x) =
1

2

√

x+
√

x+
√
x

(

1 +
1

2
√

x+
√
x

(

1 +
1

2
√
x

)

)

4.62. Let f(x) =
sinx− x cosx

cosx+ x sinx
. The domain is

Df = {x : cosx+ x sinx 6= 0} = {x : cotx 6= −x} .

Applying the rules of derivation:

f ′(x) =

(sinx− x cosx)′(cosx+ x sinx)− (sinx− x cosx)(cosx+ x sinx)′

(cosx+ x sinx)2
.

(sinx− x cosx)′ = cosx− cosx+ x sinx = x sinx

(cosx+ x sinx)′ = − sinx+ sinx+ x cosx = x cosx

Substituting the results:

f ′(x) =
x sinx(cosx+ x sinx)− (sinx− x cosx)x cosx

(cosx+ x sinx)2

=
x2

(cosx+ x sinx)2

The domain of the derivative: Df ′ = Df .

4.63. Let f(x) = 4x3 tan(x2 + 1). The domain

Df =
{

x : x2 + 1 6= (2n+ 1)
π

2

}

= R \
{

±
√

(2n− 1)
π

2
− 1 : n ∈ N

}

.

f ′(x) = 12x2 tan(x2 + 1) + 4x3(tan(x2 + 1))′
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According to the chain rule

(tan(x2 + 1))′ =
1

cos2(x2 + 1)
· 2x =

2x

cos2(x2 + 1)
.

Therefore

f ′(x) = 12x2 tan(x2 + 1) +
2x

cos2(x2 + 1)
.

The domain of the derivative is Df ′ = Df .

4.68. f(x) = xx = ex ln x, Df = Df ′ = (0,∞).

f ′(x) = (xx)
′
=
(

ex ln x
)′

= ex ln x(lnx+ 1) = xx(lnx+ 1).

4.69. f(x) = x
√
x = x1/x = e

ln x
x , Df = Df ′ = (0,∞).

f ′(x) =
(

x
√
x
)′

=
(

e
ln x
x

)′
=

1− lnx

x2
x
√
x

4.74. f(x) = log4 x =
lnx

ln 4
, Df = Df ′ = (0,∞).

f ′(x) = (log4 x)
′
=

(

lnx

ln 4

)′
=

1

x ln 4

4.75. f(x) = logx 4 =
ln 4

lnx
, Df = Df ′ = (0, 1) ∪ (1,∞).

f ′(x) = (logx 4)
′
=

(

ln 4

lnx

)′
= − ln 4

x ln2 x

4.84. Let f(x) =
sinhx− x coshx

coshx+ x sinhx
. Since the denominator is not 0 at any

point, Df = R.

Applying the rules of derivatives:

f
′(x) =

(sinhx− x coshx)′(coshx+ x sinhx)− (sinhx− x coshx)(coshx+ x sinhx)′

(coshx+ x sinhx)2
.

(sinhx− x coshx)′ = coshx− coshx− x sinhx = −x sinhx
(coshx+ x sinhx)′ = sinhx+ sinhx+ x coshx = 2 sinhx+ x coshx
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Substituting the results:

f
′(x) =

−x sinhx(coshx+ x sinhx)− (sinhx− x coshx)(2 sinhx+ x coshx)

(coshx+ x sinhx)2
=

=
x2

− 2 sinh2 x

(coshx+ x sinhx)2

The domain of the derivative is Df ′ = Df = R.

4.90. f(x) = log3 x · cosx, Df = Df ′ = (0,∞).

f ′(x) =
cosx

x ln 3
− log3 x · sinx

4.91. f(x) =
sinx+ 2 lnx√

x+ 1
, Df = Df ′ = (0,∞).

f ′(x) =

(

cosx+
2

x

)

· (√x+ 1)− sinx+ 2 lnx

2
√
x

(
√
x+ 1)2

4.96. f(x) = ln(sinx), Df = Df ′ = {x : sinx > 0}.

f ′(x) =
cosx

sinx
= cotx

4.97. f(x) = xtan x = eln x·tan x,

Df = Df ′ =
{

x : x 6= (2n+ 1)π2 , tanx > 0
}

.

f ′(x) =
(

xtan x
)′

=
(

eln x·tan x
)′

= xtan x
(

tanx

x
+

lnx

cos2 x

)

4.100. At first find the point c where the value of the function is a = 2, that
is, the value of the inverse function at a = 2. We can find c by trials:
c = 1. According to the rule of the derivative of the inverse function:

(f−1)′(2) =
1

f ′(1)
.

The derivative of the function f ′(x) = 5x4+2x, so f ′(1) = 7. Therefore

(f−1)′(2) =
1

7
.
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Remark: We should examine whether the function has an inverse. Ex-
amining the derivative we learn that there is no inverse on the whole

number-line, since there is a strict local maximum at point
3

√

−2

5
, and a

minimum at 0, therefore the function is not strictly monotonous. More-
over, because the limit of the function at −∞ is ∞ and 0 = f(0) < 2,
therefore f(x) = 2 somewhere between −∞ and 0. But the function is
strictly monotonically increasing on the half-line (0,∞), containing 1,
therefore there is an inverse on this half-line.

4.104. Since arctanx is the inverse of tanx, so (arctanx)′ =
1

tan′(arctanx)
=

cos2(arctanx) =
1

1 + tan2(arctanx)
.

Since tan(arctanx) = x, therefore

(arctanx)′ =
1

1 + x2

4.108. f(x) = arctan(sinx), Df ′ = R.

f ′(x) =
1

1 + sin2 x
· cosx =

cosx

1 + sin2 x

4.109. f(x) = tan(arcsinx), Df ′ = (−1, 1).

f ′(x) =
1

cos2(arcsinx)
· 1√

1− x2
=

1

1− sin2(arcsinx)
· 1√

1− x2

=
1

(1− x2)
√
1− x2

4.114.

2 sinx− 1

6x− π
=

2

6
·
sinx− 1

2

x− π

6

=
2

6
·
sinx− sin

π

6

x− π

6

→ 2

6
cos

π

6
=

√
3

6

4.119.

lim
n→∞

n

(

cos
1

n
− 1

)

= lim
n→∞

cos
1

n
− cos 0

1/n
= − sin 0 = 0
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4.123.
(

esin x
)′

= cosx · esin x
(

esin x
)′′

=
(

cosx · esin x
)′

= (cos2 x− sinx)esin x

4.3 Mean Value Theorems, L’Hospital’s Rule

4.128. If f(x) = arctanx, g(x) = arctan
1 + x

1− x
and h(x) = f(x)− g(x), then

(

1 + x

1− x

)′
=

(1− x)− (1 + x)(−1)

(1− x)2
=

2

(1− x)2

g′(x) =

(

arctan
1 + x

1− x

)′
=

1

1 +
(1 + x)2

(1− x)2

· 2

(1− x)2

=
2

(1− x)2 + (1 + x)2
=

1

1 + x2
.

Therefore h′(x) = 0 at every point, where h(x) is differentiable. But
the domain of g(x), so h(x) as well, does not contain 1, therefore h(x)
is not differentiable at 1.

h(0) = arctan 0− arctan 1 = −π
4
,

lim
x→∞

h(x) = lim
x→∞

arctanx− lim
x→∞

arctan
1 + x

1− x
=
π

2
+
π

4
=

3π

4
.

Therefore h(x) is not a constant function because h(0) 6= h(∞) =
lim
x→∞

h(x). But we can apply the basic theorem of anti-derivatives for

the half-lines (−∞, 1) and (1,∞).

4.129. Let h(x) = f(x)− g(x). Since h(x) is continuous on [0,∞), h′(x) > 0 if
x > 0, so according to theorem 4.8 it is strictly monotonically increasing
on [0,∞). Therefore

0 ≤ h(0) = f(0)− g(0) < h(x) = f(x)− g(x) if x > 0.

4.131. Let’s find the intervals, where the function f(x) = x5 − 5x + 2 is
monotonous.

f ′(x) = 5(x4 − 1) = 5(x2 + 1)(x2 − 1),
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f ′(x) > 0 if x ∈ (−∞,−1) ∪ (1,∞) and f ′(x) < 0 if x ∈ (−1, 1).

Therefore the function is strictly monotonically increasing if x < −1 or
x > 1, and strictly monotonically decreasing on(−1, 1).

lim
x→−∞

f(x) = −∞, f(−1) = 6 > 0, f(1) = −2 < 0, lim
x→∞

f(x) = ∞.

According to the intermediate value theorem f(x) has three roots on
the three disjunct intervals. Because of the strict monotonicity f(x)
has exactly one root on each interval, therefore f(x) has three roots.

4.138. Since the limits have ∞/∞ form, we can apply L’Hospital’s rule.

lim
x→0+

(lnx)′

(cotx)′
= lim
x→0+

1

x

− 1

sin2 x

= − lim
x→0+

sinx

x
· sinx = 0.

So lim
x→0+

lnx

cotx
= 0.

4.143. The limit lim
x→0

(

cotx− 1

x

)

is critical (has the form ∞−∞). Let’s write

the difference in quotient form:

cotx− 1

x
=

cosx

sinx
− 1

x
=
x cosx− sinx

x sinx
.

We can apply L’Hospital’s rule for this quotient because it has a 0/0
form.

lim
x→0

(x cosx− sinx)′

(x sinx)′
= lim
x→0

cosx− x sinx− cosx

sinx+ x cosx

= − lim
x→0

sinx
sinx

x
+ cosx

= 0.

Therefore lim
x→0

(

cotx− 1

x

)

= 0.

4.145. The limit lim
x→0

(

sinx

x

)1/x2

is critical because has a form 1∞. Let’s

change the expression so that we can apply the limit lim
x→0

(1 + x)
1/x

= e
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(see problem 4.144.):

(

sinx

x

)

1

x2
=







(

1 +
sinx− x

x

)

x

sinx− x







sinx− x

x3

This formula is not critical. Let’s calculate the limit of the “new” ex-
ponent with the use of L’Hospital’s rule (it has a form 0/0):

lim
x→0

(sinx− x)′

(x3)′
=

1

3
lim
x→0

cosx− 1

x2
= −1

6
.

Therefore lim
x→0

sinx− x

x3
= −1

6
, so

lim
x→0

(

sinx

x

)
1

x2

= e−1/6 =
1
6
√
e
.

4.148. The limit has ∞/∞ form, so we can apply L’Hospital’s rule.

lim
x→∞

(lnx)′

(
√
x)′

= lim
x→∞

1

x
1

2
√
x

= lim
x→∞

2
√
x

x
= lim
x→∞

2√
x
= 0.

So lim
x→∞

lnx√
x

= 0.

4.4 Finding Extrema

4.155. Let f(x) = x3 − 12x. The function f(x) can have a global extremum
(maximum or minimum) at points where its derivative is zero, or at the
endpoints of the closed intervals. Let’s find the roots of the derivative:

f ′(x) = (x3 − 12x)′ = 3x2 − 12 = 0.

The two roots:

x1 = −2 and x2 = 2.

For the interval [−10; 3]:

f(−10) = −880, f(−2) = 16, f(2) = −16, f(3) = −9

Therefore, on [−10; 3] the global minimum of f(x) = x3 − 12x is −880
at x = −10, and the global maximum is 16 at x = −2.



4. Differential Calculus and its Applications – Solutions 253

For the interval [0; 3]:

f(0) = 0, f(2) = −16, f(3) = −9.

(Since −2 is not in the interval, so we don’t calculate the value at −2.)

Therefore the global minimum on [0; 3] is −16 at x = 2, and the global
maximum is 0 at x = 0.

4.159. We only want to find the ratio of the sides of the triangle, so we can
suppose that the length of the hypotenuse of the triangle is 2. Using
the notations of figure, the T (x) area and the k(x) perimeter of the
rectangle are:

y = 1− x,

T (x) = 2xy = 2x(1− x), k(x) = 2(2x+ y) = 2(1 + x).

Because of the geometric meaning of x 0 ≤ x ≤ 1. Since k(x) is a
monotonically increasing function, it has the maximum at x = 1, we
got a degenerate rectangle (y = 0).

The maximum of the continuous function T (x) is not at the endpoints,
(see Weierstrass theorem), because T (0) = T (1) = 0, so the global
maximum is also a local maximum, therefore T ′(x) = 0 (see theorem
4.9).

T ′(x) = 2[(1− x)− x] = 2− 4x = 0,

x =
1

2

Therefore, the length of one of the sides of
the rectangle (the horizontal one by the
figure) is half of the other.

0-1 1

1

P x, y

 

 

Remark: According to the inequality between the arithmetic and geo-

metric means f(x) =
T (x)

2
= x(1− x) is maximal on the interval (0, 1)

if x = 1− x, that is, x =
1

2
.

4.163. Let’s denote the legs by x and y, and the hypotenuse by z. The hy-
potenuse is z = 10− x, the other leg is

y =
√

(10− x)2 − x2 =
√
100− 20x = 2

√
25− 5x,

and the area of the triangle

T (x) =
1

2
xy = x

√
25− 5x.
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Since 0 ≤ x ≤ 5, so we have to find the global maximum of the continu-
ous function T (x) on the closed interval [0, 5]. According to the Weier-
strass theorem there is a maximum. Since T (x) ≥ 0, T (0) = T (5) = 0,
so the maximum is on the open interval (0, 5). In this case the global
maximum is also a local maximum, therefore according to theorem 4.9
the derivative is zero at this point. Let’s find the roots of T ′(x):

T ′(x) =
√
25− 5x− 5x

2
√
25− 5x

= 0

√
25− 5x =

5x

2
√
25− 5x

⇐⇒ 2(25− 5x) = 5x ⇐⇒ x =
10

3

Since the derivative has exactly one root, the (local) maximum can be
only here. Therefore,

maxT = T

(

10

3

)

=
10

3

√

25− 50

3
=

50

3
√
3
.

The area is maximal, if

x =
10

3
, y =

10√
3
= x

√
3, z =

20

3
= 2x.

According to the given condition of the problem, the triangle which has
maximal area, is the half of an equilateral triangle.

Remark: The function T (x) has the maximum at the same point as
the function f(x) = T 2(x) = x2(25−5x). But the maximum of f(x) can
be found by “smartly” applying the inequality between the arithmetic
and geometric means. There is a 3-factor product on (0, 5):

(

5

2
x

)2

(25− 5x)

Here all of the factors are positive, and their sum is 25, independently
of x. Therefore the product is maximal, if the factors are equal, that
is,

5

2
x = 25− 5x, ⇐⇒ 15x = 50, ⇐⇒ x =

10

3

4.168. The surface area F and the volume V of a cylinder are:

F = 2πR2 + 2πmR, V = mR2π.
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Let’s express m from the formula of the volume, and substitute the
results in the formula for surface area:

m =
V

πR2
, F (R) = 2πR2 +

2V

R
.

The domain of F (R) is the open half-line (0,∞), and here the function
is positive. The value of the function is large if R is close to 0 (R is
small) or R is close to ∞ (R is large), so the global minimum is local
minimum as well. Let’s find the roots of the derivative function of
F (R):

F ′(R) = 4πR− 2V

R2
= 0, that is, 2πR =

V

R2
, R =

3

√

V

2π
.

Therefore, the surface area of a right circular cylinder with given volume
is minimal if

R =
3

√

V

2π
.

The height and the quotient of the height and the diameter:

m =
V

πR2
=

3

√

4V

π
,

m

2R
= 1.

Therefore, the surface area of a right circular cylinder is minimal if the
diameter is equal to the height.

Remark: We have to show that f really has a global minimum because
the reasoning above is not a proof. The correct proof:

Let F0 = F (1) = 2π + 2V . Since lim
R→+0

F (R) = lim
R→∞

F (R) = ∞, so an

0 < a < 1 and a 1 < b can be given such that R ∈ (0, a] or R ∈ [b,∞)
implies F (R) > F0. According to the Weierstrass theorem the function
F (R) has a minimum on the closed interval [a, b]. Because of choosing
a and b this minimum is the minimum as well on the whole half-line
(0,∞).

Since the point of minimum cannot be any of the endpoints of the
interval [a, b], so this minimum is a local minimum as well. According
to theorem 4.9, the derivative is 0 at this point. Because there is exactly
one such R on the whole half-line, therefore this is the radius which
belongs to the minimum.
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4.5 Examination of Functions

4.172. P ⇐⇒ Q: see theorem 4.8.

4.176. P 6=⇒ Q: For example, f(x) = x4, a = 0.

Q =⇒ P: See the theorems about the relationship of convexity and
derivative.

4.182. Let’s find the roots of f ′(x):

f ′(x) = 4x3 − 12x2 + 8x = 4x(x2 − 3x+ 2) = 4x(x− 1)(x− 2) = 0,

x1 = 0, x2 = 1, x3 = 2.

The sign of the factors of the derivative, so the sign of the derivative
can easily be found on the whole number-line:

– If x < 0, then f ′(x) < 0, and therefore f(x) is strictly monotoni-
cally decreasing on (−∞, 0).

– If 0 < x < 1, then f ′(x) > 0, and therefore f(x) is strictly mono-
tonically increasing on (0, 1).

– If 1 < x < 2, then f ′(x) < 0, and therefore f(x) is strictly mono-
tonically decreasing on (1, 2).

– If 2 < x, then f ′(x) > 0, and therefore f(x) is strictly monotoni-
cally increasing on (2,∞).

There are strict local extrema at the joining points of the monotonous
intervals, namely

– minimum at 0,

– maximum at 1,

– minimum at 2.

4.186. y′ = e−x + xe−x(−1) = (1− x)e−x.

Let’s find the roots of the derivative. From the equation (1−x)e−x = 0,
we’ll get that x = 1, therefore the function can have a local extremum
only at c = 1.
Since y′(x) > 0 if x < 1 and y′(x) < 0 if x > 1, so the function has a
strict local extremum, and the value of the function is e−1. Thus the
local extremum is the global maximum as well.
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4.194. The domain of f(x) =
x+ 1

1 + x2
is R, and the function is any times

differentiable.

lim
x→−∞

x+ 1

1 + x2
= lim
x→∞

x+ 1

1 + x2
= 0.

f ′(x) =
1 + x2 − 2x(x+ 1)

(1 + x2)2
=

1− 2x− x2

(1 + x2)2
= − (x− x1)(x− x2)

(1 + x2)2
,

where x1 = −1−
√
2 and x2 = −1+

√
2 are the roots of the numerator.

f ′′(x) =
(−2− 2x)(1 + x2)2 − 4x(1− 2x− x2)(1 + x2)

(1 + x2)4
=

= −2
(1 + x)(1 + x2) + 2x(1− 2x− x2)

(1 + x2)3
=

= 2
x3 + 3x2 − 3x− 1

(1 + x2)3
=

= 2
(x−X1)(x−X2)(x−X3)

(1 + x2)3
,

where X1 = −2 −
√
3, X2 = −2 +

√
3, X3 = 1 are the roots of the

numerator. By examining the sign of the first derivative, we got

– f(x) is strictly monotonically decreasing on (−∞, x1),

– there is a strict local minimum at x1,

– f(x) is strictly monotonically increasing on (x1, x2),

– there is a strict local maximum at x2,

– f(x) is strictly monotonically decreasing on (x2,∞).

By examining the sign of the first derivative, we got

– f(x) is strictly concave on (−∞, X1),

– f(x) is strictly convex on (X1, X2),

– f(x) is strictly concave on (X2, X3),

– f(x) is strictly convex on (X3,∞),

– there are inflection points at X1, X2 and X3.

4.203. The function f(x) = 1 − 9x − 6x2 − x3 is a polynomial with degree 3,
and it is any times differentiable on R. Since the main coefficient is
negative,

lim
x→−∞

1− 9x− 6x2 − x3 = ∞, lim
x→∞

1− 9x− 6x2 − x3 = −∞.
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Finding the roots of the first and second
derivatives:

f ′(x) = (−9−12x−3x2 = 0, x1 = −3, x2 = −1.

f ′′(x) = −12− 6x = 0, X1 = −2.

We can see in the figure, and it can be
proved by using the derivatives that
there is a minimum at x1 and a maximum
at x2, and X1 is an inflection point.
The function is decreasing on (−∞,−3],
increasing on [−3,−1], decreasing on
[−1,∞), convex on (−∞,−2] and con-
cave on (−2,∞).

 

K3 K2 K1

 

4.6 Elementary Functions

4.224. 2
ln 100
ln 2 = 2log2 100 = 100.

4.226. arcsin

√
3

2
=
π

3
(= 60◦).

4.228. arccos(cos(9π)) = π (and none 9π).

4.230. tan(arctan 100) = 100.

4.235. A period of the function f(x) = cos
x

2
+ tan

x

3
is for example, p = 12π

because 4π is a period of cos
x

2
and 3π is of tan

x

3
.
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Riemann Integral

5.1 Indefinite Integral

5.1. f(x) = x3 − 4x, f(x) : (2), f ′(x) : (E).

f(x) = x3, f(x) : (4), f ′(x) : (C).

f(x) = x+ sinx, f(x) : (5), f ′(x) : (A).

f(x) = tanx, f(x) : (4), f ′(x) : (D).

f(x) = e−x, f(x) : (1), f ′(x) : (B).

5.5. At first let’s change the integrand:

(sinx+ cosx)
2
= sin2 x+ 2 sinx cosx+ cos2 x

= 1 + 2 sinx cosx = 1 + sin 2x.
∫

(sinx+ cosx)
2
dx =

∫

(1 + sin 2x) dx

=

∫

dx+

∫

sin 2x dx = x− cos 2x

2
+ C

5.8.

∫

x3/2 dx =
2

5
x5/2 + C

5.10.

∫ −5

x− 7
dx = −5 ln(x− 7) + C

5.12.

∫

sin 2x+ 3 cosx dx = −cos 2x

2
+ 3 sinx+ C

5.14.

∫

e2x−3 dx =
1

2
e2x−3 + C

5.16.

∫

x2

x3 + 1
dx =

1

3

∫

3x2

x3 + 1
dx =

1

3

∫

(x3 + 1)′

x3 + 1
dx =

1
3 ln(x

3 + 1) + C

5.20.

∫

x√
x2 + 1

dx =
1

2

∫

2x√
x2 + 1

dx =
1

2

∫

(x2 + 1)′√
x2 + 1

dx =
√
x2 + 1 + C

5.24.

∫

1

2 + x2
dx =

1

2

∫

1

1 +

(

x√
2

)2 dx =
1√
2
arctan

(

x√
2

)

+ C
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5.28. By partial fraction expansion:

3

(x+ 3)(x+ 2)
=

A

x+ 2
+

B

x+ 3

Multiply both sides by the denominator of the left-hand side:

3 = A(x+ 3) +B(x+ 2)

By comparison of the coefficients, we got a linear system of equations
for A and B:

3A + 2B = 3
A + B = 0

A = 3, B = −3

Therefore
∫

3

(x+ 3)(x+ 2)
dx =

∫

3

x+ 2
dx−

∫

3

x+ 3
dx = 3 ln

x+ 2

x+ 3
+ C

5.32. The denominator of the integrand has no real roots. In the first step
get rid of “x” from the numerator by “smuggling in” the derivative of
the denominator:

∫

x− 2

x2 − 2x+ 6
dx =

1

2

∫

(2x− 2)− 2

x2 − 2x+ 6
dx

=
1

2

∫

2x− 2

x2 − 2x+ 6
dx−

∫

1

x2 − 2x+ 6
dx

The first integral on the right side has a form f ′/f , and the denominator
is positive, so

∫

2x− 2

x2 − 2x+ 6
dx = ln(x2 − 2x+ 6) + C.

The second integral can be reduced to the form of

∫

1

1 + t2
dt:

∫

1

x2 − 2x+ 6
dx =

∫

1

(x− 1)2 + 5
dx =

1

5

∫

1
(

x√
5
− 1√

5

)2

+ 1

dx =

=
1√
5
arctan

(

x√
5
− 1√

5

)

+ C.

Therefore,
∫

x− 2

x2 − 2x+ 6
dx =

1

2
ln(x2 − 2x+ 6)− 1√

5
arctan

(

x√
5
− 1√

5

)

+ C.
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5.36. Write down the integrand as the sum of a polynomial and a real (the
grad of the numerator less then the grad of the denominator) fraction:

3x3 + 2x− 1

x2 − x− 6
= 3x+ 3 +

23x+ 17

x2 − x− 6
= 3x+ 3 +

23x+ 17

(x− 3)(x+ 2)

∫

3x3 + 2x− 1

x2 − x− 6
dx =

∫

(3x+ 3) dx+

∫

23x+ 17

(x− 3)(x+ 2)
dx

Decompose the rational fraction of the right-hand side integrand to
partial fractions:

23x+ 17

(x− 3)(x+ 2)
=

A

x− 3
+

B

x+ 2

23x+ 17 = A(x+ 2) +B(x− 3)

A + B = 23
2A − 3B = 17

Add the three times of the first equation to the second equation:

5A = 86

A =
86

5
, B =

29

5
∫

3x3 + 2x− 1

x2 − x− 6
dx =

∫

(3x+ 3) dx+
86

5

∫

1

x− 3
dx+

29

5

∫

1

x+ 2
dx

=
3

2
x2 + 3x+

86

5
ln |x− 3|+ 29

5
ln |x+ 2|+ C

5.40. Decompose the integrand to partial fractions:

1

x3 + x2
=
A

x
+
B

x2
+

C

x+ 1

1 = Ax(x+ 1) +B(x+ 1) + Cx2

If we substitute 0 for x, we get B, and if we substitute 1 for x, we get
C. From these we get A:

A = −1, B = 1, C = 1

∫

1

x3 + x2
dx = −

∫

1

x
dx+

∫

1

x2
dx+

∫

1

x+ 1
dx = ln

∣

∣

∣

∣

x+ 1

x

∣

∣

∣

∣

− 1

x
+C
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5.44.

∫

x+ 2

x− 1
dx =

∫

(x− 1) + 3

x− 1
dx =

∫

dx+ 3

∫

1

x− 1
dx

= x+ 3 ln |x− 1|+ C

5.48.

∫

x+ 2

x2 + 2x+ 2
dx =

1

2

∫

(2x+ 2) + 2

x2 + 2x+ 2
dx =

=
1

2
ln(x2 + 2x+ 2) +

∫

1

x2 + 2x+ 2
dx =

=
1

2
ln(x2 + 2x+ 2) +

∫

1

(x+ 1)2 + 1
dx =

=
1

2
ln(x2 + 2x+ 2) + arctan(x+ 1) + C

5.50.
∫

sin2 x dx =

∫

1− cos 2x

2
dx =

x

2
− sin 2x

4
+ C

5.54.
∫

5

cos2(1− x)
dx = −5 tan(1− x) + C

5.58.

∫

sin2 2x+ 1

cos2 x
dx =

∫

4 sin2 x cos2 x+ 1

cos2 x
dx = 2x− sin 2x+ tanx+ C

Here we used the result of problem 5.50.

5.60. Let f(x) = x, g′(x) = cosx. So

∫

x cosx dx = x sinx−
∫

sinx dx = x sinx+ cosx+ C
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5.64.

∫

arctanx dx =

∫

1 · arctanx dx = x arctanx−
∫

x

1 + x2
=

= x arctanx− 1

2
ln(1 + x2) + C

5.68.
∫

x ln
1 + x

1− x
dx =

1

2
x2 ln

1 + x

1− x
− 1

2

∫

x2

1 + x

1− x

· 2

(1− x)2
dx

=
1

2
x2 ln

1 + x

1− x
−
∫

x2

1− x2
dx

−
∫

x2

1− x2
dx =

∫

1− x2 − 1

1− x2
dx = x−

∫

1

1− x2
dx

∫

1

1− x2
dx =

1

2

∫ (

1

1− x
+

1

1 + x

)

dx =
1

2
ln

1 + x

1− x
+ C

We used that the original integrand is defined only for
1 + x

1− x
> 0.

Therefore
∫

x ln
1 + x

1− x
dx =

1

2
x2 ln

1 + x

1− x
+ x− 1

2
ln

1 + x

1− x
+ C

5.71.

t = x2, dt = 2x dx
∫

xex
2

dx =
1

2

∫

2xex
2

dx =
1

2

∫

et dt =
1

2
et + C =

1

2
ex

2

+ C

5.75.

t = cosx, dt = − sinx dx
∫

1

sinx
dx =

∫

sinx

sin2 x
dx = −

∫ − sinx

1− cos2 x
dx = −

∫

1

1− t2
dt

=
1

2
ln

1− t

1 + t
+ C =

1

2
ln

1− cosx

1 + cosx
+ C

Here we used a part of the result of problem 5.68., and |t| < 1 implies
1− t

1 + t
> 0.
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5.79.

x = sin t, dx = cos t dt, t = arcsinx
∫

1

(1− x2)
√
1− x2

dx =

∫

1

(1− sin2 t) cos t
cos t dt =

∫

1

cos2 t
dt =

= tan t+ C =
sin t

√

1− sin2 t
+ C =

x√
1− x2

+ C

5.83.

t = x2 + x+ 1, dt = 2x+ 1
∫

(2x+ 1)ex
2+x+1 dx =

∫

et dt = et + C = ex
2+x+1 + C

5.87.

t = ex, x = ln t, dx =
dt

t
∫

ex + 2

ex + e2x
dx =

∫

t+ 2

t+ t2
· dt
t

=

∫

t+ 2

t2(t+ 1)
dt

Decompose the integrand to partial fractions:

t+ 2

t2(t+ 1)
=
A

t
+
B

t2
+

C

t+ 1

t+ 2 = At(t+ 1) +B(t+ 1) + Ct2

A = −1, B = 2, C = 1
∫

t+ 2

t2(t+ 1)
dt =

∫ (

−1

t
+

2

t2
+

1

t+ 1

)

dt = −2

t
+ ln

t+ 1

t
+ C

We used that
t+ 1

t
> 0. After substituting it back

∫

ex + 2

ex + e2x
dx = − 2

ex
+ ln

ex + 1

ex
+ C = −2e−x + ln(1 + e−x) + C

5.91.

∫

1

(x+ 2)(x− 1)
dx =

1

3

∫ (

1

x− 1
− 1

x+ 2

)

dx =
1

3
ln

∣

∣

∣

∣

x− 1

x+ 2

∣

∣

∣

∣

+ C
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5.95.

∫

1

ex + e−x
dx =

1

2

∫

dx

coshx
=

1

2

∫

coshx

1 + sinh2 x
dx

=
1

2
arctan sinhx+ C

5.99.

∫

ln(x2 + 1) dx =

∫

1 · ln(x2 + 1) dx = x ln(x2 + 1)− 2

∫

x2

x2 + 1
dx

∫

x2

x2 + 1
dx =

∫

(x2 + 1)− 1

x2 + 1
dx = x− arctanx+ C

∫

ln(x2 + 1) dx = x ln(x2 + 1)− 2x+ arctanx+ C

5.103.

∫

2x sin(x2 + 1) dx =

∫

(x2 + 1)′ sin(x2 + 1) dx = − cos(x2 + 1) + C

5.107.

∫

e2x

1 + ex
dx =

∫

ex

ex + 1
ex dx =

∫

t

t+ 1
dt = t− ln(t+ 1) + C

ahol t = ex.
∫

e2x

1 + ex
dx = ex − ln(ex + 1) + C

5.111.

∫

(x2 + x) lnx dx =

(

x3

3
+
x2

2

)

lnx−
∫ (

x2

3
+
x

2

)

dx

=

(

x3

3
+
x2

2

)

lnx− x3

9
− x2

4
+ C

5.115.

∫

3−2x dx =

∫

e(−2 ln 3)x dx = − 1

2 ln 3
e(−2 ln 3)x+C = − 1

2 ln 3
3−2x+C
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5.119.

t = tanx, dt =
1

cos2 x
dx, cos2 x =

1

1 + t2
, sin2 x =

t2

1 + t2

∫

1

sin2 x cos4 x
dx =

∫

1

sin2 x cos2 x
· 1

cos2 x
dx =

∫

(t2 + 1)2

t2
dt =

=

∫ (

t2 + 2 +
1

t2

)

dt =
t3

3
+ 2t− 1

t
+ C =

=
tan3 x

3
+ 2 tanx− cotx+ C

5.2 Definite Integral

5.124. (a) Φ is a refinement of F .

(b) Φ is not a refinement of F because 1.5 is not among the partition
points of Φ.

F is not a refinement of Φ because −1 is not among the partition
points of F .

5.125.

SΦ = 6, sΦ = 0

5.128.

SΦ = −1 · 1 + 0 · 1 + 4 · 4 = 15, sΦ = −2 · 1− 1 · 1 + 0 · 4 = −3

5.131. Yes because f(x) is continuous (and monotonic).

5.135. No because f(x) is not bounded on [0, 1].

5.140. Let f(x) =
1

x2 + ex
. So x ∈ [1, 2] implies 0 < f(x) < 1, so according to

problem 5.138.

0 = 0 · (2− 1) ≤
2
∫

1

1

x2 + ex
dx ≤ 1 · (2− 1) = 1
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5.144. Since every integral functions are continuous, and sgnx is not continu-
ous at 0, therefore sgnx cannot be an integral function on [−1, 1].

According to the Darboux theorem sgnx does not have a primitive
function on [−1, 1].

5.146. The sum σn =
sin

1

n
+ sin

2

n
+ · · ·+ sin

n

n
n

is a Riemann sum of the

integrable function sinx on the interval [0, 1] with an equidistant par-
tition, so

σn =
sin

1

n
+ sin

2

n
+ · · ·+ sin

n

n
n

→
1
∫

0

sinx dx = 1− cos 1

5.150.

n
n
∑

i=1

i

n2 + i2
=

n
∑

i=1

i

n

1 +

(

i

n

)2 →
1
∫

0

x

1 + x2
dx =

[

1

2
ln(1 + x2)

]1

0

=
ln 2

2

5.154.

g(x) = G′(x) =











2x sin
1

x
− cos

1

x
if x 6= 0

0 if x = 0

Since

h(x) = f(x) + g(x) =











2x sin
1

x
if x 6= 0

0 if x = 0

is continuous everywhere, so it has a primitive function, but in this case
the function f(x) = h(x)− g(x) also has a primitive function.

5.156.

H(x) =

x
∫

2

1

ln t
dt, H ′(x) =

1

lnx
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5.158. Since lim
x→∞

x

lnx
= ∞ and lim

x→∞

x
∫

2

1

ln t
dt = ∞, so for the quotient

lnx

x

x
∫

2

1

ln t
dt =

x
∫

2

1

ln t
dt

x

lnx

we can apply L’Hospital’s rule:

lim
x→∞

lnx

x

x
∫

2

1

ln t
dt = lim

x→∞

1

lnx
lnx− 1

ln2 x

= lim
x→∞

lnx

lnx− 1
= 1

5.162.
3
∫

2

x2 dx =

[

x3

3

]3

2

= 9− 8

3

5.166.
0
∫

−2π

sin2 x dx =

0
∫

−2π

1− cos 2x

2
dx =

[

x

2
− sin 2x

4

]0

−2π

= π

5.168.

x = sin t, dx = cos t dt,
1

2
= sin

π

6
,

√
3

2
= sin

π

3

√
3/2
∫

1/2

x2√
1− x2

dx =

π/3
∫

π/6

sin2 t
√

1− sin2 t
cos t dt =

π/3
∫

π/6

sin2 t dt

=

[

t

2
− sin 2t

4

]π/3

π/6

=
π

12

(see the problem 5.50.).

5.172.

t = tanx, x = arctan t, dx =
1

1 + t2
dt, tan

π

6
=

√
3

3
, tan

π

2
= ∞
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π/2
∫

π/6

1

1 + tanx
dx =

∞
∫

√
3/3

1

(1 + t)(1 + t2)
dt =

1

2

∞
∫

√
3/3

(

1

t+ 1
+

1− t

1 + t2

)

dt

=
1

2

[

ln
1 + t√
1 + t2

+ arctan t

]∞

√
3/3

= −1

2
ln

1 +
√
3

2
+
π

6

5.3 Applications of the Integration

5.177. Let’s find the intersection points of the parabola and the line:

x2 = −x+ 2, x1 = −2, x2 = 1.

Between the two intersection points the line −x+ 2 is “greater”.

T =

1
∫

−2

(−x+ 2− x2) dx =

1
∫

−2

(2− x− x2) dx =

[

2x− x2

2
− x3

3

]1

−2

= 6 +
3

2
+

7

3

5.181.

T =

e
∫

1

lnx dx = [x lnx− x]
e
1 = 1

5.185. The two intersection points:

1

1 + x2
=
x2

2
, x4 + x2 − 2 = 0, x1 = −1, x2 = 1

T =

1
∫

−1

(

1

1 + x2
− x2

2

)

dx =

[

arctanx− x3

6

]1

−1

=
π

2
− 1

3

5.189. We get this segment of the parabola if we choose the parabola y =
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m

(

1− 4

h2
x2
)

and the x-axis.

T =

h/2
∫

−h/2

m

(

1− 4

h2
x2
)

dx = m

[

x− 4

3h2
x3
]h/2

−h/2

= m

(

h− h

3

)

=
2

3
mh

5.192. Here −π
6
≤ ϕ ≤ π

6
.

T =
1

2

π/6
∫

−π/6

cos2 3ϕ dϕ =
1

2

[

ϕ

2
+

sin 6ϕ

6

]π/6

−π/6
=

π

12

5.196.

V = π

π
∫

0

sin2 x dx = π

[

x

2
− sin 2x

4

]π

0

=
π2

2

5.200.

V = π

1
∫

0

arcsin2 y dy = π

π/2
∫

0

x2 cosx dx

Calculate

∫

x2 cosx dx:

∫

x2 cosx dx = x2 sinx− 2

∫

x sinx dx =

= x2 sinx+ 2x cosx− 2

∫

cosx dx =

= x2 sinx+ 2x cosx− 2 sinx+ C.

Using the result above

V = π

π/2
∫

0

x2 cosx dx = π
[

x2 sinx+ 2x cosx− 2 sinx
]π/2

0
=
π3

4
− 2π.
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5.204.

V = π

2
∫

1

(

e2x − 1

x2

)

dx = π

[

e2x

2
+

1

x

]2

1

= π

(

e2(e2 − 1)

2
− 1

2

)

5.208.

L =

1
∫

−1

√

1 + sinh2 x dx =

1
∫

−1

coshx dx = [sinhx]
1
−1 = 2 sinh 1

5.4 Improper integral

5.220. If c 6= 1, then

∞
∫

1

1

xc
dx =

[

1

1− c
· 1

xc−1

]∞

1

=











1

c− 1
if c > 1

∞ if c < 1

If c = 1, then
∞
∫

1

1

x
dx = [lnx]

∞
1 = ∞

Therefore, the improper integral

∞
∫

1

1

xc
dx is convergent if and only if

c > 1.

5.223.
∞
∫

3

2−x dx =

[

−2−x

ln 2

]∞

3

=
1

8 ln 2

5.227. According to the solutions of problem 5.220.,

∞
∫

1

dx√
x

is divergent.

5.231.
1
∫

1
2

dx

x lnx
= [ln |lnx|]1

−

1/2 = −∞
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5.235.
1
∫

0

dx√
1− x2

= [arcsinx]
1−

0 =
π

2

5.239.
∞
∫

1

dx√
x+ x2

<

∞
∫

1

dx

x2
<∞

(see problem 5.220.).

5.243. The function
x2

x4 − x2 + 1
is Riemann integrable on [0, 1] (because the

denominator is not zero), so it is enough to show that the improper

integral

+∞
∫

1

x2

x4 − x2 + 1
dx is convergent.

Since the order of the functions f(x) =
x2

x4 − x2 + 1
and g(x) =

1

x2

is equal (the ratio of the two functions goes to 1 in ∞), and

∞
∫

1

dx

x2
is

convergent, so according to the limit comparison test

+∞
∫

1

x2

x4 − x2 + 1
dx

is convergent.

5.247. Since sinx ∼ x at 0, and

π/2
∫

0

dx

x
is divergent, so

π/2
∫

0

dx

sinx
is divergent.

5.251.
∞
∫

0

xe−x
2

dx = −1

2

[

e−x
2
]∞

0
=

1

2
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Numerical Series

6.1 Convergence of Numerical Series

6.1. Using the formula about the sum of finite geometric series

sn = 1 +
1

2
+

1

4
+ · · ·+ 1

2n
=

n
∑

k=0

(

1

2

)k

=

1−
(

1

2

)n+1

1

2

= 2

(

1− 1

2n+1

)

−→ 2

6.5.

1

k(k + 3)
=

1

3

(

1

k
− 1

k + 3

)

sn =
n
∑

k=1

1

k(k + 3)
=

1

3

n
∑

k=1

(

1

k
− 1

k + 3

)

=

=
1

3

(

1 +
1

2
+

1

3
− 1

n+ 1
− 1

n+ 2
− 1

n+ 3

)

−→ 1

3

(

1 +
1

2
+

1

3

)

=
11

18

6.8.

∞
∑

n=1

4n + 5n

9n
=

∞
∑

n=1

(

4

9

)n

+
∞
∑

n=1

(

5

9

)n

=
4

9

1

1− 4

9

+
5

9

1

1− 5

9

=
4

5
+

5

4

6.13. Since the terms of the series don’t go to 0, therefore the series is di-
vergent. (See the criteria of convergence about the terms converging to
0).

6.15. If A is the sum of the series, and sn is the sum of the first n terms, then

sn−→A, sn−1 −→A, an = sn − sn−1 −→ 0.
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6.16. We show that the Cauchy convergence test is not true for the harmonic

series because for ε =
1

2
there is no “good” threshold:

s2n−sn =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
>

1

2n
+

1

2n
+ · · ·+ 1

2n
= n · 1

2n
=

1

2
.

6.21. No, for example the harmonic series is divergent, but the sequence of
its terms converges to 0.

6.27. The partial sums of
∞
∑

n=1

1

n+ n2
=

∞
∑

n=1

1

n(n+ 1)
are so-called tele-

scopic sums:

sn =
n
∑

k=1

1

k(k + 1)
=

n
∑

k=1

(

1

k
− 1

k + 1

)

= 1− 1

n+ 1
−→ 1.

6.31. Since the improper integral

∞
∫

1

dx
3
√
x

is divergent, so according to the

integral test the series
∞
∑

n=1

1
3
√
n

is divergent.

We can also use the direct comparison test because
1
3
√
n
≥ 1

n
.

6.35.
∞
∑

n=1

sin(nπ) =
∞
∑

n=1

0 = 0

6.40. No, for example bn = 0, an = −1.

But if we assume that an > 0, then according to the “contrapositive”

version of the direct comparison test,
∞
∑

n=1

bn is divergent.

6.2 Convergence Tests for Series with Positive Terms

6.43. According to the integral test (applying for
1

x2
) the convergent series

∞
∑

n=1

1

n2
dominates the series

∞
∑

n=1

1

n2 + 4
, therefore the series

∞
∑

n=1

1

n2 + 4

is also convergent.
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6.45. See the ratio test.

6.48.

an+1

an
=

3n+1(n+ 1)!

(n+ 1)n+1
· nn

3nn!
=

3

(1 + 1/n)n
−→ 3

e
> 1.

Therefore the series
∞
∑

n=1

3nn!

nn
is divergent.

6.50. See the root test.

6.53.

n
√
an = n

√

(

1

2
+

1

n

)n

=
1

2
+

1

n
−→ 1

2
< 1.

The series
∞
∑

n=1

(

1

2
+

1

n

)n

is convergent.

6.58. The order of the series
∞
∑

n=1

n2 + 4

n4 + 3n
is

1

n2
:

n2 + 4

n4 + 3n
:
1

n2
=

(n2 + 4)n2

n4 + 3n
−→ 1,

and
∞
∑

n=1

1

n2
is convergent, therefore

∞
∑

n=1

n2 + 4

n4 + 3n
is convergent.

6.62. No. Not even if f(x) is monotonically decreasing. For example, f(x) =

5e−x+1. In this case

∞
∫

1

5e−x+1 dx =
[

−5e−x+1
]∞
1

= 5,

∞
∑

n=1

5e−n+1 = 5
1

1− 1/e
= 5

e

e− 1
6= 5
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6.66. The derivative of f(x) =
1

x lnx
is f ′(x) = − lnx+ 1

x2 ln2 x
< 0 if x > 1,

therefore f(x) is positive and monotonically decreasing on [e,∞). We
can apply the integral test for this function:

∞
∫

2

1

x lnx
dx = [ln lnx]

∞
2 = ∞,

therefore
∞
∑

n=2

1

n lnn
is divergent.

6.68.
∞
∑

n=1

1

n+
√
n
>

∞
∑

n=1

1

2n
=

1

2

∞
∑

n=1

1

n
= ∞,

therefore
∞
∑

n=1

1

n+
√
n

is divergent (direct comparison test).

6.74.

n

√

n2

2n
=

( n
√
n)

2

2
−→ 1

2
< 1,

therefore
∞
∑

n=1

n2

2n
is convergent (root test).

6.80.
n10

3n − 2n
<

2n10

3n
if 2n <

1

2
3n, which is true from some n. Applying the

root test for the series
∞
∑

n=1

2n10

3n
,

n

√

2n10

3n
=

n
√
2 ( n

√
n)

10

3
−→ 1

3
< 1,

so
∞
∑

n=1

n10

3n − 2n
is convergent.

6.86.
∞
∑

n=1

2n + 3n

5n
=

∞
∑

n=1

(

2

5

)n

+
∞
∑

n=1

(

3

5

)n

=
2

3
+

3

2
<∞
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6.92. The sequence of the terms of the series does not converge to 0 (conver-
gence tests):

1 +
1

n
−→ 1 6= 0,

therefore
∞
∑

n=1

(

1 +
1

n

)

is divergent.

6.3 Conditional and Absolute Converge

6.99. No, for example an = (−1)n.

6.104. 1− 1

2
+

1

3
− 1

4
+ · · · =

∞
∑

n=1

(−1)n+1 1

n
is a Leibniz series because

1

n
con-

verges to 0 monotonically decreasly, therefore the series is a convergent
(but not absolute convergent).

6.108. The terms of 1 − 1√
2
+

1
3
√
3
− 1

4
√
4
+ · · · =

∞
∑

n=1

(−1)n
1

n
√
n

are alternat-

ing, but the sequence of the terms does not converge to 0 (|an| → 1),
therefore the series is divergent.

6.114.
∞
∑

n=1

(−1)n
1

2n+ 1
is convergent Leibniz series, but not absolute conver-

gent.

6.120.
∞
∑

n=1

sinn

n2
is absolute convergent, because

∣

∣

∣

∣

sinn

n2

∣

∣

∣

∣

≤ 1

n2
.
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Sequences of Functions and Function Series

7.1 Pointwise and Uniform Convergence

7.1. The sequence of functions fn(x) = xn is convergent at the points of the
interval (−1, 1], and divergent at other points.

lim
n→∞

xn =

{

0 if |x| < 1
1 if x = 1

For all −1 < a < b < 1 the convergence is uniform on [a, b] because

max {|xn| : x ∈ [a, b]} = (max {|a|, |b|})n−→ 0.

Since the limit function is not continuous (from left-hand side at 1) on
(−1, 1], so according to theorem 7.1 the convergence is not uniform on
the whole range of convergence.

7.5. The sequence fn(x) =
n
√

1 + x2n converges pointwise to the constant 1
on the whole number line. The convergence is uniform on all bounded
[a, b] intervals because 1+x2n is bounded on [a, b]. Because for all n ∈ N

lim
x→∞

fn(x) = lim
x→∞

n
√

1 + x2n = ∞,

that is, fn is not bounded, therefore the convergence of fn to the
bounded function f(x) ≡ 1 is not uniform on R or on [0,∞). Because
the functions are even, the convergence is not uniform on (−∞, 0] as
well.

7.11. For all x ∈ R implies lim
n→∞

fn(x) = 0. This convergence is uniform on

all intervals or half-lines which contain only finitely many numbers of

the form
1

n
, but for every b > 0 the convergence is not uniform on (0, b)

(and any larger) interval because for ε = 1/b there is no good threshold.

7.18. Yes, for example gn(x) = fn(x) + 5, where fn is the function from
problem 7.11.

7.23. (a) f ′n(0) = lim
x→0

fn(x)− fn(0)

x
= lim
x→0

√

x2 +
1

n
−
√

1

n
x

=

lim
x→0

x
√

x2 +
1

n
+

√

1

n

= 0.
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(b) lim
n→∞

fn(x) = lim
n→∞

√

x2 +
1

n
=

√
x2 = |x|.

(c) |fn(x)− |x|| =
√

x2 +
1

n
− |x| =

1

n
√

x2 +
1

n
+ |x|

≤
√

1

n
−→ 0.

(d) Since the left-hand side and right-hand side derivatives (−1 and
1) are not equal, |x| is not differentiable at 0.

7.25.

|fn(x)| =
1

n2 + n4x2n
≤ 1

n2
,

∞
∑

n=1

1

n2 + n4x2n
≤

∞
∑

n=1

1

n2
<∞.

7.29.
∞
∑

n=1

(−1)n

x4 + 2n
is uniformly convergent according to the Weierstrass cri-

terium because
∣

∣

∣

∣

(−1)n

x4 + 2n

∣

∣

∣

∣

≤ 1

2n
,

∞
∑

n=1

1

2n
<∞.

7.35. According to the Weierstrass criterium
∞
∑

n=1

cosnx

n! + 2n
is uniformly con-

vergent on R because
∣

∣

∣

∣

cosnx

n! + 2n

∣

∣

∣

∣

≤ 1

n! + 2n
≤ 1

n!
,

∞
∑

n=1

1

n!
<∞.

7.2 Power Series, Taylor Series

7.42. Calculate the R radius of convergence of
∞
∑

n=0

n!

nn
xn. Using theorem 7.3:

an+1

an
=

(n+ 1)!

(n+ 1)n+1
· n

n

n!
=

1
(

1 +
1

n

)n −→ 1

e
, R = e.

It is known that (Stirling’s formula) for large enough n n! >
(n

e

)n

,

therefore the terms of the series do not converge to 0 at the endpoints
of the convergence interval, that is, at e and at −e:

n!

nn
en = n! ·

( e

n

)n

> 1
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if n is large enough.

7.48. n
√

|an| = n
√
n2 = ( n

√
n)2 → 1, R = 1. The power series is divergent

at the endpoint because the terms do not converge to 0.

7.54. n

√

1

n2n
=

1

2 n
√
n
−→ 1

2
, R = 2. Therefore, the interior of the range of

convergence is the interval (−7,−3). At the right endpoint the series
is divergent (harmonic series), and at the left endpoint it is convergent
because it is alternating.

7.60. n

√

1

n3n
=

1

3 n
√
n
−→ 1

3
, R = 3. Therefore, the interior of the range

of convergence is the interval (−3, 3), and at the left endpoint it is
convergent because it is alternating.

7.64.
|an+1|
|an|

=
((n+ 1)!)2

(2n+ 2)!
· (2n)!
(n!)2

=
(n+ 1)2

(2n+ 1)(2n+ 2)
→ 1

4
. Therefore,

R = 4.

7.66. The radius of convergence of
∞
∑

n=0

xn is 1, and because of the theorem

of integration by terms, the statement is true.

7.72. The radius of convergence of x +
x2

2
+
x3

3
+ · · · =

∞
∑

n=1

xn

n
is 1. The

sum of the power series is f(x) on (−1, 1). According to the theorem
on derivation by terms

f ′(x) =
∞
∑

n=1

n · xn−1

n
=

∞
∑

n=1

xn−1 =
∞
∑

k=0

xk =
1

1− x

therefore f(x) is the primitive function of
1

1− x
and f(0) = 0, so

f(x) = − ln(1− x), −1 < x < 1.

Remark: Because the series converges at −1 (Leibniz series), therefore
by the so-called “Abel criterium” one can prove that the expression
remains true at −1 as well.

7.76. Using the sum of the geometric series

∞
∑

n=0

(sinx)n =
1

1− sinx
if |sinx| 6= 1, that is x 6= π

2
+2kπ, k ∈ Z
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7.80. n

√

1

n(n+ 1)
→ 1, therefore R = 1.

Let g(x) = x · f(x) =
∞
∑

n=1

xn+1

n(n+ 1)
. By derivation by terms g′(x) =

∞
∑

n=1

xn

n
.

By another derivation g′′(x) =
∞
∑

n=1

xn−1 =
∞
∑

k=0

xk =
1

1− x
.

So g′(x) =

∫

1

1− x
dx = − ln(1 − x), g(x) = −

∫

ln(1 − x) dx =

x+ (1− x) ln(1− x).

Therefore, f(x) = 1 +
1− x

x
ln(1− x) if |x| < 1.

7.82. n
√
n→ 1, therefore R = 1.

Let g(x) =
f(x)

x
=

∞
∑

n=1

nxn−1.

Let h(x) be the primitive function of g(x) such that h(0) = 0. We can
get this function by integration by terms:

h(x) =

∞
∑

n=1

xn =
1

1− x
− 1 =

x

1− x
. Therefore, g(x) = h′(x) =

1

(1− x)2
, so

f(x) = x · g(x) = x

(1− x)2
.

7.84. n
√

n(n+ 1) → 1, therefore R = 1.

Let g(x) be the primitive function of f(x) such that g(0) = 0. We can
get this function by integration by terms:

g(x) =

∞
∑

n=1

nxn+1 = x

∞
∑

n=1

nxn. Using the result of the previous problem

g(x) =
x2

(1− x)2
.
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Hence f(x):

f(x) = g′(x) =
2x(1− x)2 + 2x2(1− x)

(1− x)4
= 2

x(1− x) + x2

(1− x)3
=

2
x

(1− x)3

7.87. Substitute 2x for x of the Taylor series of ex. (Taylor series of common
functions).

e2x =
∞
∑

n=0

(2x)n

n!
=

∞
∑

n=0

2n

n!
xn, x ∈ R.

7.93.

1

1 + x
=

1

1− (−x) =
∞
∑

n=0

(−x)n =
∞
∑

n=0

(−1)nxn, |x| < 1.

7.96. Let f(x) = ln(1 + x). According to problem 7.93.

f ′(x) =
1

1 + x
=

∞
∑

n=0

(−1)nxn, if |x| < 1.

f(x) =

x
∫

0

1

1 + t
dt =

∞
∑

n=0

(−1)n
x
∫

0

tn dt

=
∞
∑

n=0

(−1)n
xn+1

n+ 1
=

∞
∑

n=1

(−1)n
xn

n

7.99. Multiplying both the numerator and denominator by 1− x:

f(x) =
1− x

(1 + x+ x2)(1− x)
=

1− x

1− x3
.

Using the sum of the geometric series, substituting x3 for x

1

1− x3
=

∞
∑

n=0

x3n, |x| < 1.

So

f(x) =
1

1− x3
− x

1

1− x3
=

∞
∑

n=0

x3n −
∞
∑

n=0

x3n+1 =
∞
∑

k=0

akx
k,
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where

ak =







1 if k = 3n
−1 if k = 3n+ 1
0 if k = 3n+ 2

7.105.

cos2 x =
1

2
+

1

2
cos 2x =

1

2
+

1

2

∞
∑

n=0

(−1)n
(2x)2n

(2n)!

= 1 +
∞
∑

n=1

(−1)n22n−1 x
2n

(2n)!
, x ∈ R.

7.111. We estimate the difference between the value of the function and the
value of the Taylor polynomial with the help of the Lagrange reminder.

For f(x) = sinx for some d ∈ [0, 1]

|sin 1− T2n(1)| =
∣

∣

∣

∣

∣

sin 1−
n−1
∑

k=0

(−1)k
1

(2k + 1)!

∣

∣

∣

∣

∣

=
d2n+1

(2n+ 1)!
≤ 1

(2n+ 1)!
< 10−2,

if n ≥ 2. Therefore,

|sin 1− T4(1)| =
∣

∣

∣

∣

sin 1− 1 +
1

3!

∣

∣

∣

∣

=

∣

∣

∣

∣

sin 1− 5

6

∣

∣

∣

∣

< 10−2.

For f(x) = ex for some d ∈ [0, 1]

∣

∣e1 − Tn(1)
∣

∣ = e− Tn(1) =
eddn+1

(n+ 1)!
≤ e

(n+ 1)!
< 10−2,

if n ≥ 5. Therefore

e− T5(1) = e−
(

1 + 1 +
1

2
+

1

6
+

1

24
+

1

120

)

= e−
(

2 +
43

60

)

∼ e− 2.716666667 < 10−2.

7.117. The derivative is the product of 136! and the coefficient of the power

x136 in the Taylor series around 0 of the function f(x) = ex
2

.

f(x) = ex
2

=
∞
∑

n=0

1

n!
x2n, f (136)(0) =

136!

68!
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7.120. f ′(x) = (tanx)′ =
1

cos2 x

f ′′(x) = (tanx)′′ =

(

1

cos2 x

)′
= 2

sinx

cos3 x

f ′′′(x) = (tanx)′′′ =

(

2
sinx

cos3 x

)′
= 2

cos4 x+ 3 sin2 x cos2 x

cos6 x
=

= 2
cos2 x+ 3 sin2 x

cos4 x
= 2

1 + 2 sin2 x

cos4 x

Therefore f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = 2. Therefore the
3rd Taylor polynomial is

t3(x) = x+
x3

3
.

Since tanx is odd, therefore the 4th derivative at 0 is 0. Therefore
t3(x) = t4(x).

7.125. (a)
1

2 + x
=

1

2

1

1− −x
2

=
∞
∑

n=0

(−1)n
1

2n+1
xn, |x| < 2

(b)
1

2 + x
=

1

3 + (x− 1)
=

1

3

1

1− −(x− 1)

3

=
∞
∑

n=0

(−1)n
1

3n+1
(x −

1)n, |x− 1| < 3

7.3 Trigonometric Series, Fourier Series

7.126. sin2 x =
1

2
− 1

2
cos 2x

7.128. Since sgnx is odd, so all an = 0.

bn =
1

π

π
∫

−π

sgnx sinnx dx =
2

π

π
∫

0

sinnx dx = − 2

πn
[cosnx]

π
0

=











4

πn
if n odd

0 if n even

Since the function sgnx is piecewise continuously differentiable and at
0 the value is the arithmetic mean of the two half side limits, therefore
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the Fourier series equals to the function on the interval (−π, π).

sgnx =
4

π

∞
∑

k=0

sin(2k + 1)x

2k + 1
if − π < x < π.

7.134. (a) This function is odd, that is, f(−x) = −f(x). So for all an = 0.

2π
∫

0

π − x

2
sinnx dx =

[

−π − x

2
· 1
n
cosnx

]2π

0

− 1

2n

2π
∫

0

cosnx dx

=

[

x− π

2n
cosnx

]2π

0

=
π

n

Therefore,

bn =
1

π

2π
∫

0

π − x

2
sinnx dx =

1

n
.

Since f(x) is piecewise continuously differentiable, therefore on (0, 2π)
the Fourier series equals to the function at the point where the function
is continuous.

π − x

2
=

∞
∑

n=1

sinnx

n
, if 0 < x < 2π.

(b) Substitute
π

2
for x in the previous series.

Since sin
(

k
π

2

)

=







(−1)n if k = 2n+ 1

0 if k = 2n
, therefore

π

4
=

∞
∑

n=0

(−1)n
1

2n+ 1
.

7.135. (a) Since f is even,

bn =
1

π

π
∫

−π

x2 sinnx dx = 0,

that is, the coefficients bn are zero.
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a0 =
1

2π

π
∫

−π

x2 dx =
1

2π

[

x3

3

]π

−π
=
π2

3

if n > 0, integrating by parts twice:
π
∫

−π

x2 cosnx dx =

[

1

n
x2 sinnx

]π

−π
− 2

n

π
∫

−π

x sinx dx =

=
2

n2
[x cosnx]

π
−π − 2

n2

π
∫

−π

cosnx dx = (−1)n
4π

n2
− 2

n3
[sinnx]

π
−π =

(−1)n
4π

n2
.

So for n > 0

an =
1

π

π
∫

−π

x2 cosnx dx = (−1)n
4

n2

Since
∑ 1

n2
is convergent, therefore the Fourier series of f is uni-

formly convergent because of the Weierstrass criterium, and f is
continuous, so the Fourier series equals to the function.

x2 =
π2

3
+ 4 ·

∞
∑

n=1

(−1)n
cosnx

n2
, if −π ≤ x ≤ π.

(b) If we substitute π for x in the previous Fourier series, and use that
cosnπ = (−1)n, we get that

π2 =
π2

3
+ 4 ·

∞
∑

n=1

1

n2
.

After rearrangement
∞
∑

n=1

1

n2
=
π2

6
.

7.142.

ex = a0 +
∞
∑

n=1

(an cosnx+ bn sinnx)

Integrating by parts twice, we get
∫

ex cosnx dx =
cosnx+ n sinnx

n2 + 1
ex + C,

∫

ex sinnx dx

=
sinnx− n cosnx

n2 + 1
ex + C.
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Using this

a0 =
1

2π

π
∫

−π

ex dx =
1

2
· e

π − e−π

π
,

an =
1

π

π
∫

−π

ex cosnx dx = (−1)n
1

n2 + 1
· e

π − e−π

π

bn =
1

π

π
∫

−π

ex sinnx dx = (−1)n+1 n

n2 + 1
· e

π − e−π

π
.

After substitution

ex =
eπ − e−π

π

(

1

2
+

∞
∑

n=1

(−1)n

n2 + 1
(cosnx− n sinnx)

)

, −π < x < π.
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Differentiation of Multivariable Functions

8.1 Basic Topological Concepts

8.2. |p − q | =
√

(−1− 5)2 + (3− (−4))2 + (5− 0)2 =
√
36 + 49 + 25 =√

110

8.5. k = 1 : x2 < r2

k = 2 : x2 + y2 < r2

k = 3 : x2 + y2 + z2 < r2

k = n : x21 + x22 + · · ·+ x2n < r2

8.8. This set is the open annulus in
the figure. The set is open and
bounded,
the boundary points are the
points of the circles x2 + y2 = 1
and x2 + y2 = 4.

 

K2 K1

0

1 2

 

K2

K1

1

2

8.14. H = {x : 0 < x < 1} ⊂ R is open (open interval), because if x ∈ H,
r = min{x, 1− x}, then {y : |x− y| < r} ⊂ H.

8.15. If H = {(x, 0) : 0 < x < 1} ⊂ R2, then ∂ H = {(x, 0) : 0 ≤ x ≤ 1}.
According to theorem 8.1 H is not open because H ∩ ∂ H 6= ∅ and not
closed because ∂ H * H.

8.22. If H = {(x, y) : x ∈ Q, y ∈ Q} ⊂ R2, then ∂ H = R2 and according to
theorem 8.1 H is neither open nor closed.

8.23. H = {(x, y) : 0 < x < 1, 0 < y < 1} ⊂ R2 is open (open rectangle)
because p = (x, y) ∈ H, r = min {x, 1− x, y, 1− y} > 0 implies

B(p; r) =
{

q ∈ R2 : |p− q| < r
}

⊂ H.
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8.29.

H = {(x, y, z) : x2+y2+z2 ≤ 1}, intH = {(x, y, z) : x2+y2+z2 < 1},

extH = {(x, y, z) : x2+y2+z2 > 1}, ∂ H = {(x, y, z) : x2+y2+z2 = 1}

8.32. (a) Not true, for example H = {0 } , x = 0 .

(b) True because intH ⊂ H.

(c) Not true, for example H = {0 }.

(d) Not true, for example H = {p ∈ Rn : |p| < 1} , x = (1, 0, . . . , 0).

(e) True, for example H = Qn.

(f) True, for example H = {p ∈ Rn : |p| < 1}.

(g) True, for example H = {p ∈ Rn : |p| = 1}.

8.2 The Graphs of Multivariable Functions

8.33. f(p ) = f(2, 3) = 2 + 32 = 11.

8.38. f(x, y) = x− y, f(x, x) = 0, f(x, x2) = x− x2.

8.41. (a) — (B), (b) — (D), (c) — (C), (d) — (F), (e) — (A), (f) — (E)

8.43.

x

K3 K2 K1

0

1 2 3

y

K3

K2

K1

1

2

3

contours

-3

-2

y

-3

-1

x

-2

-1

0

0

0

1

5

2

3

1

10

15

20

2

25

30

35

graph
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8.45.

x

K3 K2 K1

0

1 2 3

y

K3

K2

K1

1

2

3

contours

-3

-2

y

-1

-3

-9,0

-2

x

-6,5

-4,0

-1

-1,5

0

0

1,0

3,5

1

6,0

2

8,5

3

1

2

3

graph

8.47.

x

K3 K2 K1

0

1 2 3

y

K3

K2

K1

1

2

3

contours

-3

-2

y

-3

-1

x

-2

-1

0

0

0,0

1

2,5

5,0

2

1

7,5

3

10,0

2

12,5

15,0

17,5

graph

8.49.

x

K3 K2 K1

0 1 2 3

y

K3

K2

K1

1

2

3

contours

-3

-2

-9,0

3

y

-6,5

2

-1

-4,0

1

-1,5

0

0

1,0

x

-1

3,5

-2

1

6,0

-3

8,5

2

3

graph

8.61. f(x, y) =
x+ y

x− y
, Df =

{

(x, y) ∈ R2 : x 6= y
}

.

8.3 Multivariable Limit, Continuity

8.67. f(x, y) = 7, lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

7 = 7. The function is

continuous everywhere.
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8.73. The function

f(x, y) =
sinx− sin y

ex − ey

is not defined if x = y, so the domain does not contain a punctured
neighbourhood of the origin. Therefore the function has no limit at the
origin. The function f(x, y) is continuous at every point of its domain,
{(x, y) : x 6= y}.

8.79.

f(x, y) =

{

x if x = y

0 otherwise

The function is continuous everywhere except at the points of the set
H = {(x, x) : x 6= 0}. Therefore it has limit at (0, 0) and in (0, 1), and
the limits are the values of the function.

lim
(x,y)→(0,0)

f(x, y) = f(0, 0) = 0, lim
(x,y)→(0,1)

f(x, y) = f(0, 1) = 0.

8.4 Partial and Total Derivative

8.85. For example, f(x, y) =











2xy

x2 + y2
if x2 + y2 > 0

0 if x2 + y2 > 0

.

Since f(x, 0) ≡ 0 ≡ f(0, y), so both partial derivatives exist at the
origin, and they are zero. But since f(x, x) ≡ 1 6= 0, the f function has
not even limit at the origin.

8.90. If x 6= y2, then f(x, y) =
x+ y

x− y2
is partially differentiable, and

f ′x(x, y) =
(x− y2)− (x+ y)

(x− y2)2
= − y2 + y

(x− y2)2
,

f ′y(x, y) =
(x− y2) + (x+ y) · 2y

(x− y2)2
=
x+ y2 + 2xy

(x− y2)2
.

8.96. The domain of g(x, y, z) = xy
z

is the set
{

(x, y, z) ∈ R3 : x > 0, y > 0
}

.
The function is differentiable at the points of the set, and

∂

∂x

(

xy
z
)

= x(y
z−1) · yz, ∂

∂y

(

xy
z
)

= xy
z · lnx · z · yz−1,
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∂

∂z

(

xy
z
)

= xy
z · lnx · ln y · yz

8.102. Neither of the partial derivatives exist at the origin because the one-
variable functions f(x, 0) = |x| and f(0, y) = |y| are not differentiable
at 0.

8.108.

g(x, y, z) = 2 + x+ y2 + z3,

g′x(x, y, z) = 1, g′y(x, y, z) = 2y, g′z(x, y, z) = 3z2,

g′′xx(x, y, z) = 0, g′′xy(x, y, z) = g′′yx(x, y, z) = 0,

g′′xz(x, y, z) = g′′zx(x, y, z) = 0.g′′yy(x, y, z) = 2,

g′′yz(x, y, z) = g′′zy(x, y, z) = 0, g′′zz(x, y, z) = 6z

8.112. The length of the vector v = (−4, 3) is |v | = 5. Since the function

f(x, y) = ex+y · ln y is differentiable at the point p = (0, 1), therefore
it is differentiable in any direction (see theorem 8.5) and

∂

∂v
f(0, 1) =

1

5

(

−4
∂

∂x
f(0, 1) + 3

∂

∂y
f(0, 1)

)

∂

∂x

(

ex+y · ln y
)

= ex+y · ln y, ∂

∂y

(

ex+y · ln y
)

= ex+y ·
(

ln y +
1

y

)

.

After substitution
∂

∂v
f(0, 1) =

3e

5
.

8.119. The absolute value of the directional derivatives at an arbitrary point
of a continuously differentiable function is maximal in the direction of
the gradient (see theorem 8.5), therefore the ball starts rolling in this
direction and downward.

f ′x(x, y) = 3x2 − 9y, f ′y(x, y) = 3y2 − 9x

grad f(1, 2) = (−15, 3), grad f(2, 1) = (3,−15),

grad f(2, 0) = (12,−18), grad f(−2, 1) = (3, 21)
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8.125.

f(x, y) =















xy
x2 − y2

x2 + y2
if x2 + y2 6= 0

0 if x2 + y2 = 0

If x2 + y2 6= 0

f ′x(x, y) = y
x2 − y2

x2 + y2
+ xy

2x(x2 + y2)− 2x(x2 − y2)

(x2 + y2)2

= y
x2 − y2

x2 + y2
+ xy

4xy2

(x2 + y2)2

f ′y(x, y) = x
x2 − y2

x2 + y2
+ xy

−2y(x2 + y2)− 2y(x2 − y2)

(x2 + y2)2

= x
x2 − y2

x2 + y2
− xy

4x2y

(x2 + y2)2

(a) f(x, 0) = f(0, y) = 0, f ′x(0, 0) = f ′y(0, 0) = 0

(b) f ′x(0, y) = −y, f ′y(x, 0) = x

(c) f ′′xy(0, 0) = −1, f ′′yx(0, 0) = 1

(d) Because the second order derivatives are not continuous at the
origin.

(e) We show that f is not differentiable twice, because f ′x is not dif-
ferentiable at the origin. Using the previous results:

f ′x(0, 0) = 0, f ′′xx(0, 0) = 0, f ′′xy(0, 0) = −1

f ′x(x, y)−
[

f ′′xx(0, 0)x+ f ′′xy(0, 0)y + f ′x(0, 0)
]

√

x2 + y2
=
f ′x(x, y) + y
√

x2 + y2

We show that the expression does not converge to 0 at the point
(0, 0), not even on the line y = x.

f ′x(x, x) + x√
x2 + x2

=
2x√
2x

=
√
2

8.127. Yes, for example f(x, y) = x sin y.

8.129. If x > 0, then

grad f(x, y) = (yxy−1, xy lnx), grad f(2, 3) = (12, 8 ln 2).
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The equation of the tangent plane

z = 8 + 12(x− 2) + 8 ln 2 · (y − 3)

8.132.

y = n! +
n
∑

k=1

n!

k
(xk − k)

8.138. Here h = g ◦ f : R2 → R, h(u, v) = g(f(u, v)) = g(f1(u, v), f2(u, v))
where

f1(u, v) = u2v2, f2(u, v) =
1

uv

h′u(u, v) = g′x(f(u, v))(f1)
′
u(u, v) + g′y(f(u, v))(f2)

′
u(u, v)

=
1

u2v2
· 2uv2 + uv ·

(

− 1

u2v

)

=
1

u

h′v(u, v) = g′x(f(u, v))(f1)
′
v(u, v) + g′y(f(u, v))(f2)

′
v(u, v)

=
1

u2v2
· 2u2v + uv ·

(

− 1

uv2

)

=
1

v

J = (h′u(u, v).h
′
v(u, v)) =

(

1

u
,
1

v

)

Verify the result by calculating the function h(u, v), and the derivative.

h(u, v) = ln(u2v2) + ln

(

1

uv

)

= 2 lnu+ 2 ln v − lnu− ln v = lnu+ ln v

8.144. Let t be the variable of the curve r . r (t) = (x(t), y(t))

h = f ◦ r , h(t) = f(r (t)) = x(t) + y(t),

h′(t) = h′(r (t)) · r ′(t) = x′(t) + y′(t)

8.5 Multivariable Extrema

8.150. The function f(x, y) = x2 + ey sin
(

x3y2
)

is continuous on the compact
(bounded and closed set)

H = {(x, y) : x2 + y2 ≤ 1},

therefore according to the Weierstrass theorem it has an absolute max-
imum and minimum on H.
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8.155. The function f(x, y) = x3y2(1 − x − y) is continuous everywhere, and
on the bounded and closed

H = {(x, y) : 0 ≤ x, 0 ≤ y, x+ y ≤ 1}

set (closed triangle) f is not negative. On the perimeter of the triangle
f(x, y) = 0, and on the interior of the triangle f(x, y) > 0. Therefore
the maximum of f is in the interior of the triangle, and therefore the
absolute maximum is also a local maximum. Let’s find the stationary
points of the function f , that is, the roots of the derivative (theorem
8.7) if x, y > 0, x+ y < 1.

f ′x(x, y) = 3x2y2(1− x− y)− x3y2 = 0, 4x+ 3y = 3

f ′y(x, y) = 2x3y(1− x− y)− x3y2 = 0, 2x+ 3y = 2

x =
1

2
, y =

1

3

Since we got only one root, that point is the location of the global
maximum.

8.161. The function f(x, y) = 3x2 + 5y2 is nowhere negative, and except for
the origin, the function is strictly monotonic on the axis. Therefore the
only extremum of the function is at the origin, and it is a minimum.
Let’s check this result by the examination of the derivative (theorem
8.7).

f ′x(x, y) = 6x = 0, x = 0

f ′y(x, y) = 10y = 0, y = 0

Therefore the only stationary point is the origin.

8.167. Find the stationary points of the function f(x, y) = −y2 + sinx.

f ′x(x, y) = cosx = 0, x = (2n+ 1)
π

2
, n ∈ Z

f ′y(x, y) = −2y = 0, y = 0

Therefore the stationary points of the function are on the x axis:

{

p n =
(

(2n+ 1)
π

2
, 0
)

: n ∈ Z
}

.

Let’s examine the corresponding quadratic forms: (theorem 8.7).

f ′′xx(x, y) = − sinx, f ′′xy(x, y) = f ′′yx(x, y) = 0. f ′′yy(x, y) = −2
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The Hessian matrix at these points is

Hn =

(

(−1)n+1 0
0 −2

)

The determinant of the Hn is negative if n is odd, therefore there is no
extremum at these points.

If n is even, then f has maximum at the points p n, because f
′′
xx < 0

at these points.

8.174. The distance of two arbitrary points of the two lines is

d(p (t),q (s)) =
√

(2t− 3s)2 + (t− s)2 + (2− t− 2s)2, t, s ∈ R

The distance and the square of the distance have minimum at the same
point. Therefore we want to find the minimum of the two-variable
function

f(t, s) = (2t−3s)2+(t−s)2+(2−t−2s)2 = 6t2−10ts+14s2−4t−8s+4

on the plane.

f ′t(t, s) = 12t− 10s− 4 = 0, 6t− 5s = 2

f ′s(t, s) = −10t+ 28s− 8 = 0, −5t+ 14s = 4

t =
48

59
, s =

34

59
, min {f(t, s) : t, s ∈ R} =

4

59

Therefore the distance of the two lines is
2√
59

.

8.180.

f(x, y) = (x+ y)2, f ′x(x, y) = f ′y(x, y) = 2(x+ y)

Therefore all of the points of the line x+ y = 0 are critical points. The
value of the function is zero at these points, therefore f has minimum
at the points of x+ y = 0. We note that at these points the examina-
tion of the second order partial derivatives is inconclusive because the
quadratic form is semidefinite.

f ′′xx = f ′′xy = f ′′yy = 2, D =

∣

∣

∣

∣

2 2
2 2

∣

∣

∣

∣

= 0.
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8.188.

f(x, y, z) = xyz + x2 + y2 + z2

f ′x(x, y, z) = yz + 2x = 0, f ′y(x, y, z) = xz + 2y = 0,

f ′z(x, y, z) = xy + 2z = 0

After rearranging the equation

xyz + 2x2 = 0, xyz + 2y2 = 0, xyz + 2z2 = 0

Hence x2 = y2 = z2. It is easy to see that if one of the variables is zero,
the the two other variables are zero, too. Therefore one of the critical
points is

a = (0, 0, 0) (origin) .

In the other cases xyz should be negative, therefore either all the three
factors are negative, so

b = (−2,−2,−2)

is solution, or one factor is negative, and the two other factors are
positive, so

c 1 = (−2, 2, 2), c 2 = (2,−2, 2), c 3 = (2, 2,−2)

are critical points. Since the variables of the functions are interchange-
able, so it is enough to examine one of the last three roots.

f ′′xx = 2, f ′′xy = f ′′yx = z, f ′′xz = f ′′zx = y, f ′′yz = f ′′zy = x,

f ′′yy = 2, f ′′zz = 2

The Hessian matrix at a is

Ha =





2 0 0
0 2 0
0 0 2



 .

Since the leading principal minors are positive, therefore there is a
minimum at the origin.

The Hessian matrix at b is

Hb =





2 −2 −2
−2 2 −2
−2 −2 2



 .
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The quadratic form is indefinite because it has a negative (−2) and a
positive (4) eigenvalue as well. Therefore there is no extremum at the
point q = (−2,−2,−2). We can prove this in the way that we show that
f has greater and smaller values than f(−2,−2,−2) = 4 arbitrary close
to the point q . Because the function g(x) = f(x, x, x) = x3 + 3x2 has
strict local maximum at −2, and the function h(x) = f(x,−2,−2) =
x2 + 4x+ 8 has strict local minimum at −2.

At last there is no extremum, for example, at the point c 1 because the
function

g(x) = f(x,−x,−x) = x3 + 3x2

has strict local maximum at −2, and the function

h(x) = f(x, 2, 2) = x2 + 4x+ 8

has a local minimum at −2.

8.195. According to the Lagrange multiplier method, we find the critical points
of

L(x, y) = 30− x2

100
− y2

100
+ λ(4x2 + 9y2 − 36)

with the constraint 4x2 + 9y2 = 36.

L′
x(x.y) = − x

50
+ 8λx =

(

8λ− 1

50

)

x = 0

L′
y(x.y) = − y

50
+ 18λy =

(

18λ− 1

50

)

y = 0

4x2 + 9y2 = 36

The solutions of the 3-variable system of equations:

x1 = 0, y1 = 2, λ1 =
1

18 · 50

x2 = 3, y2 = 0, λ2 =
1

8 · 50
Since the points satisfying the constraint are the points of a compact set
(closed circle line), therefore here F is a maximum and a minimum as
well. Since the closed circle line is a closed curve, therefore the extrema
are at the two points above, and they are local extrema.

F (0, 2) = 30− 4

100
, F (3, 0) = 30− 9

100
, F (0, 2) > f(3, 0)

Therefore the maximal height point of the path is above the point (0, 2),
and the minimal height point of the path is above the point (3, 0).
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8.200. Since f(x, y, z) is odd in its every variable, so the values of the mini-
mums are the negatives of the maximum values. Therefore it is enough
to find the maximum of xyz with the constraint

x > 0, y > 0, z > 0, x2 + y2 + z2 = 3.

Using the inequality between the geometric and quadratic means

xyz ≤
(
√

x2 + y2 + z2

3

)3

= 1

and there is equality if and only if x = y = z. But in this case x = y =
z = 1.

8.206. If the volume of the brick is V , then find the minimum of the function

F (x, y, z) = 2(xy + xz + yz)

with the constraint

xyz = V, x > 0, y > 0, z > 0.

It is at the same point, where the function f(x, y, z) = xy+xz+yz has
a minimum. We find with the Lagrange multiplier method the critical
points of the function

L(x, y, z) = xy + xz + yz + λ(xyz − V )

L′
x(x, y, z) = y + z + λyz = 0

L′
y(x, y, z) = x+ z + λxz = 0

L′
z(x, y, z) = x+ y + λxy = 0

Dividing the first equation by yz, the second one by xz, and the third
one by xy, we get that

1

z
+

1

y
=

1

z
+

1

x
=

1

y
+

1

x
= −λ,

hence x = y = z =
3
√
V .
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Multivariable Riemann-integral

9.1 Jordan Measure

9.1. H = {(x, y) : 0 ≤ x < 1, 0 < y ≤ 1}, t(h) = 1.

9.2.

H = {(x, y) : x ∈ Q, y ∈ Q, 0 ≤ x ≤ 1, 0 ≤ x ≤ 1},
intH = ∅, H = N = [0, 1]× [0, 1].

According to theorem 9.1 b(H) = 0 6= 1 = k(H), so H is not measur-
able.

9.8. See problem 9.2.

9.12. H = {(x, y, z) : x ∈ Q, y ∈ Q, z ∈ Q, 0 ≤ x ≤ 1, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1}
Similarly to problem 9.2. b(H) = 0, k(H) = 1.

9.18. No, see the problem 9.2.

9.24. For all n ∈ N+ the contour Kn =

{

p ∈ R2 : |p | = 1

n

}

is a null set. We

show that the set H =
∞
⋃

n=1

Kn is measurable, and it is a null set, too.

It is enough to show that the outer measure of H is zero. Let ε > 0
be arbitrary, and for r > 0 let Gr =

{

p ∈ R2 : |p | < r
}

an open circle
with origin the center and radius r,

Hr = Gr ∪
⋃

{

Kn : r ≤ 1

n

}

.

In this case Hr is the union of finitely many measurable disjoint sets,
therefore it is measurable. Since for all r > 0 H ⊂ Hr, therefore

k(H) ≤ k (Hr) = t (Hr) = t (Gr) = πr2 < ε

if r is small enough.

9.30. We can use that every (non-degenerate) brick contains a sphere, and
every sphere contains a (non-degenerate) brick. Let A ⊂ Rn be an
arbitrary bounded set.



9. Multivariable Riemann-integral – Solutions 301

b(A) = 0 if and only if A does not contain a brick,

if and only if A does not contain a sphere,

if and only if int(A) = ∅.

9.2 Multivariable Riemann integral

9.34.

f(x, y) =

{

|x| if y ∈ Q

0 if y /∈ Q

g(y) =

1
∫

−1

f(x, y) dx = 0,

1
∫

0





1
∫

−1

f(x, y) dx



 dy =

1
∫

0

g(y) dy = 0.

Let’s decompose the set H into two parts:

H1 = {(x, y) ∈ H : x ≤ 0} and H2 = {(x, y) ∈ H : x ≥ 0} .

In this case every upper sum is zero on H1, and every upper sum is at
least 1/2 on H2, so

∫

H

f ≥
∫

H1

f +

∫

H2

f ≥ 1

2
.

Since every lower sum is zero on H, therefore the Darboux integrals are
not equal,

∫

H

f = 0 <
1

2
≤
∫

H

f,

therefore f is not integrable on H.

9.40. Let A =

{

(x, y) ∈ N : x ≥ 1

2

}

, B = N \ A =

{

(x, y) ∈ N : x <
1

2

}

.

Both sets are measurable (rectangles) and on them the function

f(x, y) =

{

1 if x ≥ 1/2

2 if x < 1/2

is constant. Therefore f is integrable on N and

∫∫

N

f(x, y) dx dy =

∫∫

A

1 dx dy +

∫∫

B

2 dx dy =
1

2
+ 1 =

3

2
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9.46.

∫∫

N

sin(x+ y) dx dy =

1
∫

0





1
∫

0

sin(x+ y) dx



 dy =

=

1
∫

0

[− cos(x+ y)]
1
x=0 dy =

=

1
∫

0

(cos y − cos(1 + y)) dy =

= [sin y − sin(1 + y)]
1
0 = 2 sin 1− sin 2

9.52.

∫∫

N

ex+2y dx dy =





1
∫

0

ex dx



 ·





1
∫

0

e2y dy



 = (e− 1)
e2 − 1

2

9.58.

∫∫

T

(x+ y) dxdy =

3
∫

1





1
∫

0

(x+ y) dx



 dy =

3
∫

1

[

x2

2
+ xy

]1

x=0

dy =

=

3
∫

1

(

1

2
+ y

)

dy =

[

y

2
+
y2

2

]3

y=1

= 5

9.60.

∫∫

T

ex+y dxdy =





1
∫

0

ex dx



 ·





1
∫

0

ey dy



 =





1
∫

0

ex dx





2

=
(

[ex]
1
0

)2

= (e− 1)
2
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9.69. Apply the integral transform formula for the circles:

∫∫

T

xy dxdy =

2
∫

0





2π
∫

0

r(r cosϕ+ 1)(r sinϕ− 1)dϕ



 dr =

=

2
∫

0





2π
∫

0

(

r3 sin(2ϕ)

2
+ r2(sinϕ− cosϕ)− r

)

dϕ



 dr =

=





2
∫

0

r

2

3
dr









2π
∫

0

sin(2ϕ) dϕ



+





2
∫

0

r2 dr









2π
∫

0

(sinϕ− cosϕ) dϕ





−





2
∫

0

r dr









2π
∫

0

1 dϕ



 =

= −





2
∫

0

r dr









2π
∫

0

1 dϕ



 = −4π

We used that the primitive functions of sin(2ϕ) and (sinϕ− cosϕ) are
periodic with 2π, so their altering on the interval [0, 2π] is 0.

9.74.

∫∫∫

T

(x+ y + z) dx dy dz =

3
∫

0





2
∫

0





1
∫

0

(x+ y + z) dx



 dy



 dz =

=

3
∫

0





2
∫

0

[

x2

2
+ xy + xz

]1

x=0

dy



 dz =

3
∫

0





2
∫

0

(

1

2
+ y + z

)

dy



 dz =

=

3
∫

0

[

y

2
+
y2

2
+ yz

]2

y=0

dz =

3
∫

0

(3 + 2z) dz =
[

3z + z2
]3

0
= 18
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9.82. Let’s denote by H the two-dimensional
shapes bounded by the curves y =
x2, y = 2x2, xy = 1, xy = 2. Look
at the transform

Ψ : R2 → R2, Ψ(u, v) = (x(u, v), y(u, v)) ,

which is defined by the system of equa-
tions

y = ux2, xy = v,

that is,

x = u−1/3v1/3, y = u1/3v2/3.

 

 

The H two-dimensional
shape

This Ψ transform satisfies the conditions of the integral transform the-
orem. The set H is the transform of the square T = [1, 2] × [1, 2],
H = Ψ(T ). Calculate the Jacobian determinant of Ψ.

Ψ′(u, v) =

(

− 1
3u

−4/3v1/3 1
3u

−1/3v−2/3

1
3u

−2/3v2/3 2
3u

1/3v−1/3

)

, J = − 1

3u
, |J | = 1

3u

t(H) =

∫∫

H

dx dy =

∫∫

T

1

3u
du dv =

1

3





2
∫

1

1

u
du









2
∫

1

dv



 =
ln 2

3

9.88. f(x, y) = 1− x2

2
− y2

2
, H = [0, 1]× [0, 1],

N = {(x, y, z) : (x, y) ∈ H, 0 ≤ z ≤ f(x, y)}
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t(N) =

∫∫∫

N

dx dy dz =

=

∫∫

H







f(x,y)
∫

0

dz






dx dy =

=

∫∫

H

(

1− x2

2
− y2

2

)

dx dy =

=

1
∫

0





1
∫

0

(

1− x2

2
− y2

2

)

dx



 dy =

=

1
∫

0

(

5

6
− y2

2

)

dy =
1

3

solid body below

1 − x2

2
− y2

2

9.94. H =
{

(x, y, z) : x2 + y2 ≤ 1, 0 ≤ z ≤ 1− x2 − y2
}

.

t(H) =

∫∫∫

H

dx dy dz =

=

∫∫

x1+y2≤1







1−x2−y2
∫

0

dz






dx dy =

=

∫∫

x1+y2≤1

(

1− x2 − y2
)

dx dy =

=

1
∫

0





2π
∫

0

r(1− r2) dϕ



 dr =

= 2π

[

r2

2
− r3

3

]1

0

=
π

3

solid body below
1 − x2 − y2
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9.100. ̺(x, y) = x2, H = [0, 1]× [0, 1]

M =

∫∫

H

̺(x, y) dx dy =

1
∫

0





1
∫

0

x2 dx



 dy =
1

3

Sx = 3

1
∫

0





1
∫

0

x3 dx



 dy =
3

4
, Sy = 3

1
∫

0





1
∫

0

x2y dx



 dy =
1

2

9.106. The H shape bounded by the lines y = 0, x = 2, y = 1, y = x, is a
trapezoid, which is bounded by two continuous functions with variable
y.

H = {(x, y) : 0 ≤ y ≤ 1, y ≤ x ≤ 2}
If ̺(x, y) = y, then

M =

∫∫

H

y dx dy =

1
∫

0





2
∫

y

y dx



 dy =

1
∫

0

y(2− y) dy =
2

3

Sx =
3

2

∫∫

H

xy dx dy =
3

2

1
∫

0





2
∫

y

xy dx



 dy =

=

1
∫

0

y

(

(2− y2

2

)

dy =
3

2
· 7
8
=

21

16

Sy =
3

2

∫∫

H

y2 dx dy =
3

2

1
∫

0





2
∫

y

y2 dx



 dy =

=

1
∫

0

y2 (2− y) dy =
3

2

(

2

3
− 1

4

)

=
5

8
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Line Integral and Primitive Function

10.1 Planar and Spatial Curves

10.1.

 

 

r = t · i + t2 · j
t ∈ [0, 4]

10.7.

 

 

r = cos t · i + sin t · j
t ∈ [0, 2π]
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10.13.

 

 

r = t cos t · i + sin t · j
t ∈ [0, 6π]

10.19.

r = 2 sin t · i − t2 · j +cos t ·k
t ∈ [2, 6π]

10.25. The planar curve x2 − xy3 + y5 = 17 around the point P (5, 2) defines
an implicit y(x) function. We should find the equation of the tangent
line of that function at the point P . By deriving the implicit equation
we get the slope of the tangent line:

2x− y3 − 3xy2y′ + 5y4y′ = 0, y′ =
y3 − 2x

5y4 − 3xy2
=

8− 10

80− 60
= − 1

10
.

Therefore, the equation of the tangent line at the point P (5, 2) is

y = − 1

10
(x− 5) + 2, or in normal form x+ 10y = 25.

10.27. Calculate the direction vector v of the tangent line, that is, the deriva-
tive of the curve if the value of the parameter is t = 2:
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r (t) = (t− 3)i + (t2 + 1)j + t2k

ṙ (t) = i + 2tj + 2tk

The direction vector: v = ṙ (2) = i + 4j + 4k

The point of tangency: r 0 = r (2) = −i + 5j + 4k

The tangent line with the direction vector:

r 0 + v t = (t− 1)i + (4t+ 5)j + (4t+ 4)k

10.29. According to formulas 10.2 the arc length of a cykloid

L =

2π
∫

0

√

ẋ2 + ẏ2 dt =

2π
∫

0

√

r2(1− cos t)2 + r2 sin2 t dt =

= r

2π
∫

0

√
2− 2 cos t dt = r

2π
∫

0

√

4 sin2
t

2
dt =

= 2r

2π
∫

0

sin
t

2
dt = 4r

[

− cos
t

2

]2π

0

= 8r.

10.2 Scalar and Vector Fields, Differential Operators

10.35. For example,

f(x, y) = cos(2πx) · i + sin(2πx) · j ,

(x, y) ∈ H = {(x, y) : 0 < x ≤ 1, y = 0}.

In this case Rf = K = {(x, y) : x2 + y2 = 1}.

10.39. f(x, y) = x4−6x2y2+y4, grad f =
∂

∂x
f · i + ∂

∂y
f · j = (4x3−12xy2) ·

i + (4y3 − 12x2y) · j

10.43. f(x, y, z) = x+ xy2 + x2z3, p = (2,−1, 1)

grad f(x, y, z) = (1 + y2 + 2xz3) · i + 2xy · j + 3x2z2 · k

grad f(2,−1, 1) = 6i − 4j + 12k
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10.47.

gradU(r ) = ∇U(r ) = ∇
(

r 2 +
1

r 2

)

= 2

(

1− 1

r 4

)

r

10.50. The tangent plane of the graph of the function z = f(x, y) = x2 + y2

over the point
x = 1, y = 2 is

z = f(x0, y0)+f
′
x(x0, y0)(x−x0)+f ′y(x0, y0)(y−y0) = 5+2(x−1)+4(y−2).

10.51.

r = u cos v · i + u sin v · j + u · k , A = [0, 1]× [0, π]

r ′
u = cos v · i + sin v · j + k , r ′

v = −u sin v · i + u cos v · j

r ′
u × r ′

v =

∣

∣

∣

∣

∣

∣

i j k
cos v sin v 1

−u sin v u cos v 0

∣

∣

∣

∣

∣

∣

= −u cos v · i − u sin v · j + u · k

|r ′
u × r ′

v| =
√

u2 cos2 v + u2 sin2 v + u2 = u
√
2

According to the theorem of calculating the area of surface

S =

∫∫

A

|r ′
u × r ′

v| du dv =
√
2

π
∫

0





1
∫

0

u du



 dv =

√
2

2
π.

10.3 Line Integral

10.55. According to the theorem about calculating the line integral

∫

Γ

(x+ y) dx+ (x− y) dy =

=

π
∫

0

[(cos t+ sin t)(− sin t) + (cos t− sin t) cos t] dt =

=

π
∫

0

(cos 2t− sin 2t) dt =

[

sin 2t

2
+

cos 2t

2

]π

0

= 0.
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Remark:

Since U(x, y) =
x2

2
+ xy− y2

2
is a primitive function of the vector field

v = (x + y) · i + (x − y) · j , therefore the integral of the conservative
force field is an alteration of the primitive function:

∫

Γ

v dr = U(−1, 0)− U(1, 0) = 0.

10.61. Parameterizing the curves Γ1 x = t, y = t and Γ2 x = t, y = t2, where
0 ≤ t ≤ 1. The integrals of the vector field v = y · i + x · j is

∫

Γ1

y dx+ x dy =

1
∫

0

2t dt = 1,

∫

Γ2

y dx+ x dy =

1
∫

0

3t2 dt = 1.

Remark:

The vector field v = y ·i+x·j is conservative, and its primitive function
is U(x, y) = xy.

10.67. The line integral does not exist because v is not defined at the origin,
but the curve Γ goes through the origin.

10.70.

∫

Γ

(x+ y) dx+ (y + z) dy + (z + x) dz =

=

π
∫

0

[(cos t+ sin t)(− sin t) + (sin t+ t) cos t+ (t+ cos t)] dt =

=

π
∫

0

(− sin2 t+ t cos t+ t+ cos t) dt =

=

[

− t

2
+

sin 2t

4
+ t sin t+ cos t+

t2

2
+ sin t

]π

0

=

= −π
2
+ 0 + 0− 2 +

π2

2
+ 0 =

π2

2
− π

2
− 2.
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10.77. The parametric form of the curve Γ is:

r (t) = t · i + t2 · j , −1 ≤ t ≤ 1

that is,

x = t, y = t2, dx = ẋ(t) = 1, dy = ẏ(t) = 2t, −1 ≤ t ≤ 1.

According to the formula of the calculation of the line integral
∫

Γ

(x2 − 2xy) dx+ (y2 − 2xy) dy =

=

1
∫

−1

[

(t2 − 2t3) · 1 + (t4 − 2t3) · 2t
]

dt =

=

1
∫

−1

(t2 − 2t3 − 4t4 + 2t5) dt =

=

[

t3

3
− 2t4

4
− 4t5

5
+

2t6

6

]1

t=−1

=
2

3
− 8

5
= −14

15

10.78. Parameterizing the ellipse:

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

In this case we replace dx and dy by

dx = a sin t, dy = b cos t.

Therefore, we got a one-variable Riemann integral:
∮

Γ

(x+ y) dx+ (x− y) dy =

=

2π
∫

0

[−a(a cos t+ b sin t) sin t+ b(a cos t− b sin t) cos t] dt =

=

2π
∫

0

(−ab sin2 t+ ab cos2 t− a2 sin t cos t− b2 sin t cos t) dt =

=

2π
∫

0

(ab cos 2t− a2 + b2

2
sin 2t) dt = 0.
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Remark:

It is easy to prove that U(x, y) =
x2

2
+ xy − y2

2
is a primitive function

of the integrand, therefore the integral on the closed curve is 0.

10.84. Yes, the primitive functions of the vector field v = (x+y) · i +(x−y) ·j
are

U(x, y) =
x2

2
+ xy − y2

2
+ C.

10.90. There is no primitive function, since

∂

∂y
(cosxy) = −x sinxy 6= ∂

∂x
(sinxy) = y cosxy.

10.95. For the vector field v =
y

x2 + y2
· i − x

x2 + y2
· j it is true that

∂

∂y

(

y

x2 + y2

)

=
x2 − y2

(x2 + y2)
2 ,

∂

∂x

(

− x

x2 + y2

)

=
x2 − y2

(x2 + y2)
2 .

But there is no primitive function because if Γ : x = cos t, y = sin t, 0 ≤
t ≤ 2π is the unit circle, then

∮

Γ

y

x2 + y2
dx− x

x2 + y2
dy =

2π
∫

0

(− sin2 t− cos2 t) dt = −2π 6= 0.

The reason is that v is not defined at the origin, but the curve Γ goes
around the origin.

10.101. The force field E = (y + x) · i + x · j is conservative, its primitive
function:

U(x, y) =
x2

2
+ xy, the potential Φ(x, y) = −U(x, y) = −x

2

2
− xy.

10.107. Since it is not defined at the origin, therefore it has no potential function
on the whole plane. But it has potential function on the punctured
plane R2 \ {0 }:

Φ(x, y) =
1

(x2 + y2)1/2
.
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10.108. The curl of the vector field v = yz · i + xz · j + xy · k is zero at all
points of the space,

∂

∂y
(yz) =

∂

∂x
(xz) = z,

∂

∂z
(yz) =

∂

∂x
(xy) = y,

∂

∂z
(xz) =

∂

∂y
(xy) = x,

therefore it has a primitive function, U(x, y, z). Because U ′
x = yz, so

U(x, y, z) =

∫

yz dx = xyz + f(y, z).

U ′
y =

∂

∂y
(xyz + f(y, z)) = xz + f ′y(y, z) = xz.

Hence f ′y(y, z) = 0, that is, f(y, z) is independent of y, f(y, z) = g(z).

U ′
z =

∂

∂z
(xyz + g(z)) = xy + g′(z) = xy,

so g′(z) = 0, that is, the function g is constant. Therefore, U(x, y, z) =
xyz + C, where C can be an arbitrary constant.

Although it is easy to find the primitive functions of xyz without any
calculations.

10.113. The vector field v = 3xy3z4 ·i +3x2y2z4 ·j +x2y3z3 ·k has no primitive
function because for example,

∂

∂y
(3xy3z4) = 9xy2z4 6= ∂

∂x
(3x2y2z4) = 6xy2z4.

10.118. Let’s find a two-variable function z(x, y) such that

z′x(x, y) = p(x, y) = x2+2xy− y2, z′y(x, y) = q(x, y) = x2− 2xy− y2,

z(x, y) =

∫

p(x, y) dx =

∫

(x2 +2xy− y2) dx =
x3

3
+ x2y− xy2 + g(y).

Here g(y) is a not known (differentiable) function of y. The function
z(x, y) satisfies the equation

z′y(x, y) = x2 − 2xy + g′(y) = q(x, y) = x2 − 2xy − y2.
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From this

g′(y) = −y2, therefore g(y) = −y
3

3
+ C.

Therefore, all primitive functions:

z(x, y) =
x3

3
+ x2y − xy2 − y3

3
+ C.

10.123.

u′x(x, y, z) =
x+ y

x2 + y2 + z2 + 2xy
,

u(x, y, z) =

∫

x+ y

x2 + y2 + z2 + 2xy
dx =

1

2
ln
∣

∣x2 + y2 + z2 + 2xy
∣

∣+ f(y, z)

u′y(x, y, z) =
x+ y

x2 + y2 + z2 + 2xy
+ f ′y(y, z) =

x+ y

x2 + y2 + z2 + 2xy
,

therefore f(y, z) = g(z).

u′z(x, y, z) =
z

x2 + y2 + z2 + 2xy
+ g′(z) =

z

x2 + y2 + z2 + 2xy
,

therefore g′(z) = 0, and g is constant.

u(x, y, z) =
1

2
ln
∣

∣x2 + y2 + z2 + 2xy
∣

∣+ C

are all of the primitive functions.
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Complex Functions

11.3. z2 = (x2 − y2) + 2xyi, therefore ux = vy = 2x and vx = −uy = 2y.

11.6.

1

z2 + 1
=

1

x2 − y2 + 1 + 2xyi
=

x2 − y2 + 1− 2xyi

(x2 − y2 + 1)2 + 4x2y2
=

=
x2 − y2 + 1− 2xyi

(x2 − y2 + 1)2 + 4x2y2
.

u(x, y) =
x2 − y2 + 1

(x2 − y2 + 1)2 + 4x2y2
, v(x, y) = − 2xy

(x2 − y2 + 1)2 + 4x2y2

After calculating the partial derivatives, we can see that Cauchy-Riemann’s
differential equations are fulfilled, if z2 + 1 6= 0.

11.7.

Re f(z) = u(x, y) =
√

|xy|, Im f(z) = v(x, y) = 0

Therefore u(x.0) = 0 = v(0, y) and u(0, y) = 0 = v(x, 0), we have
u′x(0, 0) = 0 = v′y(0, 0) and u′y(0, 0) = 0 = v′x(0, 0), so ux(0, 0) =
uy(0, 0) = 0, therefore Cauchy-Riemann’s differential equations are ful-
filled at z = 0. But at the line x = y f(z) = (|x|)2, therefore f(z) is
not differentiable at z = 0.

11.8.

u(x, y) = 2x2 + 3y2 + xy + 2x, v(x, y) = 4xy + 5y.

According to Cauchy-Riemann’ differential equations

4x+ y + 2 = 4x+ 5, and 6y + x = −4y

at all points, where f is differentiable. The system of equations is ful-
filled only at x = −30, y = 3, therefore the function is not differentiable
at any other points.

11.9.

∂

∂x
(xy) = y,

∂

∂y
(y) = 1,

∂

∂y
(xy) = x,

∂

∂x
(y) = 0

Therefore Cauchy-Riemann’ differential equations are fulfilled only at
the point z = i.
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11.10. Cauchy-Riemann’s differential equations:

∂u

∂x
= 4x = 2y =

∂v

∂y

if and only if y = 2x, and

∂u

∂y
= −1 = −2x = −∂v

∂x

if and only if x =
1

2
. Therefore, the function is differentiable only at

the point
1

2
+ i.

11.11. From Cauchy-Riemann’s differential equations

v′y(x, y) = u′x(x, y) = 2x+y, v(x, y) =

∫

(2x+y) dy = 2xy+
y2

2
+g(x)

v′x(x, y) = 2y + g′(x) = −u′y(x, y) = 2y − x,

g′(x) = −x, g(x) = −x
2

2
+ C

f(z) = (x2 − y2 + xy) + i

(

2xy − x2

2
+
y2

2
+ C

)

.

Since f(0) = 0, therefore C = 0

f(z) = (x2 − y2 + xy) + i

(

2xy − x2

2
+
y2

2

)

.

11.13. R = 1

11.14. R =
1

2

11.15. lim
n→∞

n
√
n2 = 1, so R = 1

11.20. Applying the root test:

lim
n→∞

n

√

√

√

√

∣

∣

∣

∣

∣

(

in

n+ 1

)n2
∣

∣

∣

∣

∣

= lim
n→∞

(

1 +
1

n

)−n
=

1

e
, so R = e.



11. Complex Functions – Solutions 318

11.21.
∞
∑

n=1

zn =
z

1− z
, R = 1

11.22. Applying the root test: lim
n→∞

n
√

|in| = 1, therefore R = 1.

∞
∑

n=0

inzn =
∞
∑

n=0

(iz)
n
=

1

1− iz

11.23.
∞
∑

n=0

(n+ 1)zn =

(

1

1− z

)′
=

1

(1− z)2
, R = 1

11.24.
∞
∑

n=0

(n+ 2)(n+ 1)zn =

(

1

1− z

)′′
=

1

(1− z)2
, R = 1

11.29. Apply the formula: ex+iy = ex · eiy = ex · (cos y + i sin y).

11.31.
∫

Γ

f(x+ iy) dz = iπ 11.32.
∫

Γ

f(x+ iy) dz = −π

11.33.
∫

Γ

f(x+ iy) dz = 2iπ 11.34.
∫

Γ

f(x+ iy) dz = 0

11.35. Parameterizing the curve: z(t) = eit, t ∈ [0, 2π]. In this case
dz

dt
= ieit.

So
∫

Γ

1

z
dz =

2π
∫

0

ieit

eit
dt = i

2π
∫

0

dt = 2πi.

11.36.

∫

Γ

1

z2
dz =

2π
∫

0

ieit

e2it
dt =

2π
∫

0

ie−it dt =
[

−e−it
]2π

0
= −1− (−1) = 0

11.37.

3π/2
∫

π

∣

∣e−it
∣

∣ (−i)e−it dt = −i+ 1

11.38.

0
∫

−1

|t| dt+
1
∫

0

|it| dt = 0
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11.39.

(3.2)
∫

(1,1)

(x2 − y2) dx− 2xy dy =

[

x3

3
− xy2

](3,2)

(1,1)

= −7

3

11.40.

3+2i
∫

1+i

(x2−y2) dx−2xy dy = Re

3+2i
∫

1+i

z2 dz = Re

(

(3 + 2i)3

3
− (1 + i)3

3

)

=

−7

3

11.41.

∫

Γ

3z2 dz =
[

z3
]1+i

1
= −3 + 2i

11.42.

1+i
∫

1

1

z
dz = [Log z]

1+i
1 =

1

2
ln 2 + i

π

4

11.43.

1+i
∫

1

ez dz = [ez]
1+i
1

11.44.

1+i
∫

1

zez
2

dz =

[

ez
2

2

]1+i

1

11.65. Apply the residue theorem:

∮

|z|=4

f(z) dz = 2π · i · Res
(

ez cos z

z − π
, π

)

=

2π · i · eπ cosπ.

11.67.

∫

Γ

z2 dz =

[

z3

3

]1+i

0

=
(1 + i)3

3

11.68.

1+i
∫

0

ez dz = [ez]
1+i
0 = e1+i − 1

11.73. Let g(z) = 10 − 6z, f(z) = z6 − 6z + 10. If z is an arbitrary point of
the unit circle line, that is |z| = 1, then

|f(z)− g(z)| =
∣

∣z6
∣

∣ = 1, |g(z)| = |10− 6z| ≥ 10− 6 = 4,

the conditions of Rouché’s theorem are fulfilled. Since the function
g(z) = 10 − 6z has no root on the unit circle, therefore the function
(z) = z6 − 6z + 10 has no root either.
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11.75. The integral

∞
∫

−∞

1

(x2 + 1)
2 dx is convergent, therefore

∞
∫

−∞

1

(x2 + 1)
2 dx = lim

R→∞

R
∫

−R

1

(x2 + 1)
2 dx.

Let ΓR = ΦR + ΨR be a closed curve such that ΦR is the segment
[−R,R] of the real axis, and ΨR is such the part of the circle with
radius R and center origin which lies in the upper halfplane. If f(z) =

1

(z2 + 1)2
, then according to the residue theorem

∮

ΓR

f(z) dz =

∮

ΓR

dz

(z2 + 1)2
= 2πiRes(f, i) =

∮

|z−i|=1

dz

(z2 + 1)2
=

=

∮

|z−i|=1

1

(z + i)2
· dz

(z − i)2
= 2πi · g′(i) = −4πi

1

(2i)3
=
π

2
.

Here we applied Cauchy’s integral formula for the function g(z) =
1

(z + i)2
, which is regular at i.

On the upper half circle |f(z)| < 1

R2
if R is large enough, therefore

lim
R→∞

∫

ΨR

1

(z2 + 1)2
dz = 0

π

2
= lim
R→∞

∫

ΓR

dz

(z2 + 1)2
= lim
R→∞

∫

ΦR

dz

(z2 + 1)2
+ lim
R→∞

∫

ΨR

dz

(z2 + 1)2
=

=

∞
∫

−∞

1

(x2 + 1)
2 dx.
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