Doktori értekezés

László Péter

Budapest, 2015
Jégárak geomorfológiai-glaciológiai rekonstrukciója térinformatikai és terepi módszerekkel a Radnai-havasok területén

László Péter

Témavezető:
Dr. Nagy Balázs Ph.D., egyetemi docens

Doktori Iskola:
Eötvös Loránd Tudományegyetem, Természettudományi Kar
Földtudományi Doktori Iskola
Vezetője: Dr. Nemes-Nagy József D.Sc., egyetemi tanár

Doktori Program:
Földrajz-Meteorológia Doktori Program
Vezetője: Dr. Szabó Mária D.Sc., egyetemi tanár

Kutatóhely:
Eötvös Loránd Tudományegyetem, Budapest – Természettudományi Kar, Földrajz- és Földtudományi Intézet, Természettőlgyi Tanszék
Leopold-Franzens-Universität, Innsbruck – Institut für Geologie

2015
1. BEVEZETÉS.. 1
 1.1. TÉMAVÁLASZTÁS ÉS CÉLKITŰZÉSEK .. 1
 1.2. KUTATÁSI HELYSZÍN, MINTATERÜLETEK ... 3
 1.3. KLÍMA- ÉS GLECCSERINGADOZÁSOK ÁTTEKINTÉSE .. 6
 1.3.1. Eljegesedések csillagászati okai .. 6
 1.3.2. Negyedidőszaki gleccseringadozások ... 7
 1.3.3. Kisjégkorszak... 12
 2. KUTATÁSI ELŐZMÉNYEK.. 15
 2.1. HŐSKOR (1945-től) ... 15
 2.2. AZ ELMÚLT 70 ÉV KUTATÁSAI .. 17
 3. GEOMORFOLÓGIAI, GLACIOLÓGIAI MÓDSZEREK ÉS ESZKÖZÖK.. 20
 3.1. TEREPI GEOMORFOLÓGIAI VIZSGÁLATOK – GEOMORFOLÓGIAI TÉRKÉPEZÉS. 20
 3.2. GLACIO-GEOMORFOLÓGIAI JELLEMZŐK ... 22
 3.2.1. Gleccser fogalma, firnesedés... 22
 3.2.2. Gleccserek típusai.. 23
 3.2.2.1. Termális osztályozás ... 23
 3.2.2.2. Morfológiai osztályozás.. 25
 3.2.3. Gleccserek mozgása ... 27
 3.2.3.1. Plasztikus folyás ... 28
 3.2.3.2. Regeláció .. 28
 3.2.3.3. Talpi csúszás .. 28
 3.2.3.4. Lezúdulás (surge) ... 29
 3.2.4. Gleccserek eróziója ... 29
 3.2.5. Gleccserek tömegháztartása, egyensúlyi vonal, hóhatár ... 30
 3.2.6. Paleo-egysüllyi vonal meghatározási módszerek.. 32
 3.2.6.1. Maximum Elevation of Lateral Moraines (MELM) – az oldal morénák maximális magassága 32
 3.2.6.2. Toe-to-Headwall Altitude Ratio (THAR) – magassági arány a gleccsernyelv és a homlokfal között 32
 3.2.6.3. TSAM (Toe-to-Summit Altitude Method) - magassági arány a gleccsernyelv és a csúcs között 32
 3.2.6.4. Accumulation-area Ratio (AAR) – akkumulációs terület arányszám 33
 3.2.6.5. Balance Ratio (BR) .. 34
 3.2.6.6. Size specific Accumulation-area Ratio (ssAAR) – méret specifikus akkumulációs arányszám 34
 3.2.7. Jégvastagság- és térerózsielés.. 35
 3.3. PALEOGLECCSER-FELSZÍNREKONSTRUKCIÓS ELJÁRÁSOK .. 35
 3.3.1. Kézi rekonstrukció .. 37
 3.3.2. Numerikus modellezésen alapuló rekonstrukció .. 38
 3.3.2.1. Kétdimenziós sodorvonallal.. 39
 3.3.2.2. Kétdimenziós sodorvonallal és keresztszelvényekkel .. 42
3.3.2.3. Kétdimenziós sodorvononalak, keresztszelvényekkel és változtatható folyáshatárokkal ..44
3.3.2.4. Háromdimenziós numerikus modellezés ...45
3.4. KORMEGHATÁROZÁSI MÓDSZEREK ...47
3.4.1. Lichenometria ...47
3.4.2. Dendrokronológia ..48
3.4.3. Talaj fejlettségi index ..49
3.4.4. Kitettségi kormeghatározás ..49
4. TÉRINFORMATIKAI MÓDSZEREK ÉS ESZKÖZÖK ..50
4.1. TÉRINFORMATIKAI SZOFTVERKÖRNYEZET ..50
4.2. TÉRINFORMATIKAI ADATOK ÉS FELDOLGOZÓ KÖRNYEZET ..51
4.2.1. Adatok típusai, adatforrások ..51
4.2.2. Téradatbázis ArcGIS alatt ..55
5. ADATOK FELDOLGOZÁSA ÉS INTEGRÁLÁSA TÉRINFORMATIKAI KÖRNYEZETBEN62
5.1. ADATFORRÁSOK ...62
5.1.1. Offline adatforrások ..62
5.1.2. Online ..63
5.2. ADATOK FELDOLGOZÁSA TÉRINFORMATIKAI KÖRNYEZETBEN ...63
5.2.1. Digitális domborzatmodell (DDM) előállítása ...63
5.2.2. Terepi adatgyűjtés ..67
5.2.3. Paleogleccser-felszínrekonstrukció ..69
5.2.3.1. Manuális rekonstrukció ...69
5.2.3.2. Numerikus módszeren alapuló két- és háromdimenziós rekonstrukció ...73
5.2.3.2.1. Két- és háromdimenziós sodorvononal módszer ...81
5.2.3.2.2. Két- és háromdimenziós sodorvononal módszer keresztszelvényekkel ..82
5.2.3.2.3. Két- és háromdimenziós sodorvononal módszer eredeti kérő és változható folyáshatárokkel82
5.2.3.3. Numerikus módszeren alapuló háromdimenziós rekonstrukció ...82
5.2.3.4. Paleogleccser-felszínrekonstrukciók verifikációs eljárása ..88
5.2.4. Egyensúlyi vonal (ELA) meghatározása ..89
5.2.5. Glacser térforrás és jégvastagság számítása ..92
6. EREDMÉNYEK – TÉRINFORMATIKÁVAL TÁMOGATOTT GLACIÁLIS KÖRNYEZETREKONSTRUKCIÓ93
6.1. GEOMORFOLÓGIAI TÉRKEPEZÉS ..93
6.1.1. Zănoaga Mare-völgy ..94
6.1.2. Zănoaga lezerului-völgy ..94
6.1.3. Buhăescu-völgy ..95
6.2. GLECCSER REKONSTRUKCIÓS EREDMÉNYEK – MORFOLÓGIAI, GLACIO-DINAMIKAI ALAPOKON ..97
6.2.1. Glacser kiterjedések – morfológiával, glacio-dinamikai alapon ...101
6.2.2. Manuális és numerikus modellezésen alapuló rekonstrukció ..101
6.3. GLECCSER PARAMÉTEREK: PALEO-HÓHATÁR MAGASSÁG, TÉRFOGAT, JÉGVASTAGSÁG ...117
1. Bevezetés

1.1. Témaválasztás és célkitűzések

A földi éghajlat és környezet sajátossága, a folyamatos változás (Goudie, 2004). Ahhoz, hogy a maga komplexitásában megértsük ezt a mindannyiunkat érintő globális folyamatot, olyan célzott alap kutatásokat kell végeznünk, amelyek bemenő információi ennek a rendkívül bonyolult, változó és komplex rendszernek. Megannyi terület szolgálhat információforrással, amelyek közül minden képpen a legjobbak, a legreprezentatívabbak kiválasztása a kutatók és a tudomány felelőssége. Vizsgálatom során végig szem előtt tartottam, hogy annak tárgya minden képpen olyan legyen, amivel az adott kérdésekre a legjobb válaszokat kaphatom. Számos vizsgálatnak azonban nincsen éles határa, hanem átfed, olykor összemosódik egyéb kutatásokkal. Különösen igaz ez az olyan összetett kérdések esetében, mint a globális klímaváltozás.

Tudományos alap kutatások társadalmi, vagy gazdasági haszná nem minden esetben érzékelhető azonnal. Komoly lőkést és támogatást jelenthet egy témának, egy tudományos területnek, ha a mindennapjaink aktuális kérdéseire ad részben, vagy egészben választ. Olykor elég egy meglévő adatbázis közep-, vagy hosszú idősoros adatit elemeznünk, de az sem kizárt, hogy vizsgálatunk témájáról messzebb, nemcsak karnyújtásnyira (Kern et al., 2008), vagy billentyűzet távolságnyira kell menni, hanem nehezen megközelíthető, már-már egzotikus, vad, szeles, mély havas terepekre.

(Reuther et al., 2007; Makos et al., 2013; Popa és Bouriaud, 2014; Ruszkiczay-Rüdiger et al., 2014), amelyek eltérő viselkedésük okán még inkább a kutatások fókuszába helyezi a kárpáti regionális vizsgálatokat.

Az Alpok területén a gleccserek visszahúzódását, a jég olvadásának mennyiségi és minőségi változását térképeken követhetjük nyomon az elmúlt 150 évben. A különböző időpontban végzett mérések alapján megmérhető az állapotok közötti hossz-, terület-, térforgat-, egyensúlyi vonal változás (Salamon, 2008). Ezekhez a vizsgálatokhoz az elmúlt néhány évtizedben a terepi vizsgálatok mellett térinformatikai és távérzékeléses módszerek is párosultak. Recens formák, illetve nagy mennyiségű adat esetében egyszerűbb a szintézis. Ezek hiányában azonban a kutatás jóval több kihívással kecsegteget, kezdve az adatok begyűjtésének, azok újszerű, helyspecifikus feldolgozásán át a kiértékelésig. Számtalan ilyen kiaknázatlan lehetőség kínál a Kárpátok romániai területe, így a Radnai-havasok is.

Kutatásom célkitűzései az alábbiak:

• Elkészítsem a Radnai-havasok első korszerű szemléletű részletes glacio-geomorfológiai vizsgálatát.
• Folytassam a XX. század első évtizedeiben megkezdett magyar, majd a ’70-es évek román kutatóinak szakirányú munkáját. Validálni azok hitelességét.
• Bekapcsolni vizsgálataimat a Kárpátokban jelenleg is zajló környezetrekonstruksiósi vizsgálatok sorába.
• Integrálni a terepi méréseket, az újonnan előállított térinformatikai adatokat (saját készítésű digitális domborzatmodell) és a meglévő távérzékeléses adatokat (ortofoto) egy egységes térinformatikai környezetben.
• Az egységes térinformatikai szoftverkörnyezet nyújtotta számítások elvégezése, amelyek nélkülözhetetlennék más területekkel való összevetés érdekében. Származtatott adatok: hóhatár magasság értékek, jégkiterjedések, jégfark, jégvastagság, nyírófeszültség.
• Reprezentatív, kisméretű (pilot) mintaterületen tesztelni a teljes hegységre elvégezhető vizsgálatokat.
• Kormeghatározás lichenometriával, a kisjégkorszak nyomainak térképezése.
• Egy más módszeren nyugvó kormeghatározás szilárd geomorfológiai alapjának megteremtése. Ez lehetővé teszi, hogy a Radnai-havasokban detektált klíma-/
környezetváltozásokat összehasonlíthassuk az Eurázsiai, vagy más hegységrendszer területeivel, példának okáért a központi és az északi Balkánnal, ahol ezeket a vizsgálatokat már elvégezték.

- A rekonstrukciók még teljesebb keretet adjanak a Kárpát-Balkán térség jelen és múltbeli környezeti változásaink megértéséhez.
- Olyan egységes, a hazai szakterületen hiánypótlónak számító módszertan kidolgozása, amely lehetővé teszi a módszertan adaptálását és így más mintaterületek hasonló geomorfológiai adatainak feldolgozását.

1.2. Kutatási helyszín, mintaterületek

A tekintélyes kiterjedésű, az Eurázsiai-hegységrendszerhez tartozó Kárpátok a leghosszabb egybefüggő hegylánc Európában, amelynek teljes hossza megközelíti az 1500 km-t, így hosszabb az 1000 km-es Alpoknál, a 800 km-es Dinaridánál, vagy az 500 km-es Pireneusoknál (Dragomirescu, 1987). Ennek ellenére eddig a Kárpátok a kevésbé kutatott területek közé tartozott (Gillespie és Molnar, 1995). Kiemelkedő terület a Magas-Tátra (Baumgart-Kotarba és Kotarba, 1997; Lindner et al., 2003; Makos és Nitychoruk, 2011; Makos et al., 2013), valamint a Déli-Kárpátokban található Retyezát (Reuther et al. 2007, Ruszkiczay-Rüdiger et al., 2015) és a Fogarasi-havasok (Kuhlemann et al., 2013b) ahonnan korszerű kutatási és kormeghatározási módszerekből nélkülözhetetlen eredmények születtek a negyedidőszaki klíma- és környezetváltozásokhoz.

A Kárpát-hegykoszorú Románia legjelentősebb domborzati eleme, amely az északi szélesség 45–48° és a keleti hosszúság 22,5–26°-a között, a nyugat-európai nedvesebb, óceáni és a belső-ázsiai szárazabb, kontinentális klíma határmezsgyéjén fekszik, az éghajlati sokszínűség a csúcsrégiókban hegyvidéki klímával egészül ki (1. ábra) (Coldea, 2003; Reuther et al., 2007). A Keleti-Kárpátok egyike a legkisebb mértékben kutatott helyszíneknek (Kern et al., 2006; Urdea et al., 2011; Gheorghiu, 2012; Rinterknecht et al., 2012; Popa és Bouriaud, 2014). A Kárpátok romániai szakaszán számos hegycsoport csúcsmagassága van az 1800-2544 m közötti magasságból (a legmagasabb a dél-kárpáti Fogarasi-havasokban található Moldoveanu). Ez a zóna elegendően magas volt ahhoz, hogy a késő pleisztocén során gleccserek alakuljanak ki, azonban napjainkban már
alacsony ahhoz, hogy recens gleccserek legyenek (Mindrescu et al., 2010). A hiány legfőbb oka, hogy a jelenlegi klíma lényegesen szárazabb– mint például a Balkán területén, ahol ebben a magassági övezetben a speciális helyzetű kárfülkékben a mai napig találhatóak mikrogleccserek (Kern et al., 2007; Hughes et al., 2006; Hughes, 2008; 2009; Gachev et al., 2009; Grunewald és Scheithauer, 2010) – és hűvősebb is.

1. ábra. A Radnai-havasok tágabb környezete; a hegység piros csillaggal jelölve

Vizsgálataim a hegység nyugati területére fókuszáltak: a Zănoaga Mare, a Zănoaga lezerului és Buhăescu völgy nyugati részére (47.6°N, 24.6° E) (2., 65. ábra). A hegység itt éri el legmagasabb pontját (Nagy-Pietrosz/Köves-havas/Pietrosul, 2303 m) és itt található a legszébb, a legtipikusabb alpesi formáknak is, így kárfülkék, élesre faragott kárcsúcsok, jól fejlett U profilú völgyek (a völgytalpakon glaciális üledékekkel) és glaciális eredetű tengerszemek (a legmélyebb a Buhăescu II-tó, 5,2 m-es vízmélységgel). Bár a hegység keleti felén a Bila- és a Lala-völgyekben 2007-ben, illetve a középső területeken a Gargaló-csúcs övezetében 2005-ben folytak hazai, ELTE-s szervezésű glaciális geomorfológiai vizsgálatok, az ottani glaciális és a periglaciális formák keveredése miatt mégis a hegység legreprezentatívabb nyugati felére koncentráltam, ahol új mintaterületen kezdtem vizsgálatokba.

A Zănoaga lezerului-völgyben, 1785 m-es tengerszint feletti magasságban található a lezer Pietrosul meteorológiai állomás (67. ábra), amely kitűnő adatokat szolgáltat a Radnai-havasok jelenlegi klímájához (Urdea és Sârbovan, 1995). A Keleti-Kárpátok keleti felén a tél döntően száraz, hideg, míg nyáron a csapadék-események száma
megnő. A Radnai-havasok légköri áramlások találkozásában fekszik, így nyugatról elsődlegesen atlanti, míg másodlagosan az északi, északkeleti kontinentális hatással egészül ki (Dragota és Kucsicsa, 2011).

Az évi középhőmérséklet a magasság és a kitettség függvényében változik: a hegyláb déli lejtőin 6-7 °C, a meteorológiai állomáson 1,26 °C, és a legmagasabb csúcsok régiójában -1 °C alatti (Chiş, 2010). A leghidegebb átlaghőmérsékletű hónap a január (-6,9 °C), míg a legmelegebb a július (10,1 °C), az eddig regisztrált minimum -29,0°C (1998) volt.

A csapadék a 2000 m feletti régióban a legmagasabb (1200-1400 mm), köszönhetően a magassági hatásnak, így az éves csapadékosszeg a lezer Pietrosul meteorológiai állomáson is jelentős, mintegy 1267 mm az 1971-2006 időszakban (Béres, 2010). Az esős napok száma 130-150 nap, az első komolyabb havazás szeptember végén, október elején érkezik és a 160-200 napig megmaradó téli hótakaró átlagos vastagsága 55 cm (1961–1995). Utóbbi az árnyékos, védett helyeken akár 150-200 cm vastagra is hízhat, sőt a lavina és szél általi hótáplálás miatt – igaz csak lokálisan – ennek akár kétszerese is lehet. Bár örök hó nem található a hegységben, mégis a nyár végéig kitartó, esetleg átnyaráló hófoltokkal találkozhatunk, különösen a naptól védett északias, árnyékos helyeken (Dragota és Kucsicsa, 2011).

Az uralkodó szélirány jellemzően nyugatias, amely a völgyi hatás következtében módosulhat, így például a lezer Pietrosul állomáson is, ahol délnyugatiasra változik – ennek magyarázata a speciális helyzetű, az uralkodó szélől védett völgyi kitettség (Mindrescu et al., 2010).

1.3 Klíma- és gleccseringadozások áttekintése

1.3.1 Eljegesedések csillagászati okai

Planétánk természetes kísérőjelensége az éghajlatváltozás. Bár a tudományos nézetek megoszlanak atekintetben, hogy az ipari forradalom óta mekkora az antropogén „hozzáadott érték”, azaz a természetes folyamatokra mennyire erősített rá az emberiség, az azonban vitathatatlan tény, a földtörténet évmilliói során megannyi lehűlési és felmelegedési időszak (glaciális és interglaciális) volt. A kiváltó okok között akadnak földi eredetűek: vulkánkitörések, tengeráramlás változások, kontinensvándorlások, légkör összetétel változások, valamint extraterrisztrikus, csillagászati okok is: meteorit
becsapódások, vagy a pályaelemek ciklikus változása, így végző soron a napsugárzás intenzitásának változása. Amennyiben a nyári félév hőmennyisége a Köppen-féle küszöbérték alá csökken, a télen felhalmozódott hő nem tud maradéktalanul elolvadni és végző soron felhalmozódik.

A pályaelemek változásáról szóló elméletet a szerb csillagászról Milanković-elméletnek nevezték el, aki 650 000 évre visszamenőleg kiszámította a besugárzás értékeit. Számításait a magyar Bacsák György pontosította, minek eredményeként egy klímakilengés kezdő- és végpontja is meghatározható (Gábris et al., 1998). Elemei: az ekliptika szöge (22-24,5°, jelenleg 23,5°, periodicitása 40 000 év), a Föld Nap körüli pályájának eccentricitása (ciklus kb. 100 000 év), valamint a tavaszpont vándorlása – perihélium hosszának változása (21 800 év). Ezek kísérőjelensége az albedó visszacsatolás: a hó- és jégfelszínek a napsugárzás jelentős részét (akár 90%-ot) is visszaverik, ami öngerjesztő folyamat: minél több az erősen visszaverő jeges, havas felület, annál kevesebb napenergia nyelődik el a rendszerben, ami összességében a további lehűlésnek kedvez. Nem mellékes tényező a hatalmas eljegesedett területek hűtőhatása sem. A fenti három elem, valamint az albedó változása együttesen erősítik, vagy gyengítik a lehűlés folyamatát, azaz a földi jégtagárdó mennyiségét (Gábris et al., 1998). A földi éghajlatváltozás azonban ennél lényesebben összetettebb folyamat, amelynek csak egy – rendkívül fontos – tényezője a csillagászati tényező.

1.3.2 Negyedidőszak gleccseringadozások

A Gauss–Matuyama átfordulással 2,5 millió éve kezdődött negyedidőszak két korra, a pleisztocénre és a holocénre tagozódik. A kettő határát kb. 10 200 évvel ezelőtt húzhatjuk meg (Ravazzi, 2003). A földtörténetben jelenleg is tartó negyedidőszak során több eljegesedési (glaciális) és felmelegedési (interglaciális) szakasz követte egymást. A mintaterületemhez legközelebb és Európában a legjobban kutatott területen, az Alpokban hat glaciálist mutattak ki: biber (legidős ebb), duna, günz, mindel, riss, würm (legfiatalabb). Általánosan elmondható, hogy glaciálisok idején alacsonyabb volt a tengerszint mint ma (Miller et al. 2010), az óceánból hiányzó téri fogat pedig a sarkokon jégtakaró formájában „kifagyott”. Ehhez kapcsolódóan a tengervíz stabil oxigénizotóp-összetétele is eltolódott pozitív irányba ~2‰-kel. Ennek magyarázata, hogy a könnyebb vízmolekula (H₂¹⁶O) páramomása kisebb ezért ezek a molekulák párolognak
könnyebben. Így a légköri pára, s ez igaz volt a glaciálisok idején is, a tengervízhez képest izotóposan kimerültebb. A légköri pára egy része pedig a jégtakarókban felhalmozódva kivenőtt a vízkörzésemből, aminek következtében a tengervíz 18O-ban dúsult. A hatást fokozta, hogy a glaciálisok alatt az alacsonyabb globális hőmérséklet következtében kevesebben volt a párolgáshoz rendelkezésre álló hőenergia.

Ez a koncentrációváltozás a sarkvidéki jégtakarókból vett jégmintákban is kimutatható (Miller et al. 2010), azonban mértéke – a tengeri üledékmintákkal szemben – csak néhány ezrelék, ami így is egyértelmű környezeti változásra utal (3. ábra).

![3. ábra. A tengerszint globális változása méterben (felső ábra); Grönlandi-jégtakaró fúrásának (GISP2) δ18O értékei az elmúlt 100 000 év során – H1: Heinrich-események, számok a görbék felett: Dansgaard-Oeschger események (Miller et al., 2010)](image)

3. ábra. A tengerszint globális változása méterben (felső ábra); Grönlandi-jégtakaró fúrásának (GISP2) δ18O értékei az elmúlt 100 000 év során – H1: Heinrich-események, számok a görbék felett: Dansgaard-Oeschger események (Miller et al., 2010)

Ahogyan a pleisztocén, úgy az utolsó glaciális sem volt egységes, több kisebb felmelegedési, lehűlési szakasz, úgynevezett Dansgaard–Oeschger ciklus válotta

4. ábra. Az utolsó glaciális maximuma során eljegesedett területek (Van Husen, 1987 után módosította Salamon, 2008); látható, hogy a Kárpátok eljegesedése nincsen jelölve, aminek oka, hogy ott az LGM-ben csak völgyi gleccserek alakultak ki és nem pedig egész hegységet beborító jéghálózat(ok)

A Keleti-Alpokban hatalmas jéghálózatok alakultak ki, több száz méteres jégvastagsággal, a peremeken szétterülő piedmont gleccserekkel (Ivy-Ochs et. al, 2005). A Keleti-Alpok déli előterében található tavak (például a Comoi-, vagy a Garda-tó) is e peremi gleccserek jégvájta medencéiben találhatók (Heiri et al., 2014; Ravazzi et al., 2014). A gleccserhálózatból csak a legmagasabb, nunatakként kiálló csúcsek, gerincek emelkedtek ki (5. ábra).

A holocénnel melegebb klíma köszöntött be, ami a jégtakaró fokozatos visszahúzódásához vezetett, minimumát pedig az atlanti klíma optimumban (8000–5000) érte el. Ekkor a Föld átlaghőmérséklete a jelenleginél 1 °C-kal is magasabb lehetett. A jégmentes térszínek növekedését közvetlenül igazolja az Ötztali-Alpokban 1991-ben talált páratlan lelet: Ötzi (vagy Similaum ann) az osztrák–olasz határ közelében, a sziklás Hauslajoch-hágóban talált múmia. A részletes vizsgálatok során nemcsak a múmia (5300–5050 cal B.P.), de a környező gleccserek alatti eltemetett

Észak-Amerikában jelentős aszályok pusztítottak, míg Európában a mainál csapadékosabb volt az éghajlat, ami egészen a kisjégkorszakig tartott. A középkori optimum következtében Európában nőtt a termőföldek eltartóképessége, amely a népesség növekedésével járt („bőség kora”).

6. ábra. Az Alpok gleccser rekonstrukciós eredményei az elmúlt 13 000 évben; a függőleges vonal mentén gleccsereknek kedvező (bal) és nem kedvező klíma (jobb); gleccser-előrenyomulások (szürke nyelvek); narancssárga sávok: meleg klíma; kék sávok: hűvös klíma; zöld vonal: természetes erdőhatár; jobb oldali panel: varvok (szürke sáv); szerves üledékek (zöld) gleccser visszahúzódási időszakok, külön a Pasterze-gleccserre (sárga); régészeti leletek radiokarbon korai (piros) (Ivy-Ochs et al., 2009)
1.3.3 Kisjégkorszak

A visszaesésnek extraterrisztrikus és terrisztrikus okai egyaránt voltak. A naptevékenység átmeneti csökkenése az ún. Maunder-minimum (1600-as évek), illetve a Dalton-minimum voltak (1800-as évek), amelyek már önmagukban is okozhatták volna a lehűlést (Mann, 2002) (7. ábra). Azonban a fentiek mellett földi okai is voltak és e kettő hatása összeadódott.

7. ábra. Az elmúlt 1300 év csökkent naptevékenységű időszakai (világosszürke hasábok); gleccser fluktuációk (fekete vonal: Grosser Aletsch-gleccser; vékony fekete vonal: Lower Grindelwald-gleccser; szaggatott vonal: Mer de Glace-gleccser), valamint kisebb gleccseringadozások (szürke hasábok) – (Zasadni, 2007)

Földi okai elsősorban a nagy kéntartalmú erősen robbanásos vulkánkitörések voltak: Tambora-1815, amelyet az 1816-os „nyár nélküli” év követett, a Krakatau-1883, valamint Santa Maria-1902, amelyek anyaga a sztratoszférába bekerülve visszafogta a

A zordabbra forduló klíma hatására az Alpokban gleccserelőrenyomulás történt, illetve felerősödtek a periglaciális folyamatok (Berger et al., 2004). A feljegyzések szerint
1600, 1680, 1770, 1820, valamint 1850 körül voltak jelentős alpesi előrenyomulások (Salamon, 2008). Napjainkban az alpesi turistaházaktól akár 100-150 métert is ereszkednünk kell, hogy jégfelszínre lépjünk, pedig azok építésekor az egyik fő szempont a jég (szintbeli) közelsége volt. Az alpinizmus népszerűségének kezdete éppen egybe esett a legnagyobb kisjégkorszaki gleccserelőrenyomulásokkal. Számos akkori és mai állapotot összehasonlító képpár tanúsít arról, hogy azóta jelentős mértékű jégvisszahúzódás történt (Steiner et al., 2008). A Kárpátokban, az Alpok alacsonyabb területein és a Balkán-hegységben a speciális morfológiájú és sajátos mikroklímájú kárfülkékben néhány méter jégvastagságú, maximum néhány hektár kiterjedésű mikrogleccserek születtek, amelyek előrenyomulása morénsánkok feltorlásztásával járt (Hughes, 2007; Gądek és Kotyrba 2007; Grunewald és Scheithauer 2010). A morénsánkokon megtelepedő zuzmók lichenometriaia vizsgálatából a formák stabilizálódása megállapítható.

A jégárak mellett a növénytakaró is kitűnő környezeti indikátor: az erdőhatár természetes magassága a hűvösebb klíma következtében csökkent, amely a Kárpátokban is tetten érhető. Az erdőhatár a kisjégkorszak tetőzése (1850) esetében az Alpokban a 1850 méter, a jelenleginél akár 150-200 méterrel alacsonyabban is lehetett (Nicolussi et al., 2005). Az erdőhatár megállapításánál azonban figyelembe kell venni az antropogén erdőirtások hatását is. A kisjégkorszak az Alpokban 1850-1870 között ért véget, míg a Magas-Tátrában kitolódott az 1920-as évekig (Kotarba, 2006).
2. Kutatási előzmények

2.1. Hőskor (1945-ig)

A Kárpátok geomorfológiai feltárása már a 19. század második felében megindult. A magyar hegymászás és hegyi élet bölcsőjében a Magas-Tátrában az igazi lökést az 1873-ban megalakuló Magyarországi Kárpát Egyesület (MKE) jelentette. Az első igazán fontos glacio-geomorfológiai információkat is tartalmazó térképet 1881-ben Bécsben publikálták. A térképen a kisjégkorszaki eljegesedések nyomokat is feltüntették, amelyet Árvai (2011) is igazolta. A nagyobb eljegesedések bizonytékai azok a tengerszemek, amelyeket Roth (1887) részletesen leír: „Ezen tulajdonsága a völgynek oly általános és jellemző, hogy a látogató egészen önkénytelenül azon feltevésre jut, hogy az oly feltűnően megegyező configuratiót megegyező tényezők is hozták létre... ezen völgyekben hajdan jégárak honoltak és pedig a jégárak sajátosan kiszélesedő kezdete, gyökere”

A Déli-Kárpátok feltárásával a Kárpát-koszorú másik végén is megindultak a munkák, elsősorban a Fogarasi-havasokban (Primics, 1883; Lehmann, 1885; Inkey, 1889), a Retyezátban (Lóczy, 1904; de Martonne, 1913), a Páreng- (Schréter, 1908), a Szárkő- (Czirbusz, 1904) és a Godján-hegységben (Czirbusz, 1905).

Külön érdekessége, hogy a hegység nyugati, általam is vizsgált területét vizsgálta, mivel ez a hegység legteljesebb, legszebb glacio-geomorfológiai formákat hordozó része.

A teljes hegység északi részére kiterjedő átfogó munkát 1911-ben publikálta Sawicki (1911).[10. ábra] Bár terepi vizsgálatai elnyolynak tűnnek az eredmények mégis jó közelítést adnak. A térképen a glaciális eróziós/akkumulációs formák mellett a jég- és vízválasztót, tengerszemeket és az eljegesedés határait is feltüntette.

A Kárpátok magyar vizsgálatai az első világháborút követő határváltozások után sem értek véget, azonban veszítettek jelentőségükből. Ekkor készült Varga Lajos (1927) a hegység keleti felét bemutató glacio-geomorfológiai térképe (11. ábra).

11. ábra. Varga Lajos 1927-ben publikált munkája a Radnai-havasok keleti felének glaciális jelenségeit mutatja be; Morénákat, gleccserlépcsőket, feltöltött tómedencéket, glaciális tavakat, valamint a gleccserek maximális kiterjedésének határát térképezte; a térkép magyar-német feliratokon.

A magyar kutatópionírok azonban nem tűntek el, de megjelenésükre több évtizedet várni kellett...

2.2. Az elmúlt 70 év kutatásai

A II. világháborút követően a magyar kutatások lezárultak. Az ötvenes évektől kezdődően részletes román földrajzi monográfiák születtek, amelyben magyar kutatók már nem vettek részt (László és Nagy, 2008). A csak a leírások szintjén megrekedt román munkák részletes térképek nélkül és a szintezis teljes hiányával készültek,
jelentősen lemaradva az alpesi kutatásoktól. Ez érzékelhetően visszavetette a magashegyi feltáró kutatásokat, amelyek a „Hőskorban” még világszínvonalúak voltak.

Az első komolyabb, a glaciális formakincset is bemutató geomorfológiai összefoglaló monográfiát Sîrcu (1978) publikálta (12. ábra). Az igen elnyagtó munkát a vonatkozó román katonai térképsorozat szelvényeiin szemléltette.

A terület magyar kutatásai a 2000-es évek második felétől indultak meg Nagy Balázs, valamint Kern Zoltán vezetésével (Nagy et al., 2004; Kern et al., 2006; László et al., 2013). A kutatásokat Ionel Popa (Popa és Bouriaud, 2014) és Marcel Mindrescu kutatócsapata is segíti, amelyeket bilaterális pályázatokkal tovább erősítenek.
3. Geomorfológiai, glaciológiai módszerek és eszközök

A legrészletesebb, legkomplexebb vizsgálatok érdekében alapos, többéves terepi kutatásaimat térinformatikával (GIS) kombináltam annak érdekében, hogy egzakt és mindenre kiterjedő számításokat végezhessek (Shakun, 2003; Canadas et al., 2004; Smith és Clark, 2005).

A gleccserek keletkezésével, fizikai tulajdonságai val mozgási mechanizmusával foglalkozó földtudomány a glaciológia. A geomorfológia jéggel és a belőle keletkezett olvadékvíz felszínformáló tevékenységével foglalkozó ága a glacio-geomorfológia vagy glaciális geomorfológia (Lóczy, 2013). E tudomány születése a 19. század közepéhez köthető, ekkor írták le a francia Vogézek paleoglec csereit (Collomb, 1847), illetve a 20. század elejéhez, mikor is Albrecht Penck és Eduard Brückner vizsgálatai kimutatták, hogy az Alpok formakincse döntő mértékben a jég munkája nyomán alakult ki. A glaciológia, mint tudományágak közötti határterület az igen összetett és bonyolult fizikai egyenletek segítségével erős természettudományos hátérrrel értelmezi a krioszféra jelenlegi és múltbeli folyamatait. Megértéséhez ezért ebben a fejezetben röviden áttekintem a terepi vizsgálatok, a gleccserek kialakulásának, fizikájának, a tömegháztartásnak, valamint az ehhez kapcsolódó kormeghatározási módszerekhez az elvi hátterét.

3.1. Terepi geomorfológiai vizsgálatok – geomorfológiai térképezés

A glaciális formakincs térképezéséhez, valamint a lichenometria vizsgálatokhoz részletes terepi bejárásokra volt szükség. A formák helyzetének meghatározásához kézi GPS készülékeket használtam. Egyes készülékek nagy előnye, hogy külső antenna segítségével pontosságot tovább növelhető, illetve, hogy a fájlokat ESRI shape fájlfájlmformatumban is le lehet tölteni, amelyet számos geoinformatikai program – így az általam használt ESRI ArcGIS is – kezel.
A kárfülkékben sajátos, gleccserre jellemző morfológiai bélyegeket kerestem, úgy, mint a kárfülke homlokfalánál a jéglátoldal felől jól látszó terepmegtörés a headwall-cut, illetve vándorkövek, valamint oldal- és végmorénák, amelyek alapján kijelölhetőek az egykori gleccserek különböző stádiumokhoz tartozó területei (14. ábra).

14. ábra. Digitális domborzatmodellre vetített glacio-geomorfológiai térkép a Retyezát-hegységben (Reuther et al., 2004)

A kézi GPS-vezérek kellő pontossággal rendelkeznek, így magashegyi környezetben összetettebb térképezésekre ezeket használják. A legjobb terepi adatgyűjtők olyan PDA-k (15. ábra) (Personal Digital Assistant=elektronikus kézi információs eszköz), amelyek valamilyen térinformatikai mobil szoftvert futtatnak (pl. ArcPad) és amelyekre térdatotkat lehet fel- és letölteni (Regolini-Bissig és Reynard, 2010), de az okostelefonok terjedésével rövidesen itt is áttörés várható.
A kézi GPS készülék mérési hibahatára még jó vételi viszonyok között is – a légköri jelenségek zavaró hatása miatt – elérheti a 10-30 métert. A legnagyobb hiba ott jelentkezik, ahol a háromdimenziós méréshez szükséges minimális négy műholdara nem lát rá a készülék, így csak kétdimenzióban mér. Ez tipikusan a kárfülkék felső peremének mérése közben jelentkezik. Ezeket a pontokat utólag kell korrigálni, vagy ki kell hagyni a mérésből.

3.2. Glacio-geomorfológiai jellemzők

3.2.1. Gleccser fogalma, firnesedés

A gleccserjég képzősének során (firnesedés) a hó saját súlya alatt, illetve a nappali olvadás, majd az éjszakai (újra)fagyás miatt tömörödik (hézagtérforogat folyamatosan csökken). Anyagfizikai oldalról is magyarázható a Kristályosodás: a
jégkristályok felületén lévő vízmolekulák energiája magasabb, mint a kristályok belsejében jelenlévőké és az energia minimum elvének értelmében a rendszer energiája a külső kristályok felületének csökkenésével valósítható meg, ami a kristály sűrűségének növekedésével jár (Cuffey és Paterson, 2010). A 0,9 g/cm3 sűrűségű jég egymással összefüggői hézagai megszűnnek és már csak elszigetelt zárványok maradnak (16. ábra).

3.2.2. Gleccserek típusai

Gleccsereket legáltalánosabban a gleccseren belüli zónák tér- és időbeli megoszlása, illetve dominanciája alapján sorolhatjuk termális-, valamint morfológiai, keletkezési paramétereik alapján morfológiai csoportokba.

3.2.2.1. Termális osztályozás

Az osztályozás alapja a jégtömeg belsejének hőmérsékleti állapota/eloszlása, valamint olvadékvíz tartalma. Bár a gleccser belsejében a hőmérséklet viszonylag szűk határok között változik, mégis egészen kicsi, olykor néhány tized foknyi különbség is örösi jelentőséggel bír a mozgás és a felszínformálás szempontjából (Lóczy, 2013). A szakirodalom jellemzően a gleccseren belüli zónákat különít el (Hooke, 2005; Cuffey és Paterson, 2010).
A zónák Hooke (2005) alapján (17. ábra):

- **Száraz hó zóna**
 Alacsony hőmérsékletű zónában a felszíni olvadás nyáron sem fordul elő. Grönland és az Antarktisz belső, magasabb területeire jellemző. Alsó határán a legmelegebb hőmérséklete nem haladja meg a -6 °C-ot.

- **Leszivárgási zóna**
 Ebben a zónában már a felszíni olvadás és a beszivárgás megjelenhet. Ennek következtében a mélyebb rétegekben fagyás és jéglenccsék képződése indulhat meg.

- **Nedves hó zóna**
 Ahogy neve is utal rá, az olvadékvizek hőjének következtében a zóna teljes hó tömege olvadáspontig emelkedik és átnedvesedik az olvadási periódus végére.

- **Újrafagyott jég zóna**
• Ablációs zóna
 A zónában az év során felhalmozódott hómennyiség egésze elolvad, szublimál az ablációs időszak végére. Felső határát az egyensúlyi vonal jelöli ki.

A zónák megoszlása alapján a gleccsereket tovább kategorizálhatjuk, amely a jég mozgásában és felszíninformálásában is megmutatkozik (Lóczy, 2013):

• Hideg talpú gleccserek
 Poláris területek gleccserein a felszíni hőmérséklet -50°C alatt is lehet, ennek következtében a jégtest terheléséből fakadóan is csak egészen minimális olvadékvíz keletkezik, így mozgásuk igen lassú, néhány cm/év sebességű.

• Meleg talpú gleccserek
 Mérsékelt övezeti gleccsereknél a felszínről leszivárgó olvadékvíz megfagy. A fagyás során látens hő szabadul fel, ami a jég hőmérsékletét megemeli. Az olvadás következtében kialakult aljzati olvadékvízben a jégtest már el tud csúszni. Poláris területeken jégtakaró peremi outlet jégárak gyakori gleccsertípusa.

3.2.2.2. Morfológiai osztályozás

Elsődleges típus

0. Kevert: egyikbe sem sorolható.
1. Kontinentális jégtakaró: domborzattól viszonylag függetlenül kialakuló, kontinenseket beborító jégmegjelenési típus. (Például: Antarktisz 12,5 millió km².)
3. Jégsapka: 50 000 km²-nél kisebb területű, összefüggő, dómszerű, sugárirányú mozgású jég. (Például: Sajama, Bolívia.)
5. Völgyi gleccser: jól definiálható táplálóterülettel rendelkező, völgyeket kitöltő gleccser (Például: Mer de Glace, Franciaország.)
7. Kis (mikro)gleccserek, hófoltok: sajátos átmeneti igen kisméretű (néhány tized km²), elsősorban mikroklimatikus okok miatt megjelenő jégforma. Alakja a domborzathoz igazodik, elsősorban árnyékos, védett mélyedésekből alakul ki. Gyakori a szél, illetve a lavinák általi hótáplálás. A mikrogleccsereket a hófoltoktól sajátos, rotáló mozgásuk választja el (Kuhn, 1995).

Alaki típus (csak felsorolás)

Nyelvtípus (csak felsorolás)

3.2.3. Gleccserek mozgása

18. ábra. Gleccserek hajtóereje: a gravitációs erő; a: lejtőirányú hajtóművészet; b: nyomásgradiens; c: ezek kombinációja (Cuffey és Paterson, 2010)

A mozgás módja a jégnek, az olvadékvizeknek és a különböző szemcseméretű hordalék fizikai tulajdonságainak következtében változik (Cuffey és Paterson, 2010). A következőkben röviden bemutatom az alapvető jégár mozgásformákat.
3.2.4.1. Plasztikus folyás

A jégtest tömegéből és a gleccserjég szerkezetéből adódóan a nyomás hatására a jég plasztikusan viselkedik, mivel a gleccserekben a jég hőmérséklete nulla fok körül, vagy kicsivel alatta mozog. A plasztikus folyás a jégár legalapvetőbb mozgásformája. Az elmozdulás lehet kristálylapok menti, illetve szemcséken belüli, nyomás irányába történő anyagáthelyeződés. A gleccserjég saját terhelésére (súlyára) alakváltozással reagál (Cuffey és Paterson, 2010).

3.2.4.2. Regeláció

A jég általában egyenetlen aljzaton mozog. Ahol akadályba ütközik, ott összenyomódik (compresszió), majd az akadály után kitágul (extenzió). Ha a jég hőmérséklete 0°C körül van, az összenyomódó jég megolvad, az olvadt víz átbugik az egyenetlenségen, majd pedig a nyomás csökkenése miatt hozzáfagy a jéghez (19. ábra). A megolvadás és újrafagyás folyamata (regeláció) során anyagáthelyeződés történik (Cuffey és Paterson, 2010).

![19. ábra. A reguláció elvi sémája (Cuffey és Paterson, 2010 után módosítva); az aljzati egyenetlenségnél az összenyomódó jég megolvad, halmazállapot-változást szenved, majd az olvadékvíz hozzáfagy a jégtesthez; eközben nemcsak anyagáthelyeződés, de hőáramlás is történik](image)

3.2.4.3. Talpi csúszás

 Mérsékelt övi, szubtrópusi gleccserek, valamint grönlandi és nyugat-antarktiszi jégtakarók outlet gleccsereinek gyakori mozgásformája a talpi csúszás. A mozgás csak szubglaciális olvadékvízek jelenléte és kellő nyomása esetén indul meg, ugyanis ekkor a gleccser teljes tömege egyben mozdvul el. Hideg talpú, az aljuknál csak minimális
olvadékvízzel rendelkező gleccserek esetében a talpi csúszás elhanyagolható (Cuffey és Paterson, 2010; Lóczy, 2013).

3.2.4.4. Lezúdulás (surge)

Gleccserek nem reguláris mozgástípusa a lezúdulás. Ekkor a jégár rendellenesen gyorsan mozog, amiben nagy jelentősége van a talpi csúszásnak (Lóczy, 2013). Az aljzatnál felgyülemlő olvadékvizekre valósággal felúszik a gleccser, a súrlódás lecsökken és gyors előrenyomulás történik (Van der Veen, 1999). Időtartama általában néhány hónap (20. ábra).

20. ábra. Az alaszkai Variegated-gleccser a lezúdulás előtt (balra) 1964.08.29-én, illetve a lezúdulást követően 1965.08.22-én (jobbra) (Cuffey és Paterson 2010)

3.2.4. Gleccserek eróziója

3.2.5. Gleccserek tömegháztartása, egyensúlyi vonal, hóhatár

Az egyensúlyi vonal magassága (angolul - equilibrium line altitude: ELA) egyike a legismertebb és legfontosabb gleccser paramétereknek, mivel a jégárrekonstrukciókon alapuló hóhatár magasságok és annak vertikális változása a múlt és a jelen klímájának indikátorai.

Gleccserek egyensúlyi vonala az akkumulációs és az ablációs rész határánt található (Cogley et al., 2011). Hóhatárt az újrafagyott zóna felső, gleccserfelszíni magasságán jelölhetjük ki, amelynek magassága nem feltétlenül esik egybe az ELA magasságával.

![Diagram](image)

21. ábra. Gleccser elvi metszete Reuther et. al, 2004 alapján, módosítva; az egyensúlyi vonal mentén akkumulációs és ablációs területre bontható

A tömegmérleg (mass balance) recens gleccserek estén fizikailag mérhető érték. A nulla tömegmérleghez tartozó ELA-t ELA₀-nak nevezzük. Az ELA₀ meghatározásához
több év mérését használják fel, amelyet végül lineáris regresszióval határoznak meg (22. ábra).

Az egyensúlyi állapotú ELA (Benn and Lehmkuhl, 2000; Cogley et al., 2011) egy bizonyos gleccsermérethez (geometriához) tartozó érték, amely egy éves viszonylatban zérus tömeháztartású gleccseren figyelhető meg. Az ELA hosszabb időtávlatban állandó lehet, amennyiben a gleccser tömeháztartása kiegyensúlyozott. Ha a tömeháztartásban (pl. egy klímaváltozás miatt) nagyobb változások állnak be akkor az új klímához igazodva egy új egyensúlyi-állapotú ELA alakul ki, amelyhez a gleccser geometriája igazodni próbál és bizonyos idő és elteltével új egyensúlyi állapot alakulhat ki (Haeberli et al., 2008). Mivel a nagyobb morénasáncokat egy hosszabb ideig dinamikus egyensúlyban lévő gleccser (azaz hosszabb ideig ugyanakkora) alakította ki, a rekonstrukciók során tulajdonképpen paleo egyensúlyi állapotú ELA-kat becsülnk. Az egyensúlyi állapotú ELA-t lokálisan, egy gleccsere lehet meghatározni, de regionális átlaga is kitűnő klímajelző.

22. ábra. Idealizált gleccser sokéves átlaga alapján számított akkumulációs arányszáma (bal); és egyensúlyi vonalának magassága, amely a regressziós egyenes és a 0 mm találkozásánál jelölhető ki (jobb) (Haeberli et al., 2008)

Paleogleccserekhez tartozó egyensúlyi hóhatár magasság (pELA₀) becslése – értelemszerűen – más módszert kíván meg. Valamennyi módszerben közös, hogy recens gleccsereken megfigyelt törvényserűségekre, jelenségekre, dinamikai és morfológiai megfontolásokra hagyatkoznak. Az rekonstrukciók kétségesebb csoportja állapítható meg:

• morfológiai alapú (MELM, THAR, TSAM).
terület alapú (AAR, ssAAR, BR)

Használatukhoz minél pontosabb gleccserfelszínre van szükség. Ez terepi mérések, szakirodalmi adatok, glacio-dinamikai törvényszerűségek alkalmazásával valósul meg (Goudie, 2004; Lukas, 2006; Benn és Evans, 2010) és jelenlegi alpesi gleccserek összehasonlító vizsgálatával egészül ki.

3.2.6. Paleo-egyensúlyi vonal meghatározási módszerek

3.2.6.1. Maximum Elevation of Lateral Moraines (MELM) - az oldal morénák maximális magassága

Egy vizsgált paleogleccser oldalmorénának legfelső magassága adja a pELA értékét. A módszernek igen nagy a bizonytalansága (Benn és Lehmkuhl, 2000; Ramage et al., 2005; Nesje, 2007) így leginkább olyan magashegyi környezetben alkalmazható, ahol jól fejlett, nem erodált, nagyméretű oldalmorénák találhatók (Kerschner, 1990).

3.2.6.2. Toe-to-Headwall Altitude Ratio (THAR) - magassági arány a gleccsernyelv és a homlokfél között

A módszer legfőbb előnye az egyszerű és gyors alkalmazás (mindösszesen két magassági érték és egy arányszám szükséges hozzá), így olyan területeken is közelítést adhat, ahol korlátozottak a terepi információink (Nesje, 2007).

3.2.6.3. TSAM (Toe-to-Summit Altitude Method) - magassági arány a gleccsernyelv és a csúcs között

A THAR módszerhez nagyban hasonlítható, könnyen alkalmazható becslés, amely az előzőtől abban tér el, hogy felső magasságának nem a kárfülke jégkitöltését jelölő megtörést, hanem a felette levő csúcsot használja.

32
3.2.6.4. Accumulation-area Ratio (AAR) – akkumulációs terület arányszám

![23. ábra. Éves tömegegyensúly és az AAR arányszám összefüggése a Sonnblickkees (Magas-Tauern, Ausztria) példáján az 1964-2005 időszakra; a fekete négszögek az alsó és a felső 5%-os tartománya eső extrém értékek, amelyek az egyensúlyi AAR meghatározásánál nem lettek figyelembe véve; vízszintes tengelyen a nettó éves anyagmérleg milliméter vízegyenértékben megadva (mm weq) (Kern és László, 2010)](image-url)

A módszer legnagyobb előnye, hogy megfelelő paleogleccser-felszínrekonstrukció esetén területi hisztogram alkalmazásával nagyon gyors és igen jó közelítést ad az akkumulációs és az ablációs terület lehatárolására. A módszer hátránya, hogy az arányszám jellegfüggő, így az alpesi gleccserektől morfológiájában/méretében elütő gleccserek esetében az értéket recens gleccserek alapján kalibrálni/változtatni szükséges (Benn és Lehmkühl, 2000).
Az AARₜ- több tényező is befolyásolhatja: elsődlegesen a gleccser típusa (Ignéčzi és Nagy, 2013). Kis területű, a kárfülke falához jobban simuló kárgleccsereken a kárfülke árnyékoló hatása jobban érvényesül, ezen kívül a lavina általi, szelfűtta hóutánpótlás is erősebben érződik, ami az AAR csökkenéséhez (0,4–0,5) vezet. Turkesztáni (vagy fekete) gleccserek esetében a törmelék árnyékoló, szigetelő hatása jelentősen csökkenti az olvadást, így az AAR arányszám esetében itt is közepes érték (0,5) tapasztalható. Hasonló érték (0,5-0,6) tapasztalható óceáni klímán ahol a megnövekedett csapadékmennyiség miatt kisebb táplálóterület is egyensúlyban tartja a jégárakat. A morfológiai hatással szemben bizonyos éghajlati feltételek az AAR arányszám növekedéséhez vezetnek Trópusi gleccserek esetében nem ritka a 0,8-as arányszám sem, mivel a trópusokon a napsugarak magas beesési szöge miatt jelentős a Nap olvasztó-, ablációs hatása (Kaser és Osmaston, 2002).

Mivel a Keleti-Kárpátokban jelenleg nincsenek gleccserek, így a mintaterülethez legközelebbi eljegesedett magashegységben, az Alpokban használt 0,67-es arányszámot használtam (Gross et al., 1977).

3.2.6.5. Balance Ratio (BR)

Az AAR módszerből indul ki, azonban minél nagyobb a területaránya egy magassági zónának, annál nagyobb súlytal vesz részt a számításban (Osmaston, 2005; Rea, 2009). Az ELₐₜ meghatározása alapvetően az akkumulációs és az ablációs gradiensek meredekségéből és a paleogleccser hipszometriájából történik (Furbish és Andrews, 1984). Bár a módszer igen kifinomult, rendkívül bonyolult és az eredménye bizonyítottan nem jobb az AAR módszernél. Továbbfejlesztett változata (AABR) recens analógiáját felhasználásával figyelembe veszi a gleccser hipszometriáját is (Rea, 2009).

3.2.6.6. Size specific Accumulation-area Ratio (ssAAR) – méret specifikus akkumulációs arányszám

A méret specifikus akkumulációs arányszám kiváló alternatívája a pELA érték becsleseknek (Kern és László, 2010), különösen olyan területeken, ahol az egykori jégárák működési mechanizmusáról nincs, vagy csak hiányos az információk. Ez a
megközelítés abban újszerű, hogy az arányszám értéke a jégár területének függvényében testre szabható az alábbi egyenletnek megfelelően:

\[ssAAR_0 = 0,0648 \times \ln S + 0,483 \]

ahol \(ssAAR_0 \) a méret specifikus egyensúlyi akkumulációs terület arányszám, míg \(S \) a gleccser valódi területe (\(\text{km}^2 \)). A két terület alapú AAR módszer bemenő paraméteréhez három-dimenziós paleogleccser-felszínrekonstrukció szükséges.

3.2.7. Jégvastagság- és térfogatbecslés

A jégtérfogat a jégfelszínből levezethető érték (Chen és Ohmura, 1990; Bahr et al., 1997). Chen és Ohmura tapasztalati egyenlete globálisan alkalmazott:

\[V = 28.5 \times S^{1.357} \]

ahol \(V \) a becsült térfogat és \(S \) a rekonstruált gleccser felszíne. Az átlagos jégvastagság \((h)\) a fentiekből levezetve: \(V/S \). Ezeket az értékeket ajánlott összevetni a három-dimenziós paleogleccser jégtest rekonstrukciós értékekkel.

Digitális domborzatmodell és gleccser felszínmodell segítségével a fentiek térinformatikai szoftverekből is levezethetők (Rodríguez-Rodríguez et al., 2011; Vieira 2008). Ebben az esetben nemcsak az átlagos értéket, hanem a minimális és maximális vastagságot is megkaphatjuk (29. ábra).

3.3. Paleogleccser-felszínrekonstrukciós eljárások

Paleogleccser felszínének minél pontosabb rekonstrukciója nélkülözhetetlen számos gleccser alapú számításhoz, mivel egy precíz gleccser felszínmodell ismeretében a legkülönfélebb levezetett paraméterre következtethetünk. A legfontosabb talán az egyensúlyi paleo-hőhatár magasság (pELA\(_0\)) meghatározása (Benn és Lehmkuhl, 2000; László et al., 2013), a gleccser jégvastagság és térfogat. Az egyensúlyi vonal – mint alapvető gleccserrre jellemző érték – alkalmas környezetrekonstrukciós vizsgálatokhoz, mivel kitűnő klímaindikátor.
Az egyensúly közeli állapotban levő gleccserek megfelelő minőségű és mennyiségű törmelékanyag esetén morénákat raknak le. A részletes terepi geomorfológiai adatgyűjtés során különös figyelmet szenteltem a kárfülkékre és a morénákra, mivel ezek a glaciális peremi formák kritikusak a gleccser-rekonstrukciókhoz, illetve az azokra épülő egyéb kalkulációkhoz. Ez a megközelítés megegyezik Clark et al. (2004) módszertanával, a Brit-Ír-jégtakaró rekonstrukciójában foglaltakkal.

A pontos egyensúlyi paleo-hóhatár magasság (pELA₀) becsléshez megfelelő paleogleccser felszínre van szükség. Mivel egy egyszerű kétdimenziós, sík felszín alkalmatlan a gleccserdinamikai folyamok modellezésére a legnagyobb alapossággal és körültkintéssel kell eljárni. Ez estemben a terepi adatgyűjtés, a távérzékeléses adatok, valamint a glacio-dinamikai törvény szerűségek együttes alkalmazásával valósult meg és jelenlegi alpesi gleccserek összehasonlító vizsgálatával egészült ki, amely megegyezik az élvonalbeli kutatások metodológiájával (Goudie, 2004; Lukas, 2006; Benn és Evans, 2010; Benn és Hulton, 2010).

A rekonstrukcióknak két alapvető csoportját különbíthetjük el modellezés megközelítése alapján:

- Kézi (manuális) rekonstrukció
- Numerikus modellezésen alapuló rekonstrukció.
3.3.1. Kézi rekonstrukció

A teljeskörű feldolgozáshoz elengedhetetlen a gleccserfelszínek ellenőrzése, verifikálása. Ehhez Nye (1952) egyenletéből kell kiindulni, amelynek értelmében az aljzati nyírófeszültség a felszín és a jégtest között 50-100 kPa között kell legyen. Ahol ez az érték magasabb, ott rendszerint a lejtő meredeksége lecsökken, így nagyobb jégvastagságra van szükség a jégtest megmozdulásához. A jégtest e területein általában
nagyobb a nyírófeszültség értéke (valamivel 100 kPa felett is lehet, Makos et al., 2013). Az alábbi egyenletet használva a nyírási feszültség (τ_b) meghatározható:

$$\tau_b = rgh \sin \alpha$$

ahol r a jég sűrűsége (900 kg/m3), g a nehézségi gyorsulás (9,81 m/s2), h a jég vastagsága (méterben) és α a gleccser felszínének meredeksége (Paterson 1994, Hughes, 2008; Hooke, 2005; Sailer et al., 1999). A h érték a jég és a felszín magasság különbségéből, míg az α a szintvonalak alapján készített gleccser felszínmodellből származtatható. Az egyenlet raszter matematikai művelet segítségével, a bemenő adatokat tartalmazó raszterekkel térben megegyező raszter minden cellájára kiszámítható a legtöbb térinformatikai szoftverrel. (pl. ArcGIS Spatial Analyst bővítménnyel) kiszámítható. Az eredményül kapott raszter minden cellája alapsúrlódási nyomás értékeket tartalmaz, ahol azonban ez az érték az elvárt, szakirodalmi adatokon alapuló tartományon kívül esik ott módosításokat kell végezni.

A kézi eljárás segítségével pontos rekonstrukciók készíthetők, mégis több probléma felmerül alkalmazásánál (Ng et al., 2010; Ignéczi, 2014). Személyes tapasztalatom és szakirodalmi leírások alapján rendkívül időigényes a rekonstrukció. Az egyik legtöbbet hangoztatott kritika a szubjektivitás a szintvonalak megrajzolásánál és így a nehéz rekonstruálhatóság. Ezt azonban a fentebb leírt verifikálási eljárás ellensúlyozhatja. A módszert még mindig széles körben használják.

3.3.2. Numerikus modellezésen alapuló rekonstrukció

Numerikus modellezésen alapuló rekonstrukciók ott használhatók, ahol a kézi rekonstrukciós eljárások már bizonytalanok, illetve ha gyorsítani, számszerűsíteni szeretnénk a munkánkat. A modellezésbe számos gleccserfizikai/dinamikai törvényszerűség építhető be egyenletek formájában. Segítségükkel olyan területeken is lehet modellezni, ahol a geomorfológiai nyomok nem megbízhatók, esetleg nagymértékben erodálódottak és nem használhatók. Ebben az esetben a rendelkezésre álló, olykor minimális geomorfológiai nyomokat felhasználva kell extrapolálnunk (Carrasco et al., 2013).
A módszer gyors számításokat tesz lehetővé, jól kombinálható glaciodinamikai egyenletekkel és iterációk gyors egymásutánjával választhatjuk ki a legalakalmassabb gleccserefelszínt (Adhikari és Marshall, 2012). A módszer tökéletes kiegészítője a kézi eljárásnak, esetleg alkalmas a korábbi számítások felülvizsgálatára, verifikálására. Munkámban négyféle numerikus modellezést alkalmaztam:

- kétdimenziós sodorvonalall
- kétdimenziós sodorvonalall és keresztszelvényekkel
- kétdimenziós sodorvonalall, keresztszelvényekkel és változtatható folyáshatárokkal
- háromdimenziós

A módszer elméleti összefoglalóját Benn és Hulton (2010), illetve Ignéczi (2014) munkájában találjuk leírva, amelyben számos korábbi glaciodinamikai kutatás törvényszerűségét foglalják össze.

3.3.2.1. Kétdimenziós sodorvonalall

Kétdimenziós sodorvonalall segített rekonstrukciót a Nye (1952) féle egyenletekkel végezhetünk. A Nye modelllel egy horizontális aljzaton található (tökéletesen plasztikus) gleccser felületének magasságát adhatjuk meg:

$$\tau_y \tau_b = \tau_d = \rho g H \frac{\Delta h}{\Delta x} = \rho g H \tan \alpha$$

ahol τ_y a folyáshatár (50-100 kPa) τ_b az alapsúrlódási nyomás, τ_d a hajtónyomás, ρ a jég sűrűsége (900 kg/m3), g a nehézségi gyorsulás (9,81 m/s2), H a jégvastagság, Δh a jégvastagság változása, x a gleccser mozgásának irányában felvett tengely, és α a jégfelszín lejtőszöge.

A sodorvonal menti számításokat a gleccser középvonalánál (ez a sodorvonal) kell elvégezni (25. ábra).
Ez tulajdonképpen egy koordináta-rendszer x tengelye, amelynek oríója a gleccser nyelve (végpontja), így x a nyelvtől való távolság. A jégár felszínének magassága pedig az y tengely mentén ábrázolva, így az eredmény egy sík menti profil, amelyhez a következő számítások szükségesek. A Nye alapegyenlet x értéké t integrálva kapjuk meg (Benn és Hulton, 2010):

\[\tau_y = \tau_b = \tau_d = \rho g H \int \frac{dh}{dx} \]

ahol \(\frac{dh}{dx} \) a jégfelszíni gradiens. Mindezt x szerint integrálva:

\[H_x^2 = C + \frac{2 \tau_y}{\rho g} x \]

ahol C (integrálási együttható) = 0, mivel a nyelvénél a gleccser vastagsága nulla. Továbbrendezve:

\[H_x = \left(\frac{2 \tau_y}{\rho g} x \right)^{0.5} \]

Mivel a fenti egyenlet elsősorban kis lejtésű domborzatra jó, nagyobb és esetleg változó lejtésű területeken nem alkalmazható, így ezt Benn és Hulton (2010) továbbfejlesztették egy domborzati tényező bevezetésével. Ehhez Schilling és Hollin (1981) alapján először \(\frac{dh}{dx} \)-t diszkrit kifejezéssé alakították:

\[\frac{dh}{dx} = \frac{h_{i+1} - h_i}{\Delta x} \]

ahol \(\Delta x \) a meghatározott lépésköz, \(h_i \) és \(h_{i+1} \) a jégfelszín magasságai i és i+1 lépésnél. A kifejezést behelyettesítve a
\[\tau_y = \tau_b = \tau_d = \rho g H \frac{dh}{dx} \]

egyenlet első sorába, a jégfelszín magassága i+1 lépésnél:

\[h_{i+1} = h_i + \frac{\tau_y}{H_i} \frac{\Delta x}{\rho g} \]

ahol a Hi jégvastagság a jégfelszín és a domborzat magasságának különbsége i lépésnél, így Hi = hi – Bi tehát a jégfelszín magassága i+1 pontban:

\[h_{i+1} = h_i + \frac{\tau_y}{h_i - B_i} \frac{\Delta x}{\rho g} \]

ahol h a jégfelszín magassága; \(\Delta x \) a lépésköz vízszintesen az x tengely mentén; \(\tau_y \) a folyáshatár; H a jégvastagság; \(\rho \) a jég sűrűsége; g a nehézségi gyorsulás; B a domborzat magassága és i a lépések számának megfelelő indexszám. A fenti egyenlet – diszkrét formulával – egyenetlen domborzat esetén hajtható végre.

Ehhez azonban ismerni kell a jégfelszín magasságát az első (i) lépésnél. Ez a gleccseryelv elvégződésénél nulla lehetne (valójában ez csak elvileg lehet így), azonban ebben az esetben \(H_i = h_i - B_i = 0 \), ami nullával való osztáshoz vezetne. Ezt kiküszöbölendő az első pontot a gleccseryelv végétől olyan (lehetőség szerint minél kisebb) távolságra kellene felvenni, ahol már \(H_i \neq 0 \). Léteznek empirikus alapon készült táblázatok, amelyek a lejtőszöget használják a kezdeti jégvastagság becslésére (Schilling és Hollin, 1981). Ennél kényelmesebb, ha Van der Veen (1999) módszerét alkalmazzuk: egy az első és a második lépés közötti plusz lépés \((i + \frac{1}{2})\) beiktatásával. Ezt behelyettesítve a

\[h_{i+1} = h_i + \frac{\tau_y}{(H_i + H_{i+1})/2} \frac{\Delta x}{\rho g} \]

egyenletbe, ahol:

\[H_{i+1/2} = \frac{(H_i + H_{i+1})}{2} \]

megkapjuk:

\[h_{i+1} = h_i + \left(\frac{\tau_y}{(H_i + H_{i+1})/2} \right) \frac{\Delta x}{\rho g} \]

ezt \(H_i = h_i - B_i \) domborzati paramétert behelyettesítve.
\[h_{i+1}^2 - h_{i+1}(B_i + B_{i+1}) + h_i(B_{i+1} - H_i) - \frac{2 \Delta x \tau_y}{\rho g} = 0 \]

ahol \(h \) a jégfelszín magassága, \(H \) a jég vastagsága, \(B \) a dombokat magassága, \(\tau_y \) a folyáshatár; \(\Delta x \) a lépésköz az \(x \) tengely mentén; \(\rho \) a jég sűrűsége; \(g \) a nehézségi gyorsulás.

Ezt a képletet \(h_{i+1} \)-re rendezve egy másodfokú egyenletet jutunk:

\[
ay^2 + by + c = 0
\]

amelyek a, b, c együtthatói az alábbiak:

\[
a = 1
\]

\[
b = -(B_i + B_{i+1})
\]

\[
c = h_i(B_{i+1} - H_i) - \frac{2 \Delta x \tau_y}{\rho g}
\]

Az a, b és c együtthatók kiszámításához szükséges változók vagy a modell bemenő adatai – \(\Delta x \), \(\rho \), g, \(\tau_y \), B – vagy az előző, i-edik lépés eredményei – \(h_i \), \(H_i \) – együtthatókat a másodfokú egyenletek megoldási képletébe behelyettesítve y már kiszámítható:

\[
y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Mivel ennek két matematikailag helyes megoldása is van, csak azt használjuk, amelyikre igaz, hogy \(h > B \).

A fentieket Microsoft Excelbe rendezte és integrálta Benn és Hulton (2010), amelyet szabadon hozzáférhetővé tettek. Ezek alapján egy a gleccser sodorvonalam mentén, egyenletlen aljzaton is kiszámítható a gleccser felszíni magassága. Ezt a sodorvonal, vagy angol megfelelője után flowline modellnek/módszernek hívjuk.

3.3.2.2. Kétdimenziós sodorvonalallal és keresztszelvényekkel

A sodorvonal módszert Benn és Hulton (2010) két további tényezővel egészítette ki, amelyek sokkal pontosabb modellezéshez vezetnek. A morfológiai kiegészítés azon az elven nyugszik, hogy az eddig bemutatott „alap” sodorvonal módszerben három paraméter egyenlő: a hajtónyomás, a folyáshatár és az alapi sürönyomás, azaz \(\tau_d = \tau_y = \tau_b \), azaz ebben az esetben a jégtest egy sima felületen csúszik és nem vagyunk tekintettel
a különböző érdességi tényezőkre és a gleccservölgy oldalainak súrlódására, ellenállására. Szükségszerű az alaki paraméter (f) bevezetése, amelyhez keresztszelvényeket kell felvenni (26. ábra). Ez kifejezi a völgyoldalakra és a völgy aljára ható súrlódási erő arányát, így kompenzálja a völgyoldalak súrlódását és kifejezi a tényleges hajtónyomást (Nye, 1952; Benn és Hulton, 2010).

\[\tau_b = \tau_y = f \tau_d \]

ahol \(\tau_d \) a hajtónyomás, \(\tau_y \) a folyáshatár és \(\tau_b \) az alapsúrlódás nyomás.

Amennyiben völgyoldal nem határozható meg, \(f = 1 \). Klasszikus völgyi gleccserek esetében – amilyenek a Radnai-havasok területén is meghatározóak voltak – \(f < 1 \). \(f \) kifejezhető:

\[f = \frac{A}{Hp} \]

ahol \(A \) a gleccser keresztmetszetének (egy keresztirányú szelvényének) területe, \(H \) a jég vastagsága a középvonalban és „p” a gleccser keresztmetszetének kerülete. Ha \(f < 1 \), akkor nagyobb hajtónyomásra van szükség a megközelített súrlódás miatt. Ezt az összefüggést az alábbi egyenlet jól mutatja:

\[\tau_d = \frac{\tau_y}{f} \]

Minél szűkebb a völgy, annál kisebb \(f \) értéke, mivel ekkor a völgyoldalakon jóval nagyobb a súrlódás mértéke. \(f \) behelyettesíthető a

\[
c = h_i(B_{i+1} - H_i) - \frac{2 \Delta x \tau_y}{\rho g}
\]

eyenletbe, ha \(\tau_y \) -t lecseréljük \(\tau_y/f \) -re. \(f = 1 \), csak igen speciális gleccser típusoknál, például jégsapkáknál használható.

3.3.2.3. Kétdimenziós sodorvonalal, keresztszelvényekkel és változtatható folyáshatárokkal

Az alaki mellett a másik tényező a folyáhatár és annak változtatása, amelynek segítségével a jég folyási tulajdonságait vesszük figyelembe. Ennek értéke a legritkább esetben konstans, mivel a folyáhatárt olyan tényezők is befolyásolják, mint az olvadékvíz mértéke, a jég hőmérséklete vagy az aljzat minősége (víztelítettség, üledékvastagság). Ehhez olyan kalibráló magasságokra van szükség, amely az egykori jégfelszín peremét jelölő ki, például az oldalmorénának. Ezek azok a fix pontok, amelyek a gleccser rekonstrukció kiterjedéséhez is használhatóak. A modellezésbe beépítve láthatóak azok a szakaszok, ahol a folyáhatárt alul-, vagy túlbecsültük. Ezekben a szakaszokon a folyáhatárt és így a magassági profil a kalibráló pontokhoz kell igazítani (27. ábra).

![Mintagleccser (Benn és Hulton, 2010)](image)

27. ábra. Benn és Hulton (2010) publikációjának Excel-melléklete alapján készített kétdimenziós gleccserprofi profil rekonstrukció a sodorvonal modell segítségével, 100 kPa-os folyáhatárral számolva
A változtatható folyáshatárú modell, mivel több paramétert használ, pontosabb és jobb közelítést ad az egykori gleccser felszínre. Megfelelő minőségű és mennyiségű geomorfológiai formák megléte esetén alaposabb vizsgálatot végezhetünk. Ezek hiányában nem alkalmazható, ilyenkor azonban az egyszerű „alap” változat, a kétdimenziós sodorvonal módszer használata is megszívlelendő (Benn és Hulton, 2010).

3.3.2.4. Háromdimenziós numerikus modellezés

![28. ábra. A Serra da Estrela (Portugália) platógleccserének rekonstrukciójához használt hossz- (A), illetve keresztszelvények (B). (Forrás: Vieira, 2008)](attachment)

A kétdimenziós adatok kiterjesztéséhez a szelvények menti jégprofilokon túl valamennyi olyan geomorfológiai formára szükségünk van, amelyik az egykori gleccser kontúrjának megrajzolását segíti, különösen a trimline-okra és a morénákra (Makos et al., 2013). Ezek segítségével már nagy pontossággal, és glaciodinamikai törvényszerűségek figyelembevételével megrajzolhatók a paleogleccser felszínét meghatározó szintvonalak, amelyekből különféle térinformatikai eljárásokkal felszínmodellt tudunk generálni (29. ábra).
A numerikus módszer továbbfejlesztett változata során a hossz-szelvény menti jégfelszíni magassági adatokat, valamint a gleccserkontúrokat használjuk fel és a térinformatikai szoftver(ek) nyújtotta interpolációs eljárások valamelyikével készítünk paleogleccser-felszínrekonstrukciót (30. ábra).
Az elmúlt időszakban, szakirodalmi adatok alapján több szerző is ilyen rekonstrukciót készített (Rodríguez-Rodríguez et al., 2011, Hughes et al., 2011; Pedraza et al., 2013), mégis „hiánycikk” ezek részletes leírása (Ignéczi, 2014). Bár Ignéczi (2014) részletesen leírja lépéseit, mégis a mintaterület különbözősége, valamint a részletesebb geomorfológia miatt saját módszertan alkalmazása volt indokolt. A módszert részletesen az 5. fejezetben mutatom be.

3.4. Kormeghatározási módszerek

3.4.1. Lichenometria

Mintegy 27 féle zuzmófaj alkalmas a vizsgálatra (Armstrong és Bradwell, 2010), azonban kristályos kőzet esetében - minta a Radnai-havasok lichenometriai mintaterülete is - a térképzuzmó (Rhizocarpon geographicum) telepe a legalkalmasabbak (Loso és Doak, 2006). Két mérési módszert kell elkülöníteni: közvetlen módszer esetén egyedi telepeket vizsgálunk és több éves adatsorból számoljuk ki a növekedési rátát, míg a közvetett módszer esetén az előbbi módszerrel meghatározott kalibráló görbét használunk (Trenbirth, 2010) (31. ábra).
A módszer előnye, hogy rendkívül olcsó, gyorsan használható és könnyen elsajátítható. Az indirekt módszer hátránya, hogy mindig kell egy a területre jellemző kalibráló görbe, továbbá hogy a telepek növekedési rátája klímaérzékeny, így már kisjégkorszaki morénák datálásánál is kellő óvatossággal kell eljárni.

3.4.2. Dendrokronológia

A módszer viszonylag olcsó, azonban jelentős minta előkészítéssel jár (Kern, 2010). Igazi hátránya mégsem ez, hanem maga a minta, mivel egy terület környezeti vizsgálatához minél több és nagyobb területről származó mintasor szükséges (Árvai, 2013).
3.4.3. Talaj fejlettségi index

A talaj fejlettségi index a Harden-teszt alapján kivitelezhető. A talajszelvényben tett megfigyeléseket féltkvantitatív módon jellemezhetjük: a horizont-index a talajgenetikai szintek összehasonlítást segíti, míg a fejlettségi-index a talajképződés korára ad becslést (Bradák et al., 2013).

A Kárpátok több területén, így a Retyezát-hegységben is alkalmazták a módszert olyan vizsgálati helyszíneken, ahol a rendkívül drága kitettségi kormeghatározásra nem volt lehetőség (Urdea, 2004).

3.4.4. Kitettségi kormeghatározás

A radiometrikus kormeghatározáson alapuló módszer – a kőzetburokban helyben keletkező kozmogén izotópok segítségével – alkalmas morénák stabilizálódásának számszerűsítésére. A relatív kronológiai módszerekkel szemben (például talaj fejlettségi index) a formákhoz abszolút koradatok társíthatók. Egy kőzet/moréna kitettségi kora az időtartam, amióta az adott felszínt a kozmikus sugárzás éri, glaciális vizsgálatok esetében tehát hogy mikor húzódott róla vissza a jég. A módszer különböző feltételek mellett néhány száztól akár néhány millió éves felszínek datálására is alkalmas, így a teljes negyedidőszakot (sőt a pliocént is) lefedi (Ruszkiczay-Rüdiger 2004). Az Alpokban és a Kárpátokban leggyakrabban 10Be, illetve 36Cl kozmogén izotópot használnak a kormeghatározáshoz (Kerschner et al., 2006; Reuther et al., 2007; Gheorghiu, 2012; Makos et al., 2013).
4. Térinformatikai módszerek és eszközök

4.1. Térinformatikai szoftverkörnyezet

Vizsgálataim kezdetén még elkülönítettem a raszteres és vektoros adatok kezelésére alkalmas szoftvereket, így 2008-ig az alábbi szoftvereket alkalmaztam:

- Leica Geosystems ERDAS 8.5/9 – raszteres adatok (elsősorban ortofotók) feldolgozására
- ESRI ArcView 3.3 – vektoros adatkezelés
- Golden Software Surfer 8.0 – DDM előállítására
- 3dem – SRTM adatok tisztítása, konverziója
- GPS Trackmaker – GPS mérések konverziójára
- Global Mapper – online ortofotó szolgáltatás megjelenítésére, adatok letöltésére.

2008-tól fokozatosan álltam át a raszteres és vektoros adatok együttes feldolgozását, kezelését, megjelenítését és adatbázis szintű integrálását lehetővé tevő ArcGIS térinformatikai szoftvercsalád használatára. Asztali munkára az amerikai ESRI cég ArcGIS Desktop szoftverét használtam (9.x/10.x verziószámokkal), amelynek általam használt főbb komponensei:

- ArcMap (általános munkavégzés, feldolgozás, elemzés, megjelenítés, fájlkezelés)
- ArcCatalog (téradatok összetettebb kezelése)
- ArcScene (háromdimenziós megjelenítés/szerkesztés, fotorealisztikus nézetek).
A Trimble Juno SB készülékeken az ArcGIS natív fájlformátumok kezelését lehetővé tevő ArcPad 8/10 szoftver futott.

4.2. Térinformatikai adatok és feldolgozó környezet

Kutatáson kezdetén térinformatikai adataimat diszpergáltan, egymástól elkülönítve, a fájlrendszer nyújotta keretek között könyvtárakba rendezett különálló fájlokban tároltam. Az adatállomány növekedésével egyértelművé vált, hogy ezek kezelése problémás, mivel számos adat redundánsan tárolt és rendkívül nehezen kereshető. A gridnek nyújtotta korlátozott fájlnév hosszúság nem tette lehetővé a nagy karakterhosszúságú, „beszédes” neveket. Vektoros állományok esetében pedig hiányoztak a metaadatok, valamint egy egyszerű, könnyen áttekinthető és kezelhető tárolás.

Az adatintegráció során világossá vált, hogy az egyes műveleteket nem különálló, speciálisan szakosodott szoftverekkel kell megoldanom, ahol a rendszerek közötti átjárhatóság biztosítására a fájlokat át kell alakítani. A többletmunkát, valamint a hibalehetőségeket, illetve az elméleti, módszertani ismeretek felesleges bővítését minimalizálva olyan szoftvert kerestem és találtam, amely ezeknek tökéletesen megfelelt (Sik, 2011).

4.2.1. Adatok típusai, adatformátumok

Az ESRI geoadatbázis rendkívül sokféle és változatos térinformatikai fájlformátum tárolására alkalmas. Fontos, hogy a nem ESRI-s külső rendszerekkel a szabványokon alapuló adattárolás teremti meg a kapcsolatot. Az ismert adatformátumok száma a
térinformatika világméretű térnyerésével folyamatosan bővül, amelyet az újabb szoftververziók, frissítések követnek. Az ismertebb adatformátumok mellett egyéb adattípusok geoadatbázisba töltése az ArcGIS Data Interoperability bővítményével valósítható meg (a vonatkozó műszaki leírások szerint akár több száz típus kezelése is).

A geoadatbázisok egy-, illetve többfelhasználósak lehetnek (ESRI, 2015b). Mivel vizsgálataim nem követelték meg, hogy adatbáziskezelőben tárolt térinformatikai adatokat az intra-, vagy interneten egyszerre több felhasználó is lássa, szerkessze, ezért az egyfelhasználós modellt választottam. Ennek 2 csoportját különíthetjük el:

- **Personal Geodatabase (.mdb):** a térinformatikai adatokat Microsoft Access adatbáziskezelőben tárolja. Előnye, hogy a fenti adatbáziskezelőben közvetlenül megnyitható, ott valamennyi adattábla kezelhető. Nagyon jó eszköze annak, ha adattábláinkból összetettebb (például kereszttáblás) lekérdezést készítünk és onnan más szoftverbe töltünk át. Hátránya, hogy az Access „függőség” miatt kizárólag Microsoft Windows operációs rendszer alatt használható, az adatbázis maximális mérete pedig 2 GB.

A fájl geoadatbázist alapvetően három fő alapelem építi fel (**32. ábra**):

- **Table** – adattábla. Rekordokból és mezőkből álló „táblázat”.
- **Feature Class** – elemosztály. Vektoros geometriai objektumok tárolására.
- **Raster Dataset** – raszteres adatkészlet. Tetszőleges raszteres adatféleség tárolására.
A fent bemutatott három fő építőelem a térinformatikai adatok legalapvetőbb primitívei. A fájl geoadatbázisok számos e fenti három alapelemre épülő geoadatbázis elemet tartalmazhatnak (32. ábra).

32. ábra. ESRI fájl geoadatbázis 3 fő eleme: táblák, elemosztályok és raszteres adatkészletek (A); ESRI fájl geoadatbázis adatféleségei (B); Forrás: www.esri.com

Munkám során az alábbiakat használtam:

- **Annotation (annotáció)** – elem attribútuma alapján készített statikus felirat. Lehet elemhez kötött (Feature Linked), ekkor a két tábla között közvetlen kapcsolat van. A szintvonalak magassági értékének kiírásakor használtam.

- **Feature Class (elemosztály/térkép elemosztály)** – pont, vonal, poligon geometriájú alakzatok térbeli tárolását lehetővé tevő vektoros geoadatbázis elem.Attribútum táblában tárolt leíró adatok kapcsolódnak hozzá, amelynek minden rekordja egy térképi elemnek (például magassági pont) feleltethető meg. Tulajdonképpen a szabványos térinformatikai vektoros adatcsere fájlformátum – az ESRI shapefile – geoadatbázisban tárolva. Az ESRI shapefile-lal szemben itt egyetlen elemként láttuk és kezeljük a shapefile 3 alapvető fájlját (shp, dbf, shx).

- **Feature Dataset (elemosztály adatkészlet)** – térkép elemosztályok együttes tárolására szolgál. Valamennyi itt tárolt Feature Class közös vetületi rendszerrel és precizitás értékkel rendelkezik.
• Mosaic Dataset (mozaik adatkészlet) – mozaikolt raszteres adatok tárolására alkalmas. Kitűnően alkalmas szelvényezett állományok egy fájlként történő kezelésére.
• Raster Catalog (raszter katalógus) – raszteres adatok kezelésére, rendszerezésére szolgál. A rasztereket a fájlrendszerben külön állományként azok eredeti helyén tárolja, nem másolja be, de azokról bélyegképet és leíró adatokat készít.
• Raster Dataset (raszteres adatkészlet) – tetszőleges típusú raszteres adat tárolására alkalmas. Ebben tárolunk minden „klasszikus“ gridet (például domborzatmodellt), vagy multi-/hiperspektrális űrfelvételt.
• Table (adattábla) – táblázatos elemek tárolására alkalmas, függőleges oszlopkból (mezőkből) és vízszintes sorokból (rekordokból) áll. Relationship Class (relációs osztály) segítségével vektoros elemhez is kapcsolódhat.
• Toolbox (eszköztár) – ArcGIS beépített és saját eszközeinek (Tool) tárolására szolgál. Logikailag része még a Toolset, ami az eszköztáron belüli kisebb egység. Alapeleme a Tool, ami lehet ArcGIS objektum, Phyton szkript, vagy Model Builderben előállított ArcGIS model. (Az ArcGIS-ben előállított modelek nevét az ESRI terminológia szerint egy „I“-el írom).

A fentieken kívül még két geoadatbázis elemet használtam:
• Metaadat – adatleíró adat. Térdatunkra vonatkozó leírásokat tehetünk, például készítő, készítés dátuma, rövid leírás, vetületi rendszer.
• Domain – közvetlenül a geoadatbázisban tárolt értékkészlet. Előre generált attribútum megadására szolgál.

Nem tölthető azonban valamennyi a vizsgálataimhoz használt fájlformátum geoadatbázisba. Ilyenek például az egyensúlyi hóhatár meghatározásokhoz használt Excel-fájlok, az mxd ArcGIS térképi projektfájlok, vagy a domborzatmodellezés kísérleti TIN-fájllai, amelyeket a fájlrendszerben, de geoadatbázison kívül tároltam. A két példaként felhozott fájltípus egyébként az ArcGIS megnyitja, sőt a TIN-t teljes mértékben kezeli is. Utóbbi kiváltására alkalmazzák a Terrain Datasetet, amely vektoros inputok alapján TIN-alapú megjelenítést készít.
4.2.2. Téradatbázis ArcGIS alatt

A kutatásomhoz használt téradatokat fájl geoadatbázis alá rendeztem. Ahol szükség volt rá, ott meghagytam az eredeti nyers téradatokat is (például a terepi mérések ESRI shape fájljait). Mivel glaciális geomorfológiai vizsgálatok egyfelhasználós (geo)adatbázis építéséhez sehol sem találtam szakirodalmat, saját logika, ESRI ajánlások és oktatóanyagok (ESRI, 2015b) valamint sok-sok személyes tapasztalat mentén alakítottam ki a struktúrát. Fájlrendszerben a geoadatbázisok egy .gdb kiterjesztésű mappaként láthatók és bár ezeket megnyíthatjuk, de a binárisan tárolt adatokat csak ArcGIS szoftverben olvashatjuk (33. ábra).

33. ábra. A geoadatbázisok téradati fájlrendszerből közvetlenül nem olvashatók. Az ábra felső részén Total Commanderben láthatjuk a gdb-kiterjesztésű könyvtárat és az adatok méretét, míg az alsón ugyanezt ArcCatalogban megnyitva

A geoadatbázis ESRI oldalról nemcsak egy mappa, hanem a legteljesebb ArcGIS funkциonalitást lehetővé tevő adattárolási eljárás (34. ábra). Az adatokat csoportosíthatjuk, kezelhetjük (törlés/másolás/mozgatás/átnevezés/új) metadatokkal láthatjuk el. Ha mindezekre egyszerre szüksége van a felhasználónak, elég egyetlen könyvtárat kezelni.
34. ábra. Tematizált vektoros és raszteres elemekből álló RadnaiHavasokPHD.gdb nevű törzsadatbázis tartalma. A vektoros adatok a File Geodatabase Feature Datasetben vannak. A tartalom háromféle nézetben látható: Tartalom/Contents; Előnézet/Preview; Szöveges leírás/Description

A geoadatbázisokat, illetve azok elemeit metadaadatokkal láttam el, amennyiben a név, vagy a tartalom komplexitása megkövetelte (35. ábra). A főbb metaadatok: geoadatbázis, vagy annak elemének neve (Title); tetszőleges kép; címkék (Tags) – ezek a keresést és a tematikus csoportosítást könnyítik meg; rövid leírás (Summary); leírás (Description) – előbbi részletesen kifejtve; szerkesztők (Credits); felhasználási korlátok (Use limitations); térbeli kiterjedés (Extent) – az adatok befoglaló téglalapjának sarokponti koordinátái; méretarány (Scale Range).
A RadnaiHavasokPHD.gdb nevű törzsadatbázis, illetve annak Geomorfologia nevű Feature Datasetjének metaadat leírása a Description fülön; az alapértelmezett metaadat sablont használtam, mivel annak kötelező tartalma elegendőnek bizonyult.

A Feature Dataset elsődleges rendeltetése, hogy közös tulajdonságokkal (pl. koordináta rendszerrel) rendelkező elemszálakok tárolására szolgáljon. Vannak azonban olyan elemek, amelyek elemszálakokra épülnek, de nem geometria tárolására szolgálnak. Ilyen például az elemek egymáshoz viszonyított szabályszerűségeinek vizsgálására szolgáló topológia (File Geodatabase Topology) (36. ábra), vagy a térképi elemek (elsősorban magassági pontok, különösen a lézerszkennelt adatok több millió rekords pontfelhője) szabályszerűségén alapuló megjelenítés a File Geodatabase Terrain. Utóbbit kipróbáltam, azonban a raszter matematikai funkciókhoz kizárólag a grid alkalmazható. Topológiát a hidrológiai korrektdomborzatmodell építésénél kellett alkalmaznom, ugyanis a Topo to Raster eszköz futtatása inkorrekt domborzatot eredményezett. A hibakeresés során kiderült, hogy a vektorizált vízfolyások elemesztése élei nem kapcsolódtak (továbbá a vízfolyások vektorizálásának iránya sem volt jó), így ezeket topológia használatával javítottam, ami összességében a Topo to Raster eszköz hibátlan futását eredményezett.

36. ábra. A Geomorfologia Feature Dataset elemeinek listája a Tartalom fülön; a név (Name) és a típus (Type) minden esetben látszódik, a többi tartalom az ArcCatalog/Options/Contents fülön állítható.; az elemek típusait, illetve elemszálakok estében a geometriát is jól mutatja a piktogram, illetve az elem típus (Feature Type) leírása.
ArcCatalogban megnyitott geoadatbázis segít téradatainkat egyben kezelni, ugyanott tárolni, illetve alapszinten, vizuális módon meg is nézhetjük azokat (37. ábra). Ez különösen akkor segítség, ha nem elégséges, vagy hiányzik a metaadat leírása. Adatainkat akár már ArcCatalogban is feldolgozhatjuk, hiszen a szoftver eszközeinek gyári kivonata – az ArcToolbox – innen is elérhető. Az ArcGIS 10-es családjában már nem válik el egymástól élesen a fájlkezelő ArcCatalog és a feldolgozó ArcMap alkalmazás, hanem azok elemei laza köteléket alkotnak.

37. ábra. Az előnézet fülön a raszteres/vektoros/táblázatos elemek egyszerűsített nézete tekinthető meg.; zoomolás, pásztázás, valamint alapszintű lekérdezés engedélyezett; vektoros adatok esetében az ábra bal alsó sarkában látható listájában a Table (táblázat) is megjelenik, amelynek segítségével az attribútum tábla meg tekinthető

Mivel adataimat több geoadatbázisban tároltam, szükségessé vált, hogy azokat gyorsan, egyszerűen és ArcCatalogban, valamint ArcMapben is kereshetővé tegyem. Ehhez a Search fül/Search Options-t kell választani, ahol Add gombbal geoadatbázisokat, vagy mappákat (így akár geoadatbázison kívüli elemeket is) beindexelhetünk. A Create Thumbnails bepipálásával bélyegkép is készül a szolgáltatáshoz (38. ábra).
Az egyes eljegesedési fázisok neve gyakran visszatérror érték és mivel írásmódjuk
igen bonyolult, könnyű elgépelni egy mezőértéket (amelyeket egyébként gyakran vettem
fel egy-egy adattábla mezőjébe). Az elgépelések és a gyorsabb adatbevitel érdekében
értékkészletet (Domain) határoztam meg. Ennek készítésekor meg kell határoznunk,
 hogy intervallum (Range), vagy egzakt értéket (Coded Value) kívánunk felvenni, amely
alapjaiban meghatározza a mezőtípust. Beállíthatjuk még a NULL érték engedélyezését,
– ekkor nem kötelező az értékkészlet egy elemét kiválasztani, mert ez is megengedett –
továbbá az alapértelmezett értéket. Attribútum tábla mezőjének szerkesztésekor a
Domain legördülő listaként jelenik meg. Az értékkészlet tovább bővíthető, sőt lehetőség
van már kész táblák betöltésére is.

Bár az ESRI geoadatbázis gyakorlatilag korlátlan méretű adat (256 TB) tárolására
alkalmas, mégsem tartottam szerencsésnek, ha az egyes részfolyamatok adatai egy
adatbázisba kerüljenek. A vektoros adatokat Feature Datasetek alá rendezve
gyakorlatilag „mappákba”, tehát különálló tematikus gyűjteményekbe rendezhetjük, a
raszteres és táblázatos adatokra azonban ez nem igaz. Jelentős számú gridem (Raster
Datasetekben) keletkezett, amelyeket nem lehet a vektoroshoz hasonló módon rendezni,
így egy idő után csak keresőszolgáltatással tudtam ésszerűen keresni/kezelni ezeket. Az
adatbázis szétbontásának másik oka pedig az volt, hogy a különálló adatbázisok
egymástól független munkafolyamatok eredményei. Ezen kívül egy sajátos tematika is
kialakult: a módszertan kidolgozásához sok esetben tesztadatokon kellett próbafuttatást
végeznem, amelyekkel nem akartam az éles adatbázisokat „szennyezni”, így egy a teszt-
es köztes adatok tárolására alkalmas adatbázist is létrehoztam. Végül az alábbi három
tematikus és egy köztes fájl geoadatbázist építettem:
Az általánosabb tematikájú törzsadataimat a RadnaiHavasokPHD.gdb-ban tároltam. Ennek mérete a raszteres adatok, elsősorban ortofotók, domborzatmodellek, illetve a topográfiai térképek miatt meghaladta a 17 gigabájtot (GB). A Feature/Mosaic/Raster Dataset mellett Raster Catalog is megtalálható benne, amely a georeferált topográfiai térképeket nem az adatbázisban, hanem a fájlrendszerben tárolja. Itt csak egy szelvényháló, valamint a fájlok elérést tartalmazó hivatkozás található. ArcMapbe benyitva kilenc, vagy az alatti (beállítás függvényében) látható szelvény alatt hívja be a tényleges fájlt.

A Mosaic Dataset nyújtotta lehetőségeket kihasználva nem csak ortofotókat mozaikoltam, hanem különböző felbontású domborzat- illetve terepmodellt is. Így egy adatkészletként tudtam kezelni az SRTM terepmodellt és a saját készítésű DDM-t, mintegy lokálisan feljavítva azt. A gyors megjelenítés érdekében a felhasználó által meghatározott számú nagyítási szintekhez áttekintő (Overview) állományok is generálódnak (külön könyvtárban). Feature Datasetek segítségével tematikusan bontottam a vektoros állományaimat.

A hóhatár meghatározásához már jóval egyszerűbb és kisebb méretű geoadatbázist építettem (RadnaiHavasokPHDELA.gdb). Ennek ellenére közel 350 geoadatbázis elemet tartalmaz (ebből csak a 'Hohatar' nevű adatkészlet 264 darab elemosztályt). Valamennyi gleccser hóhatár-rekonstrukciójához ugyanazt az eszközt használtam, ezért készítettem egy saját eszköztárat (ELA.tbx), amelybe a leggyakrabban használt eszközöket gyűjtöttem össze, így azok mindig egy helyen és kéznél voltak.

A hossz- és keresztszelvények menti sodorvonal rekonstrukciókat külön vettem a fentitől, mivel a hóhatár rekonstrukció alapja lehet kézi rekonstrukció is, szemben az itt használt bonyolultabb, de nagyobb gleccserek esetében jól használható sodorvonal rekonstrukcióval.
Több számítást először a Scratch.gdb-ben végeztem el, majd egy-egy módszer véglegesítésekor az adatokat áthelyeztem a fenti adatbázisok egyikébe. Ennek rendkívül nagy hasznát vettem, mivel így elkerülhetővé vált, hogy az éles adatbázisokba oda nem illő tesztadatok kerüljenek.

ESRI fájl geoadatbázisok használatával az ArcGIS Desktop téradat-feldolgozó alkalmazás teljes funkcionalitása elérhetővé vált. Téradataimat centralizáltan, megfelelő tematikus bontásban, metaadatokkal ellátva adatbázisban kezelhettem. A geoadatbázis kevésbé ismert funkcióinak használataival (például domborzati Mosaic Dataset, keresőszolgáltatás, metaadatok) nemcsak az adatok feldolgozása gyorsult, hanem sokkal világosabb, átláthatóbb, redundanciasmentes tárolást valósítottam meg.
5. Adatok feldolgozása és integrálása térinformatikai környezetben

5.1. Adatforrások

Vizsgálataim során számos adattípust használtam és megannyi újjal ismerkedtem meg, amelyeket – esetenként konverziók segítségével – integráltam. Összességében elmondható, hogy a feldolgozás során digitális adatokkal dolgoztam, amelyek közül az ArcGIS által használt térinformatikai adatokat struktúráltan, integráltan, lehetőség szerint adatbázisban tároltam.

Adataim részben saját szerkesztésűek, gyűjtésűek (például a terepi adatgyűjtés eredményei), részben pedig meglévő állományokból, vagy analóg adatok digitalizásával (például a korábbi felmérések térképei), vektorizálásával keletkeztek. Az adatforrások két csoportja különíthető el:

- offline
- online.

5.1.1. Offline adatforrások

A hálózattól független, fizikailag a saját deszktop kliensem merevlemezén tárolt adataimat az offline adatforrások közé soroltam. Amennyiben az adattípusa megengedte, ESRI fájl geoadatbázisban tároltam, mivel így adatbázisban, tematika szerint csoportosítva, metadatokkal, gyorsabb adatfeldolgozást és elérést biztosítva használhattam azokat. Offline adataim az alábbiak voltak:

- vektoros: terepi mérések; geomorfológia; számítások; TIN adatai
- raszteres: domborzat- és terepprofilek; ortofotók; topográfiai/geológiai térképek; számításokhoz használt gridek; szkennelt anyagok
- metaadatok: geoadatbázis Feature Dateset/Catalog/RasterCatalog/Raster Dataset/Mosaic Dataset részeként
- egyéb adatok: Microsoft Excel (xls, xlsx); Word (doc, docx); ArcGIS mxd, sxd; ArcGIS layer fájlok; ArcGIS táblázatok; terepi; mérések nyers adatai (shp, gpx)
5.1.2. Online

Azon adatokat, amelyek forrása belső (intra), vagy internetes hálózathoz kötött, összefoglalóan online adatnak neveztem. Az adatok publikálástól függően fizikailag merevlemezre menthetők vagy nem. A letölthető adatok között akadnak:

- csak megtekintés
 - ESRI online térképek (gyorsító tárazott alap-, referencia térképek):
 http://server.arcgisonline.com/arcgis/services
 - Románia ortofotó adatbázisa (2014-ig volt elérhető)
 http://195.138.192.5/mosaics_5000
 amelyhez az ERDAS ECW Plug-in for ArcGIS Desktop szükséges

- letölthető
 - Open Street Map/Románia vektoros adatbázis:
 http://download.geofabrik.de/europe/romania.html
 - SRTM adatbázis: http://srtm.csi.cgiar.org/
 - Romániai ortofotó adatbázis ortofotó adatbázisa (2014-ig volt elérhető)
 Global Mapperben (File/Open ECW file from the WEB/ ecwp://195.138.192.5/mosaics_5000/MARAMURES.ecw)

5.2. Adatok feldolgozása térinformatikai környezetben

5.2.1. Digitális domborzatmodell (DDM) előállítása

A térinformatikai módszerek alapuló paleagleccser-felszínrekonstrukció, illetve az ebből származtatott őskörnyezeti információk számításához a lehető legpontosabb domborzat-, vagy terepmodellre volt szükség. A területre az ingyenesen hozzáférhető adatbázisok közül csak a 90, illetve a 30 m/pixel terepi felbontású SRTM adatbázis volt elérhető, ami ebben a részletességben csak átnézeti képhez megfelelő, viszont alkalmatlan részletesebb vizsgálataimhoz, így más adatforrást kellett keresni.

A vizsgálatok kezdetén többféle célszoftverrel próbálkoztam, majd azok előrehaladtával egységes ESRI ArcGIS szoftverkörnyezetre tértem át, amelyben mint integrált térinformatikai rendszerben dolgoztam fel adataimat (Sailer et al., 1999, Clark et al., 2004). Saját domborzatmodellt állítottam elő, amelyhez 1:25 000-es méretarányú
román georeferált topográfiai térképet használtam. A fájlokat meghagytam Stero-70-es vetületi rendszerben, mivel számos további nagy tömegű és méretű adat (amelyek vetületi konverziója adatromláshoz vezetett volna) így állt rendelkezésemre (pl. ortofoto). A fájlokat Mosaic Datasetként mentettem el a törzsadatbázisban. Ezt követően a térkép szintvonalait vektorizáltam, úgy hogy felvettem egy törtvonal geoadatbázis elemosztályt (polyline, azaz vonalas geometriájú ESRI feature class-t), amelynek „altitude” Double típusú mezőjében tároltam a magassági értékeket. Hogy a szintvonalak görbületét a legjobban leképezzem és így pontosabb interpolációt tudjak készíteni, a vektorizáláshoz – ahol lehetett – az Arc Segment eszközt használtam (39. ábra).

39. ábra. ArcMap Editor Toolbarjának Arc Segment eszközével lehet a legjobban visszaadni a szintvonalak görbületét; az egyes szerkesztő eszközök rajzolás közben is állíthatók Ahol rendelkezésre állt magassági pont, vagy területtel és magassággal rendelkező tó, illetve magassággal nem rendelkező vízfolyás, gerincvonal, azokat is vektorizáltam pont, poligon, illetve vonal típusú geoadatbázis elemosztályokba. A papíralapú topográfiai térképek leolvasási hibáját általában 0,5 mm-nek tekintjük, ez a jelen (1:25.000-es) méretaránynál 12,5 m-es leolvasási hibát jelent, így topográfiai térképről levezetett DDM hibahatár környéki terepi felbontással rendelkezik (Ignéczi, 2014).

Az így előállított pont, vonal, illetve poligon geoadatbázis elemosztályból többféle módon is lehet domborzatmodellt készíteni:

- TIN (vektoros)
- Grid – Kriging interpolációval (raszteres)
- Grid – ArcGIS Topo to Raster eszközével (raszteres).

Bár a vektoros TIN pontosan követi a domborzatot, mégis összességében elnagyolt, így közvetlenül csak konverziókkal alkalmazható raszter matematikai műveletekhez. A Kriging interpolációval készült, 5*5 méteres domborzat jó közelítést ad,
de ha ellenőrzésévént szintvonalakat generálunk belőle és azokat az input adatokkal összevetjük már látható, hogy a szépen simított felszínnel jelentősen torzít. Hátránya még, hogy a különböző magasság adatokat nem lehet maradéktalanul felhasználni, így a pengeéles gerincek dombhátszerűen lekerekítődnek, a tavak vize a vízszintessel szöget bezáró, a magasságok torzulnak.

A fenti problémákra kitűnő megoldás az ArcGIS Desktop Topo to Raster eszköze.

Óriási előnye, hogy a modell inputjai kategóriákra vannak osztva, így megadhatunk szintvonalat (Contour); magassági pontot (PointElevation); gerincet, vagy leszakadást (Cliff); vízfolyást (Stream); tavat (Lake). A szintvonalnak és a magassági pontnak kötelező megadnunk a magasságot tartalmazó mezőt (40. ábra). Nem szükséges, hogy az azonos tematikájú inputok (pl. magassági pontok) egy geoadatbázis elemosztályban legyenek.

![ArcGIS Topo to Raster eszközével a legváltozatosabb inputok, geometriától függetlenül használhatók hidrológiaiág (is) korrekt domborzatmodel készítésre](image)

40. ábra. ArcGIS Topo to Raster eszközével a legváltozatosabb inputok, geometriától függetlenül használhatók hidrológiaiág (is) korrekt domborzatmodell készítésre
A domborzat modell generálását Kuhlemann et al. (2005), Cowton et al. (2009) és különösen a közelmúltban publikált Telbisz et al. (2013) iránymutatásai alapján készítettem el 5*5 méteres terepi felbontásban. A domborzatmodellt domborzatárnyékolással (shaded relief) láttam el (41. ábra), hogy az esetleges hibák, így például egy rosszul felvett szintvonal magasság, vagy magassági pont még szembeötőlőbb legyen.

![41. ábra. Domborzatárnyékolt domborzatmodell nagyban segíti a hibák vizuális keresését; a megvilágítás azimutja és magassága is beállítható; a legjobb eredményt – a valóságtól elújtóen – északnyugati megvilágítás és 45° magassággal érhetjük el](image_url)

ESRI geoadatbázisban lehetőség van arra, hogy különböző felbontású domborzatmodelleket egy közös állományban az ún. Mosaic Datasetben egyesítsük. Részletes vizsgálataimhoz elegendő volt csak kb. 200 km²-nyi terület szintvonalainak vektorizálása és abból domborzatmodell építése, azonban átfogó, nagyobb léptékű megjelenítéshez ezt kombináltam az SRTM 90 m/pixel felbontású terepmodelljével (42. ábra).
42. ábra. Az 5*5 méteres, saját készítésű domborzatmodell (piros keret), valamint az SRTM 90*90 m/pixel felbontású terepmóddell kombinálásával előállított Mosaic Dataset; jól kivehető, hogy a kereten kívül kisebb a felbontás

5.2.2. Terepi adatgyűjtés

A három gondosan kiválasztott völgy (Zănoaga Mare-, Zănoaga lezerului- és a nyugati Buhăescu-völgy) glaciális formakincsének térképezéséhez, valamint a lichenometriai mérések helyszínénének jelölésére kézi GPS-készülékeket használtam (Milivojevic et al., 2008). A készüléktípusok következők voltak:

- Trimble Juno SB
- Magellan Mobil Mapper
- Magellan Meridian Platinum
- Magellan eXplorist 600

A Trimble eszköze voltaképpen egy terepi PDA IP65-ös szabvánnyal (por- és cseppálló), amelynek kezelése a hozzátartozó mutatóceruzával a kijelzőn keresztül, illetve a vezérlőgombokkal valósul meg.
A mérések során különös figyelmet szenteltem a kárfülkékre és a morénákra, mivel ezek a glaciális peremi formák kritikusak a gleccser-rekonstrukciókhoz (Clark et al., 2004), illetve az azokra épülő egyéb kalkulációkhoz (pl. hóhatár, térfogat, stb.). Nemcsak a formák mérése, térképezése nehéz, hanem azok felismerése is, mivel a formákat a külső erők nagymértékben erodálhatták.

A mérésekhez három ESRI shapefile-t határoztam meg: pont, vonal és poligon geometriával. Mindegyiket elláttam egy „Name” (név) és egy „Megjegyzés” (megjegyzés) mezővel, 20 illetve 100 karakter hosszúsággal. A névnél törekedtem az egységes nevezékre (pl. buhmor = Buhăescu-völgy morénája). A magassági érték a GPS-mérésből származott és Z-shape-ről (magassággal rendelkező) lévén szó a geometriában automatikusan tárolódik. Az így összefüggő fájlokat ArcMap-ben megnyitottam és beállítottam a szimbolikát, valamint a rétegsorrendet és egy külön térképi projekt fájlba (mxd) mentettem el. Az ArcPad bővítményt bekapcsolva az ArcPad eszközcsoport aktív lesz, amelyel az mxd, valamint annak teljes adattartalma az eszközre másolható. Beállíthatjuk a vektoros, valamint a raszteres adatok fájltípusát.

A Magellan eXplorist készülék alapértelmezetten nem kezeli az ESRI shape fájlokat, ezért az adatkonverzióhoz a GPS Trackmaker alkalmazást használtam. GPS adatcserénot ventiláltam (gpx) segítségével tudtam az adatcseréért megvalósítani.

A mérések során a Trimble Juno, illetve a Mobil Mapper készülékekhez külső antennát használtam, amelyek mérőegységét a mérésekhez használt napellenzős sapkán található zsebbe helyeztem (így minden mérésem kb. 1,8 méterrel magasabb lett, amit a számításoknál figyelmebe vettem). Valamennyi mérésnél figyeltem arra, hogy a PDOP érték a lehető legalacsonyabb legyen (5 alatti). A DOP (dilution of precision ~ mérési pontosság) (ESRI, 2015c) általános, mértékegység nélküli mérőszám, amely a mérés elméleti pontosságát mutatja. Jelen vevők csak a PDOP (positional DOP – pozíciós mérési pontosság) értéket írják ki valós időben, illetve jelzik, ha a mérés túllépte azt. Pontatlan mérés elsősorban magas sziklafalak tővében és/vagy rossz műhold konstelláció esetén jelentkezett, azonban a morénák mérése során mindig túrédhatáron (PDOP=5) belül.

 Három korábbi felmérés (Szilády 1907; Sawicki 1911; Sîrcu 1978) szkennelt térképi mellékleleteit georeferáltam, a releváns tartalmakat vektorizáltam, hogy azokat vizsgálataim eredményeivel összevethessem, illetve a terepen ellenőrizzem a formák meglétét. Egy-egy völgybe visszatérve a már kész gleccser rekonstrukciós
eredményeimet a terepen is ellenőrizhettem, és ha kellett kiegészítő méréseket végezem, amelyek a gleccser kiterjedéseket véglegesítésében voltak segítségemre.

A GPS-alapú mérések mellett terepi jegyzőkönyv és nagy felbontású, digitális tükörreflexes kamerával (DSLR) digitális fotók (10 megapixel) készültek. A fotók editálást (fehéregyensúly, fényerő, kontraszt, vágás, feliratok, panorámakép) Photoshop (CS3/4/5) szoftverrel végeztem.

5.2.3. Paleogleccser-felszínrekonstrukció

A különböző rekonstrukciós eljárások elméleti leírása a 3.3. fejezetben található, így az ott bemutatott módszertani alapokon végeztem a rekonstruált paleogleccserek felszínrekonstrukcióit. A kutatási területen a vizsgálataim elején még kézi rekonstrukciót alkalmaztam, mivel a numerikus modellezést leíró módszertant még nem ismertem. A szélesebb körű szakmai át- és kitekintést, valamint a numerikusmodellezésen alapuló publikációk megjelenését, elérhetőségét követően fokozatosan tértem át a numerikus rekonstrukciókra.

5.2.3.1. Manuális rekonstrukció

A kézi rekonstrukciós vizsgálat előnye a numerikus modellezéssel szemben a nagy fokú felhasználói kontroll, – mivel a legtöbb inputot kézzel visszük be és nem valamilyen algoritmus képezi le – továbbá a rendkívül egyszerű műveleti sorrend hátránya hogy igen lassú, több szerkesztésnél keletkezhet olyan hiba, ami kihatással van valamennyi azt követő lépésre, illetve hogy megfelelő elméleti háttér nélkül rendkívül szubjektív lehet.

Első lépésként a rendelkezésre álló geomorfológiai bizonyítékok segítségével meghatároztam a paleogleccser kontúrját, amihez poligon geometriájú geoadatbázis elemosztályt használtam. Körültekintően jártam el és a művelethez valamennyi terepen mért (kalibrált) mérés, nagyobb felbontású digitális fénykép segítségére volt, amelyet DDM (Clark, 1997; Kuhlemann et al., 2005) és nagy-felbontású ortofoto (0,5 m/pixel) egészített ki (Knoll és Kerschner, 2009). A peremi formáktól mentes területeken a legmeredekebb lejtőszögnél a szakirodalomból ismert 60°-ot jelöltem ki (Meierding,
A 60°-os meredekség reprezentálására ArcGIS-szel lejtőszög térképet készítettem (Aspect), majd a rasztert 2 osztálya: 60° alattira és felettire osztottam, utóbbit jól látható színnel jelöltem (43. ábra).

43. ábra. Lejtőkategória térkép két osztásközzel: a színátmenetes barnás árnyalatok a 60° alatti területek (minél sötétebb, annál meredekebb), illetve világos kékkel a feletti értékek

Ahol az érték 60–65 ° között volt és csak pár pixelt tett ki, ott a pár fok különbséget még hibahatáron belülinek vettem, hiszen a posztglaciális erózió ezeket a formákat tovább hangsúlyozhatta, meredekebbé tehette. Adott pixel és közvetlen környezetének (a vizsgált pixelek száma a Data Frame méretétől és így az attribútum tábla sorainak/oszlopainak számától függ) értékének megállapítására az ArcGIS Pixel Inspector eszközét használtam (44. ábra).
44. ábra. ArcGIS Pixel Inspector eszközével raszteres adatink, valamint a felhasználó által beállított számú szomszédos pixelek pixelértékei jelennek meg.

A gleccserkitöltésekhez a határvonalukat legjobban közelítő poligonokat szerkesztettem (Napieralski et al., 2007). Pontos é s a későbbi származtatott értékek kiszámításához szükséges rekonstrukcióhoz azonban a gleccser háromdimenziós felületének ismerete is szükséges. Ehhez a paleogleccscerek adapterületeihez tartozó háromdimenziós felületeket szintvonalak kézi rajzolásával és interpolációval lehet elkészíteni. Ezek jelentették a precíz paleogleccser felszínek alapját. Az egyes lépések leírásánál zárójelben a vonatkozó ArcGIS eszköz neve található.

Az 1:25 000-es méretarányú román georeferált topográfiai térképek DDM-nél elkészített szintvonalait behívtam, majd ebből külön-külön kivágtam az egyes gleccserpoligonokat (Erase). A gleccser szintvonalakat úgy vettem fel, hogy beállítottam a végpontra ráhúzást (Snap), majd megrajzolásuknál a topográfiai adottságokat, valamint a 3.3.1 fejezetben leírt elméleti megfontolásokat vettem alapul. A
szintvonalközt a laposabb területeken 50 m-ben, míg az élénkebb domborzatú részeken 10 m-ben határoztam meg. Hogy a két terület közötti átmenetet közelítőleg megkapjam, előzetes ELA becslést végeztem a domborzat alapján az ssAAR módszerrel, így megállapítottam mekkora területet metsz ki a teljes területből a két terület (az egzakt arányszám meghatározásához háromdimenziós gleccserfelület szükséges). Az így vektorizált szintvonal magassága megegyezett annak magasságával, amelyikre snappeltünk, ez biztosította hogy összeolvastás után (Merge) a két szakasz ugyanazt a magassági attribútumot kapta (a magasságot tartalmazó mező – altitude – megegyezett). A szintvonalakat töréspontokra – vertexekre – bontottam (Split Line at Vertices), majd azokat további pontokra (Feature to Point). Ebből raszteres felületet interpoláltam Kriging interpolációval (Kriging, 5*5 méter/pixel). Erőforrás optimalizálás miatt ajánlott nem a teljes mintaterületre futtatni az elemzést, így én a gleccserfelületnél kb. 100 m-rel nagyobb területre készítettem és a raszter generálását csak erre a futtattam le. Ezt a rasztert megvágva a poligonál megkapta a gleccser háromdimenziós modelljét.

Ellenőrző szintvonalakat generáltam (Create Contours) az interpolált gleccserfelszínből – 10 m-es szintvonalközzel – hogy lássam a szintvonalak futása közelítőleg megegyezik-e az input állománnyal. Ha hibás, kiugró magasság jött ki, akkor javítottam, ha pedig szükség volt rá, kiegészítő szintvonalakat vettem fel és újrafuttattam raszter interpolálását. Újrafuttatásnál figyeltem arra, hogy ne keletkezzen újabb állomány, így mindenesetben felülírtam a korábbi futás eredményét (ArcMap/Geoprocessing/Geoprocessing Options/Overwrite the outputs of geoprocessing operations engedélyezése), amelyet a Results fülből kezdeményeztem. A raszter segítségével a gleccserpoligont a későbbi ELA₀ rekonstrukció érdekében háromdimenzióssá konvertáltam (Functional Surface, ehhez a gleccser DDM-et kell megadni) (45. ábra).
45. ábra. Példa gleccserfelszínek kézi rekonstrukciójára: A: gleccserpoligon a domborzati szintvonalakkal és a morénákkal; B: gleccserszintvonalak; C: interpolált gleccserfelszín ellenőrző szintvonalakkal (piros); D: háromdimenziós gleccserfelszín a domborzatra nyitva ArcScene-ben

5.2.3.2. Numerikus módszeren alapuló kétdimenziós rekonstrukció

Az előzőekben bemutatott kézi módszer mellett a numerikus modellezésen alapuló paleogleccser-felszínrekonstrukcióra is kiválóan alkalmas mintaterületem. Glaciológiai értelemben véve nem komplex táplálóterületű, atipikus jégárakat, hanem egyszerűbb völgyi-, vagy kárgleccsereket rekonstruáltam, amelyek nagyban egyszerűsítik az elemzést és csökkentik a hibázás lehetőségét. A numerikus modellezés nagy előnye, hogy olyan helyen is nagy biztonsággal használható, ahol a glaciális formakincs hiányzik, ritka, vagy pedig nagyban átalakult, így nagyfokú lehet a bizonytalanság (Rea és Evans, 2007; Benn és Hulton, 2010; Carrasco et al., 2013; Ignéczi, 2014). A Radnai-havasokban választott mintaterületemen a glaciális formakincs – méretéből fakadóan is – a
Buhăescu-völgyben őrződött meg legtömegesebben és legváltozatosabban. A Zănoaga Mare-völgyben példaértékű oldalmorénának, valamint erodált végmorénák találhatók, míg a Zănoaga lezeruli-völgyben a formák megtartása kevésbé jó. Mindhárom völgyben több eljegesedéshez kötődő gleccserkiterjedést tudtam rekonstruálni, amelyek kitűnő alapot biztosítottak a modellezéshez. Az egymástól független kézi és a numerikus modellezésen alapuló rekonstrukciók arra is alkalmasak voltak, hogy az előbbi, viszonylag szubjektív módszert egy kvantitatívabb eljárással vessem össze.

A numerikus modellezés bármelyik típusával is végezzük az elemzést, ki kell jelölnünk olyan szakaszokat a gleccser kontúron belül, amelyek mentén a rekonstrukció alapját képező hossz- és keresztszelvényeket felveszük. Ezek a szelvények képezik a sodorvonal (flowline) modell alapú rekonstrukció alapjait, amelyek mentén a 3.3. fejezetben bemutatott eljárás segítségével kétdimenziós gleccserrekonstrukciót készíthetünk.

A szelvények kijelölése az egykori gleccser kiterjedéseket kijelölő gleccserpolygonok elvégződésétől – tehát a legalacsonyabb pontjától – a gleccser legmagasabb pontjáig terjed. A szelvényt pedig a völgyvonalon, azaz a legmélyebben szakaszon keresztül vezetjük a vízválasztóig. A völgy alján történő vezetéstől abban az esetben kell eltérjünk, ha az eljegesedési domborzatot a fluviális erózió már átalakította, tehát ott, ahol a völgyprofil már nem parabola, hanem V-profilú. Ebben az esetben közvetlenül a völgy mellett, az eredeti domborzat feltételezett magasságában kell felvégyük a szakaszt, ugyanis a modell inputjaként az egykori domborzat magassága szükséges. Összetett táplálóterületek jövője – mint amilyen a Buhăescu Mare-völgy– valamennyi mellékvölgyben is fel kell vegyük ezeket, úgyelve arra, hogy ugyanúgy a gleccser végétől kezdjük meg a szelvények rajzolását.

A keresztszelvényeket úgy vettem fel, hogy minél jobban reprezentálják egy-egy gleccserszakaszt. A reprezentatív helyek kijelölését vizuális módon, a szintvonalak, valamint a domborzatmodell háromdimenziós elemzésével állapíttattam meg. Ahol a lejtőszögben jelentős ugrás volt, valamint a keresztirányú völgyprofil jelentősen változott, ott az egykori gleccserek folyásirányára merőlegesen szelvényeket vettem fel. A Buhăescu Mare-völgy gleccserei esetén a konfluenciánál további szelvényeket felvételeztem. Előzetes szelvény vizsgálatokhoz az ArcGIS gyári szelvényrajzolóját használtam (46. ábra). Bár ez is alkalmas kereszt- és hossz-szelvények készítésére, azonban kizárólag azok XYZ értékei nyerhetők ki, amelyek esetemben csak korlátozott
számításokat tettek volna lehetővé. A részletesebb szelvényrajzolás előkészítését az ArcGIS 3D Analyst eszközkészletével végezem. Első lépésben a szelvény feltételezett pozíciójában vonalat vettem fel (Interpolate Line), majd

46. ábra. Hossz- és keresztszelvények felvétele a Buhăescu Mare-völgyben; a gyári profilrajzoló eszközhez először vonalas grafikát kell felvenni

szelvényt készítettem (Profile Graph), ügyelve arra, hogy az úszómenü legördülőjéből a domborzati gridet válasszuk ki (47. ábra).
Az így elkészült szelvényt raszteres (pl. png), valamint táblázatos (pl. xls) formában is exportálni lehet (48. ábra).

A hossz- és keresztszelvények előállítását ArcMap-ben kezdtem, amelyhez felvettem egy-egy új törtvonal (polyline) geoadatbázis elemosztályt, majd ezekben egy szöveg típusú mezőt az egyes szelvények nevének tárolására (pl.: Zanoaga_Iezerului_kszelv_01) (49. ábra). A munkafolyamat fázisai nem cserélhetők fel, mivel a keresztszelvényeket csak a hossz-szelvények feldolgozását követően tudjuk felvenni!

Először a hossz-szelvényeket dolgoztam fel, amelyhez a ráhúzás (Snap) tulajdonságai között beállítottam az élre (Edge) húzást, így szavatolva azt, hogy az elemosztályok fizikailag is kapcsolódjanak. A vonalakat elvileg a völgy legalacsonyabb
pontján kell felvenni, gyakorlatilag azonban ahol a folyóvízi átformálás jelenetős volt ott a vektorizált vízfolyás mellett húztam meg ezeket. A következő lépésben a törtvonalakat azonos távolságokra elhelyezkedő töréspontokra daraboltam fel (Editor/Split), úgyelve arra, hogy két pont között a távolság megközelítőleg 5 méter legyen. A szakaszokat ezt követően pontokká konvertáltam (Feature to Point), majd az így megkapott pontréteget az Interpolate to shape eszközzel a DDM alapján háromdimenzióssá konvertáltam, így a geometriája az X, Y koordinátá mellett a magasságot is tartalmazta. Az Excelben történő feldolgozáshoz elengedhetetlen a Z (magassági) koordináta ismerete, így az Add XY Coordinates eszközzel a magassági értékeket is kiírattam az attribútum táblába. Az attribútum táblát a Table to Excel toolal mentettem ki Excel natív (xls) fájiformátumába.

49. ábra. Hossz- és keresztszelvények felvitele spanyol mintaterületen (Rodríguez-Rodríguez et. al, 2011)

A hossz-szelvények mentén kiszámoltam a kézi rekonstrukciós gleccserfelszín magassági adatot is, amelyhez a 3D Analyst eszközcsoporthoz az ehhez tartozó gleccser felszín adtam meg. Az eredményeket a fent bemutatott módon nyertem ki.

A keresztszelvények vektorizálsához beállítottam az élre húzást. Az újabb, 10.0 feletti ArcMap verziókban a Snap funkciót egy külön eszközcsoporthoz (Toolbar) tették, ahol azonban csak a ráhúzás típusát lehet beállítani: pontra (Point Snapping), Végpontra (End Snapping), töréspontra (Vertex Snapping), élre (Edge Snapping) (50. ábra).
ábra. A ráhúzás (Snapping) alapértelmezett tulajdonságai ArcMap 10-es szoftvercsaládban

Helyette a klasszikus (Use Classic Snapping) ablakot kell előcsalogatni az Editor eszközcsoporthoz/Options/Use classic snapping aktiválásával (51. ábra).

51. ábra. A klasszikus ráhúzás menü beállítása ArcMap 10-es szoftvercsaládban

Ennek a fajta snappelésnek különösen akkor van jelentősége, ha a Data Frame-ünk több hasonló geometriájú, szerkeszthető réteget (editálás alatt az tekinthető szerkeszthetőnek, ami egy geoadatbázisban, vagy egy könyvtában található) tartalmaz és a rétegek egymáshoz nagyon közel helyezkednek el. A keresztszelvényeket a szintvonalakat elmetsző gleccserpoligon szélénél, ugyanazon szintvonal magasságnál kell felvenni (néhány speciális esetttől – érintés – eltekintve a szintvonalakat a gleccserpoligon két helyen metszi el). A szakasz megrajzolásakor keresztezzük a sodorvonal ponttá konvertált rétegét, amelyek közül az egyeneshez legközelebb esőre rásnappelünk. A szerkesztés végeztével ugyanazokat a lépéseket hajtjuk végre, mint a hossz-szelvényenél: 5 m-es szakaszokra bontás, pontkonverzió, xyz attribútum kinyerés.
Hogy megtudjuk pontosan melyik hossz-szelvényi pontnál található keresztszelvény, a
két réteget összemetsszük (Intersect), így megkapjuk a metszés pontjának ID-ját, amely egyedi azonosítóval már rá tudtam keresni a metszés helyére – ennek a sodorvonal módszer Excelben történő alkalmazásakor volt jelentősége. Emellett a morénákat tartalmazó 3 dimenziós vektoros törtvonal állományt is 5 méteres szakaszokra osztottam.

A hossz-szelvények több módszerrel is kiszámolhatók, így azok eredményei összehasonlíthatók és a legalakalmasabb módszer kiválasztható. Az Excelben végezhető számítás alapja a már bemutatott Benn és Hulton (2010) módszer. A domborzati szelvények mellett ehhez 2 további input meghatározására van szükség:

- folyáshatár (vagy alapsúrlódási nyomás)
- alaki paraméter.

Paleogleccserek esetén a folyáshatár értéke szakirodalmi adatok alapján is meghatározható, leggyakrabban használt értéke 50–100 kPa között változik (Nye, 1952; Paterson, 1994), de ennél nagyobb tartományban is lehet 40–120 kPa (Makos és Nitychoruk, 2011). A változtatható folyáshatárú model esetében fix magasságú peremi formákkal határozhatjuk meg egy szakasz jellemző folyáshatárértékét.

5.2.3.2.1. Kétdimenziós sodorvonal módszer

A domborzati hossz-szelvények kijelölését, valamint folyáshatár, illetve az egyes völgyi szakaszokra jellemző alaki tényező meghatározását követően Benn és Hulton (2010) modelljét alkalmazva Microsoft Excelben készítettem el a gleccserefelszín-rekonstrukciót. Az xls fájljában minimalis mértékig testreszabtam, ha kellett magyarázatom, illetve külön fülön tároltam az összes input adatot, így a domborzati szelvényből kinyert xyz pontsort, de a képleteket eredeti állapotukban hagytam (53. ábra).

A háromféle model közül a legegyszerűbb és legkevesebb inputot igénylő számításhoz csak az xyz pontsort kell beilleszteni, amelynél a folyáshatár a standard 100 000 Pa (τ_b=100 kPa) és az alaki paraméter konstans 1 (f=1) (Rea és Evans, 2007). A pontok közötti távolságot Pitagorasz-tétel alkalmazásával kapjuk meg, amely értékeket kumulálva a végponttól (gleccsernyelvtől) való távolságot számítjuk ki.

![53. ábra. A sodorvonal módszer számításához használt Excel-számolótábla; a képkivágatról hiányzik a „b” és a “c” együttható](image)

A táblázatba a kézi rekonstrukció (sodorvonal menti) felszínrekonstrukció eredményeit is beillesztettem, mivel azt a model általi magasságokkal összevetettem.

Az inputok beillesztését követően a megfelelő cellákat kijelölve kapjuk meg az elvi jégfelszín magasságokat. Az eredményeket a keresztszelvényeknél bemutatott módon vizuálisan is interpretáltam.
5.2.3.2. Kétdimenziós sodorvonal módszer keresztszelvényekkel

A kézi rekonstrukció tovább pontosítható keresztszelvények alkalmazásával, mivel azokból az alaki paraméter kiszámolható és gleccser szakaszokhoz hozzárendelhető. Az alaki paraméter értéke völgyi- kárgleccser esetében mindig kisebb egynél, hiszen az oldalfalaknál és az aljzaton a súrlódás következtében nagyobb hajtónyomás szükséges a gleccser megindulásához (csak abban az esetben ha a hajtónyomás = súrlódási nyomás). Az Excelbe a 3.3.2.2. fejezetben bemutatott képlet integrálva van, így csak a keresztszelvény pontsor értékeit kell megadni.

5.2.3.2.3. Kétdimenziós sodorvonal módszer keresztszelvényekkel és változtatható folyáshatárokkal

Az alaki paramétert és a változtatható folyáshatárt használó sodorvonal rekonstrukcióval a globálisan meghatározott folyáshatár érték a mintaterülethez igazítható. Ehhez oldalmorénákat (vagy trimeline-okat), mint kalibráló magasságot kell használni. A model alapja a kétdimenziós, keresztszelvényekkel kiegészített sodorvonal módszer, amelynek számolótáblájába beillesztettem a korábban x,y,z pontsorról alakított, törtvonal geometriájú konvertált morénákat. A beillesztéshez ArcGISben megnéztem, hogy a moréna kezdő- és végpontja mely sodorvonal mely ID-khoz van a legközelebb. Így kaptam egy szakaszt, amelynek magasságát nem a model, hanem moréna magassága adja meg. A grafikus megjelenítésen már láthatóvá vált, hogy hol tér el a model és a moréna magassága. Ahhoz hogy a model magasságát a morénájához igazítsam, a folyáshatár értéket – a meghatározott ID-k esetében – manuálisan kellett megváltoztatnom addig – de minimálisan 40 kPa-ig, maximálisan 150 kPa-ig – amíg a két vonal a lehető legjobban megközelítette egymást.

5.2.3.3. Numerikus módszeren alapuló háromdimenziós rekonstrukció

A sodorvonal módszerekkel készített kétdimenziós jégprofilok kiterjesztése szükséges ahhoz, hogy jégár rekonstrukciónk teljeskörű (pontos terület, ELA₀ és térfogat) elemzésekre legyen alkalmas. A háromdimenziós modellezés egyik alapja a kétdimenziós jégprofil, a másik pedig a geomorfológiai térképezés és az abból – glaciodinamikai, morfológiai megfontolások – alapján szerkesztett gleccserkontúr. Mivel
utóbbi a mintaterületen a részletes geomorfológiai térképezés és az elméleti megfontolásokat követően rendelkezésemre állt, a kétdimenziós adatokat interpoláltam. Ignéči (2014) mintaterületén kizárólag végmorénák voltak ismeretesek, így adatait extrapolálta.

Az interpolációhoz a vektorizált szintvonalakat vettem alapul, amelyet minden rekonstrukcióhoz külön-külön kimaszkoltam a gleccserpolygonokkal (Erase). A szintvonalak folytonossága így megszakadt és azokon két új végpont (Endpoint) keletkezett pontosan ott, ahol a gleccserkontúr elmetszette azt. A végpontok magassága megegyezett a szintvonal magassági értékével. A végpontok között még egy ismert magasság volt: a hossz-szelvények mentén a sodorvonal módszerrel kiszámított magasság.

Az Excelben található pontsorokat közvetlenül is ArcGIS-be lehet importálni (54. ábra) és nem szükséges txt-be exportálni, majd onnan beolvasni.

![54. ábra. Az ArcCatalog teljes körűen kezeli a Microsoft xlsx fájlformátumot; valamennyi Excel munkalapot beolvassa, amely további elemzések, megjelenítések alapja lehet](image)

Az xlsx munkalapot csak akkor tudjuk megfelelően kezelni, ha előzetesen letisztítottuk úgy, hogy a tábla első rekordja a fejléc, ékezetek és szóközök nélkül (például X; Y; Z) és a többi rekord mező számértéket tartalmaz.
Mivel a Buhăescu Mare-völgy több szelvénye (1 A/B/C/D) is a gleccsernyelvtől indul, felesleges átfedéseket tartalmaz. Szélsőséges esetben ez a gyakorlatban azt eredményezheti, hogy az 5 méterenkénti osztásköz miatt egy pont szomszédságában akár három eltérő magassági érték is szerepelhet (hiszen többféle rekonstrukciós eljárással készültek a magassági pontok). A törlés alapját sodorvonal szerinti prioritálással készítettem, így a kétdimenziós, keresztszelvényekkel és változtatható folyáshatárokat használó sodorvonal módszer eredményeit elsődlegesen benne hagytam, illetve az (egymással átfedő) 1 A és 1 C szelvény esetében a törlés határát a konfluenciánál húztam meg. Az 1 B és 1 D szelvény esetében a mellékvölgyek becsatlakozását vettem választóvonalnak.

A tisztított és ArcMap-be nyitott táblázatból pont típusú megjelenítést csináltam (Display X Y Data), amelyhez megfeleltettem a koordinátamezőket és beállítottam a vetületi rendszert (Stereo70) (55. ábra). Az így megjelenített pontsort adatbázisba exportáltam.

Térinformatikai feladat, hogy a szintvonalak végpontjai, illetve a magasságok közé további pontokat interpoláljunk. Az interpolációhoz nem szükséges a vonalas állományt ponttá konvertálnunk, mivel a Topo to Raster eszköz az interpoláció során a 3 fő geometriai elem mindegyikét képes kezelni. Az elsődleges magasság adatnál (Primary type of input data) a hossz-szelvény menti magasságot (Contour) adtam meg.

Ebből raszteres felületet interpoláltam a Topo to Raster által használt, hidrológiailag korrekt ANUDEM eljárással (Hutchinson, 1989; Hutchinson és Dowling, 1991) 5 méter/pixel felbontásban.
56. ábra. A Buhăescu Mare 1-gleccser rekonstruált jégfelszíne, illetve a rekonstruálás alapjául szolgáló hossz- és keresztszelvények; a modellezett felületből 20 m-enként szintvonalakat generáltattam, amelyek megfelelnek a szakirodalomban leírtaknak: az ablációs területen enyhén homorúak, míg az akkumulációs területen domborúak

A rekonstruált jégfelszínek (56. ábra) már alkalmasak további számításokra, így az egyensúlyi vonal megállapítására is, hiszen olyan háromdimenziós testek, amelyek segítségével sík poligonokat konvertálhatunk magassággal rendelkező felületekké (Interpolate Shape), vagy szintvonalakat készíthetünk (Create Contours). A szintvonalak generálása a felület elsődleges validálásra is alkalmas, hiszen azok futásában vizuálisan könnyen megállapítható, ha az inputok, vagy az eszköz paraméterezése hibás volt.
A numerikusan modellezett gleccserfelület és az alatta található domborzat különbsége adja a jégvastagság gridet. Ehhez először a domborzatot akkorára kell vágni, mint a gleccser gridet (Extract by Mask). Fontos, hogy a két grid pixelei tökéletesen átfedjenek egymással, ezért az eszköz környezeti beállításai alatt (Environment settings/Processing Extent) a Snap Raster legördülőjéből válasszuk ki a gleccser gridet (57. ábra).

A két gridet ezt követően több módon is kivonhatjuk, de legegyszerűbb a Spatial Analyst/Minus eszközével (58. ábra):

57. ábra. ArcMap környezeti változóinak beállításával számításaink pontosabbá tehetők, illetve munkafolyamatokat (pl. vetületi konverziók) spórolhatunk meg

58. ábra. Két felszín magasságkülönbségét az ArcGIS Minus eszközével nyerhetjük ki
A jégvastagság grid (59. ábra) – ami tulajdonképpen a rekonstruált jégtest – 3 fő input segítségével állt elő:

- domborzatmodell
- hossz- és keresztszelvényekkel modelllezett kétdimenziós profilok
- gleccserpoligonnal vágott (digitális) szintvonalak.
5.2.3.4. Paleogleccser-felszínrekonstrukciók verifikálási eljárásai

Paleogleccser felszínünk akár teljesen manuális, akár kétdimenziós szelvényekkel segített kézi, vagy pedig numerikus módszeren alapuló háromdimenziós rekonstrukcióval nyerjük ki, szükséges eredményeink verifikálása.

Kézi rekonstrukciós eljárásnál a gleccserfelszínből generált szintvonalakat és az input szintvonalak futását hasonlítjuk össze. Ha jelentős eltérés mutatkozik, akkor meglévő interpolációs eljárást kell finomhangolni – Kriging esetén például a variogram állításával – vagy pedig más eljárás után nézni (pl. TIN, vagy Topo to Raster). A Nye egyenlet (τb = rgh sinα) raszter kalkulációs műveletek segítségével is levezethető. A jég sűrűsége (r) és a gravitációs gyorsulás (g) konstans, a jég vastagsága (h) a fenti fejezetben leírtak szerint kiszámolható. ArcGIS Raster Calculator eszközével, az input rétegek megadását követően az egyenlet megoldható. Amennyiben a hajtónyomás értéke 40 – 140 kPa (6.2.2. fejezet) közé esik, a rekonstrukció helyes (60. ábra).

![60. ábra. A Topo to Raster interpolációs eljárás egyetlen paraméterének megváltoztatása (elsődleges input adat) jelentős domborzat karakterisztikai változást okozhat (Buhăescu Mare 1-gleccser) (bal); Zănoaga lezerului 2-gleccser javítás előtti állapota (jobb); ahol a hajtónyomás értéke megfelelő (zöld), ott a szintvonalakat változtatlanul hagytam, ahol azonban 40 kPa alatti (kék), vagy 140 kPa feletti (piros) ott a szintvonalak korrigálásával a jégvastagságot változtattam][60. ábra]

Kétdimenziós szelvényekkel végzett rekonstrukciók ellenőrzését a sodorvonal mentén úgy hajthatjuk végre, hogy egy pont Excelben rekonstruált magasságát, valamint az interpoláció során kapott magasságot ArcMap-ben egybe vetjük (61. ábra). A másik eljárás, hogy készítünk egy másolatot arról a pont rétegünköről, amelynek magasságát a gridből nyerjük ki (Interpolate shape/Add XY), és ezt a magasságértéket táblázatkezelőben kivonjuk az interpoláció előtti értékből.
Ábra. ArcMap-ben az interaktiv azonosító (Identify) segítségével a zöld pont, illetve az alá nyitott jégfelszín grid magasságát lekérdezhető; a zöld pont magassága (1733,959461 méter) az Excelben készített hossz-szelvény rekonstrukció alapszik, míg a grid a Topo to Raster eljárással interpolált magasság (1734,031738 méter); a két pont közötti különbség deciméter alatti

5.2.4. Egyensúlyi vonal (ELA₀) meghatározása

A rekonstruált paleogleccserek egyensúlyi hóhatár értéke a pontos háromdimenziós felszín ismeretében kiszámítható. A 3.2. fejezetben bemutatott paleo-egyensúlyi vonal rekonstrukció eljárások közül a területalapú ARR módszereket választottam. Alkalmazásához két inputra van szükség: felület-rekonstrukcióra, illetve AAR₀ arányszámra. Előbbit az előző fejezetben bemutatott módon kaptam meg, míg utóbbi megállapítására több terület analógiáját, illetve az AAR/ssAAR arányszámot használtam.

A Kárpátokban több területalapú ELA₀ meghatározást is végeztek AAR módszerrel. Reuther et al., (2007) a dél-kárpáti Reteyzátban 0,75-t használt, míg Ignéczi (2014) a szomszédos Godjánban ezzel, illetve 0,67-tel is számolt. Indokolt lenne a Kárpátokhoz legközelebbi eljegesedett terület, az Alpok általános, 0,67-es értékét (Gross et al., 1977) átvenni, azonban az helyi sajátságokra, helyi mérettartományokra és recens gleccserekre lett meghatározva, és nem olyan kisméretűekre, mint mintaterületem gleccserei. Klimatikus megfontolásból ezt az értéket kis mértékben növelhetnénk is, hiszen a Kárpátok több kontinentalitást mutat, ami az AAR növekedésével járna (Ignéczi,
2014), mivel több hó akkumulációra van szükség a gleccser egyensúlyban tartásához. Azonban a Radnai-havasokban a Dél-Kárpátokban ismert kontinentális hatás még nem annyival erősödik fel, hogy az jelentősen módosítson az AAR értékén.

Két AAR-értékekkel dolgoztam: a „klasszikus” AAR esetében 0,67-es arányszámmal, hogy az ezzel számolt értékeket kárpáti területek eredményeivel össze tudjam vetni, illetve a másik, méretspecifikus AAR arányszámmal. Utóbbi használatát az indokolta, hogy globális glaciológiai adatbázisok alapján 4 km² alatti gleccserterület estén 0,67-nél kisebb számot kell választani (Kern és László, 2010). A területfüggő ssAAR használatával gleccserenként változtatható az érték és így jelentősen pontosabb ELA₀ érték határozható meg.

Az arányszám és a terület meghatározását követően ki kell jelölnünk a gleccser területén annak a vonalnak a magasságát, amelynek mentén a gleccser az arányszám szerint felosztható. Például abban az esetben, ha az AAR₀ 0,67-es értékét használjuk és gleccserünk 5 km²-es, akkor azt a választót keressük, amely felett a gleccser akkumulációs részének területe 3,35 km².

ArcGIS-ben a paleogleccser rekonstrukciós poligont vonallá, gleccserkontúrrá alakítom (Feature to Line). A gleccserhez tartozó és a kézi, vagy a numerikus modellezés eredményeként generált szintvonalakat behívom. Ezeknek a szintvonalaknak metszeniük kell a gleccserkontúrt. A metszést több módon is biztosítható: 1.) a gleccser felszínmodell elkészítésekor a még nem maszkolt (így nagyobb) területre futtatjuk le és csak utána vágjuk meg; 2.) manuálisan, utólagos ráhúzással – Snap; 3.) kézi rekonstrukció során a metszés megléte a felszínmodellezés alapja. A szintvonalak magassága ismert, ezért az attribútum táblából kiválasztom a 100 méteres szintvonalakat. A szintvonalas és a vonallá konvertált gleccserkontúr állományt összeolvasztom (Merge), ami az alapja lesz a 100 méterenkénti területzónáknak. A vonalas állományt poligonná konvertálom (Feature to Polygon), majd a zónákat attribútum táblában rekordonként kijelölőm, hogy lássam, a snappelés és így a 100 m-es zónák kialakítása valóban sikerült. Ezt az állományt háromdimenziós poligonná konvertálom (Interpolate shape), amelynek alapja a fent létrehozott gleccser felszínmodell.

Az attribútum táblát két új Double típusú mezővel bővitem, hogy részpoligon minimális (minel) és maximális (maxel) magassági értékét megkaphatjuk. A poligon magassági értékei az ArcGIS 10-es család bevezetése előtt a http://www.ian-
ko.com/free/EC10/EC10_main.htm oldalról letölthető Easy Calculate szkriptkészlet
shape_Get_Z_Min.cal, shape_Get_Z_Max.cal szkriptjével volt elérhető, de a 10-es és a
feletti verziókban már egyszerűbben: jobb egér gomb a mező fejlécén, Calculate
Geometry, majd a geometriához tartozó minimális/maximális magasság kiszámítása
(Max/Min Z of geometry) (62. ábra).

62. ábra. ArcGIS 10 szoftvercsaládban számos geometriai statisztikai funkció alapértelmezetten
elérhető, így a 3D poligonhoz tartozó maximális és minimális magasság is

Az attribútum táblát kijelölim, majd Excelbe importálok. A minimális és
maximális érték alapján meghatározom, hogy egy zóna melyik 100 méteres tartományba
esik. Az egyensúlyi vonal meghatározásához az alábbi képletet használom:

$$ELA_0 = h_1 + 100 \times (S_{100-AAR} - S_1)/S_{1.2}$$

ahol ELA_0 az egyensúlyi vonal magassága méterben; h_1 annak a zónának az alsó pereme,
ahol az egyensúlyi vonal húzódik; $S_{100-AAR}$ az ablációs terület arányszáma; S_1 a h_1
alatti terület; S_{12} annak a zónának a területe, amelyben az egyensúlyi vonal fekszik.
Először a területértéket kumulálom úgy, hogy a legalacsonyabb résztől indítom a
számítást. A teljes területből (S) kifejezem az ablációs területet az ssAAR arányszám
alapján: $S_{100-AAR}$, Kifejezem annak a 100 méteres zónának a területét ($S_{1.2}$), amelyikben az
eyensúlyi vonal található, ennek felső határa (h_2), az alsó pedig (h_1). A képletbe
behelyettesítve megkapjuk az ELA_0 értékét. Az egyensúlyi vonal magasságát az Excelben
összesített és kumulált értékek alapján, grafikonról is leolvashatjuk (63. ábra).
Az egyensúlyi vonal magassága a fenti ábráról is leolvasható; ehhez a 100 méteres zónákhoz tartozó területértékeket (hasábok) kumulálni kell (fekete vonal), majd megnézni, hogy ez és a kívánt arányszám (y tengely a bal oldalon) milyen magasságot metsz ki az x tengelyből

5.2.5. Gleccser térfogat és jégvastagság számítása

Paleogleccser térfogat és jégvastagság értékek meghatározásának két csoportját különíthetjük el az alapján, hogy a számítás részben, vagy teljes egészében a térinformatikai szoftverrel történik. Abban az esetben, ha az Ohmura egyenlet \(V = 28.5\times S^{1.357} \) empirikus képletét használjuk, csak egyetlen változóra, a rekonstruált gleccser felszínét megadó \(S \) értékére van szükség, amelyet az 5.2.3. fejezetben ismertetett módon kaphatunk meg. Ebből a \(V/S \) összefüggést használva megkapjuk az átlagos jégvastagságot.

Az ArcGIS 3D Analyst bővítményének Surface Volume eszközével statisztikákat kaphatunk meg a beállított vetületi rendszer mértékegységében: két-, illetve háromdimenziós paleogleccser felület, valamint a térfogat. Az értékeket *.txt fájlba írja ki, amelyet aztán konverziókkal Excelben, vagy ArcGIS-ben dolgozhatunk fel (64. ábra).

A minimális és maximális jégvastagságot az 5.2.3.3. fejezetben bemutatott jégvastagság gridből kiolvashatjuk (59. ábra). Az apróbb interpolációs hibákat jól mutatja, hogy akár negatív értékek is előfordulhatnak. Az átlagos jégvastagság értéket a térfogatot a háromdimenziós felülettel elosztva kapjuk meg.
6. Eredmények – térinformatikával támogatott glaciális környezetrekonstrukció

6.1. Geomorfológiai térképezés

Doktori kutatáson során részletes geomorfológiai vizsgálatot végeztem a Radnai-havasok nyugati felén választott három szomszédos, északias kitettségű völgyben, amelyeknek terepi mérései is felhasználva glacio-geomorfológiai térképet szerkesztettem. A Zănoaga Mare-, Zănoaga lezerului-, valamint a nyugati Buhăescu-völgyek döntően északkeleti és északi kitettségűek és glaciális formakincsük kitűnően konzerválódott (65. ábra).

65. ábra. Egyszerűsített geomorfológiai térkép glacio-geomorfológiai formákkal, domborzat árnyékolt digitális domborzatmodellre illesztve
6.1.1. Zănoaga Mare-völgy

Az alpesi méretekben kicsi és keskeny (maximum 600-700 m széles), ám jól fejlett kárfülke, amelynek glaciális formakincse remekül konzerválódott (66. ábra). Öt sorozat vég-/oldalmorénát azonosítottam a völgyben, amelyek a paleogleccser rekonstrukciók szempontjából rendkívül fontosak. A jégperemi oldalmorénát a völgy legalacsonyabbra lenyülő, leghosszabb gleccseréhez is térképeztem. A kárfülke középső, valamint a völgy alsó szakasznál, a völgytalpon 2-4 m magas erratikus blokkokat is bemértém. A felszíni vízfolyások hiánya nagy szerepet játszhatott abban, hogy ezek a formák ennyire épen őrződhettek meg.

66. ábra. A Zănoaga Mare-kárfülke felső szakasza a három legfelső morénasánc generációval; erratikus blokkokat a Zănoaga Mare 3-gleccser végmorénáinak közelében, illetve a völgy alsóbb szakaszain is találtam

6.1.2. Zănoaga Iezerului-völgy

A Zănoaga Iezerului-völgy a Pietrosul-csúcs alatt északkeleti irányú, 1760 m-en található lépcső mentén két – egymástól morfológialag merőben különböző – részre
osztható. A felső részen a domborzat élénkebb, jóval több völgytalpi formával bír és a lejtése is lényegesen kisebb, mint az alsóbb szakaszon, ahol jelentősen nagyobb a lejtőmeredékeség, és kevés a megbízható gleccserperemi forma. A felsőbb részen három morénagenerációt tudtunk azonosítani 1833, 1790 és 1775 m-en, míg az alsó völgyi szakaszon kettőt: 1277 és 1235 m-en.

A kárfülke felső szakaszának nyugati felét látványos, 500 m hosszúságú periglaciális eredetű sziklanyelvforma egy fosszilis sziklagleccser foglalja el, amely vélhetően törmelékkel borított kárgleccser(ek)ből fejlődött ki (Potter, 1972) (67. ábra). A fosszilis állapot a nyelv felszínén is megmutatkozik: a jég kiolvadásából származó 5-20 m átmérőjű és 10 m mély termokarsztos mélyedések, valamint dús vegetáció (a mozgás teljes hiányának jele) borítják. Az alpesi aktív sziklagleccserekhez hasonlóan a mozgás következtében kialakult kereszt- és hosszirányú gerincek tarkítják (Berger et al., 2004).

67. ábra. A Zănoaga Iezerului-völgy a Zănoaga Iezerului 3-gleccser végmorénája mentén két egységre bontható; a felső részen 1785 méteren található a lezer Pietrosul meteorológiai állomás, felette a fosszilis sziklagleccser termokarsztos berogyásokkal; háttérben a Visó-völgy és Borsa települése található 660 m-en

6.1.3. Buhăescu-völgy

Kutatásom harmadik vizsgálati helyszíne a Buhăescu-katlan nyugati fele, amely három részterületre osztható: Iezerle Buhăescu-, Buhăescu Mare- és a Buhăescu Mic-völgyre (68., 70., 71. ábra). Ez a terület karakterisztikájában merőben más, mint a két korábban tárgyalt völgy: jóval összetettebb, platók és mellékvölgyek láncolata, 5,5 km-es hosszú, valamint jóval kisebb lejtésű.

A délkeleti mellékvölgy (Buhăescu Mic) morfológiaja eltér az eddig tárgyaltaktól: egy széles hátba mélyült, maximális szélessége is csak 650 m (71. ábra). Mégis érdeklődésre ad okot a völgytalpon található négy morénageneráció 1805, 1617, 1544 és 1398 m-en.

68. ábra. A Buhăescu Mare-völgy középső része; balra középen a lészerele Buhăescu-kárfülke alatti konfluenciánál kezdődik a Buhăescu Mare 1-gleccser oldalmorénája, felette periglaciális törmeléknyelv húzódik; a Buhăescu Mare 2-gleccser végmorénáján fehér pásztorszállás látható
Terepi glacio-geomorfológiai vizsgálataim megerősítették, hogy a földtörténeti múltban a glaciális erózió is jelen volt, sőt intenzív felszínalakító folyamat lehetett. A völgyek morfometriailag, fluviális átformáltságuk vonatkozásában továbbá vég- és oldalmorénák magasságban is különbözőek mégis jól konzerválódtak, így alkalmasak további vizsgálatokra.

1. tézis
A mintaterület glacio-geomorfológiai szemléletű térképezése. A glaciális/periglaciális formakincs korszerű módszerekkel történő terepi felvételezése során megállapítottam, hogy a kutató-elődök korábbi felmérései elnagyoltak, új felmérések kellenek.

2. tézis
A választott mintaterületen a morénák szokatlanul jól megőrződtek, alkalmasak glaciális környezet rekonstrukcióra.

6.2. Gleccser rekonstrukciós eredmények– morfológiai, glacio-dinamikai alapokon

6.2.1. Gleccser kiterjedések – morfológiai, glacio-dinamikai alapokon

A geomorfológiai térképezés eredményeit térinformatikai adattárba töltöttem, majd ArcMap szoftverrel glacio-dinamikai megfontolásokat is figyelembe véve (Nye, 1952; Benn és Hulton, 2010) gleccser-rekonstrukciókat készítettem (69. ábra). A gleccserek elnevezése utal arra a kárfülkére, völgyre, ahol azok kialakultak. A gleccserkiterjedések pontos meghatározása szempontjából kritikus fontosságúak a gleccserperemi helyzetű morénák, melyek közül a legalacsonyabbak magassága 1146 m a Zănoaga Mare-, 1235 m a Zănoaga Iezeruli- és 1086 m a Buhăescu Mare-völgyben.
69. ábra. Glacio-dinamikai törvényszerűségek, valamint terepi és térinformatikai módszerekkel készített gleccserrekonstrukciók a Radnai-havasok nyugati felén; morfosztratigráfiai alapon öt morénagenerációhoz kötődő eljegesedési állapotot határoztam meg; a Rebra- és a Zănoaga lezerului fázist karakteres völgyi gleccserek, míg a soron következő hármát már csak kárgleccserek jellemzték
A Zănoaga Mare-völgy öt paleogleccser generációja közül a felső három (Zănoaga Mare 5, 4 és 3) kárgleccser rekonstrukciója egyszerűbb, köszönhetően a kevéssé tagolt völgyi morfológiának. E völgy két leghosszabb – Zănoaga Mare 2- és Zănoaga Mare 1- gleccserének rekonstrukcióját jól konzerválódott oldal- és végmoréna-párok segítették (69. ábra).

A Zănoaga Lezerului-völgy jégár-rekonstrukciója során öt gleccsert tudtam meghatározni. Az 1760 m feletti felső szakasz formáit az intenzív periglaciális folyamatok átmozgatták (69. ábra).

A kutatási terület leghosszabb gleccsere (4,2 km) az 1090 mIG nyújtózó, 5 km² területű Buhăescu Mare 1-gleccser. A rekonstrukció alapján a firngyűjtő felső szakaszát egy plató-jellegű gleccser, vagy jégmező (Finlayson et al., 2009) szinte teljes egészében kitöltötte, ahonnan kiindulva U-profilúvá alakította az alsóbb völgyi szakaszt. A völgyrendszer mindhárom vízsgált kárfülkéje táplálta ezt a helyi viszonylatban nagy kiterjedésű gleccsert. A Buhăescu Mare 2-gleccser morfológiájában hasonló, azonban méreteit tekintve már valamivel kisebb (3,2 km², 2,3 km) lehetett. A három további jégkitöltés (Buhăescu Mare 3, 4, 5) már a gerinchez közelebb húzódik és táplálóterületük is jelentősen kisebb. A Buhăescu Mare a-völgyben 1972, illetve 1977 méter tengerszint feletti magasságban talált akkumulációs formák jelentősen jobban konzerválódtak, épebbek.

70. ábra. A Buhăescu Mare-firngyűjtő legfelső morénagenerációi
A Buhăescu Mare a/b-völgy legfelső végmoréna generációjához mikrogleccser jégkiterjedéseket rekonstruáltam, ami alapján a B2/1 területe 0,025 km², B3/1 területe 0,011 km² (70. ábra). Ezek a mikrogleccserek a Zănoaga Mare fázisnál mindenképpen fiatalabbanak.

71. ábra. A Buhăescu-rendszer reprezentatív helyszínei: (1) a firngyűjtő gerinc közeli része; (2) vég- és recessziós morénák a Buhăescu a-kárfülkében; (3) a Rebra-csúcs (2268 m) bal oldalt középen a felhőben; oldal- és végmorénák a Rebra, Zănoaga iserelül és a lezerele Buhăescu fázishoz kötődően; Buhăescu a- és b-kárfülke a háttér közepén a Buhăescu Mare-csúcs alatt; a Zănoaga lezerelül fázis végmorénája gerincén a fehér tetejű házzal a kép jobb oldalán húzódik

A Buhăescu Mic-völgybe rekonstruált négy jégkitöltés mindegyike összeért a szomszédos platóból induló jégárakkal, amely magyarázza a mélyre vágódott kárfülke hiányát. Bár a völgy morfológiája nem „ideális”, mivel nincsenek meredek falai, felső szakasza lapos és nem védett, mégis elegendő hőfelhalmozódást biztosított gleccserek kialakulásához (69., 71. ábra).

A rekonstrukciókat megnehezítette, hogy a posztglaciális periglaciális és fluviális erózió, valamint a mállás és az aprózódás átformálták és részben lepusztították a gleccser permi morénákat és a völgytalpakat is átformálták.
3. tézis
Morfosztratigráfiai alapokon öt moréna generációhoz kötődő eljegesedési állapotot határozható meg.

6.2.2. Manuális és numerikus modellezésen alapuló rekonstrukció

A gleccser-felszínrekonstrukciókat a korábban elkészített gleccserkiterjedések alapján többféle módszerrel is elvégeztem, mivel doktori kutatásom alatt újabb eljárásokat is megismertem. A többféle megközelítés jelentős többletmunkát okozott, azonban jó alapjá volt annak, hogy kisebb elemzémmal teszteljem és összehasonlitsam a különböző megközelítések eredményeit.

A két-, illetve háromdimenziós numerikus modellezéseket kizárólag mintaterületem három völgyének legnagyobb jégárájára, a Rebra fázis gleccsereire (Zănoaga Mare 1-, Zănoaga lezerului 1- és Buhăescu Mare 1-gleccser) készítettem el, mivel méretükből adódóan itt lehetett legjobban vizsgálni a kézi és a numerikus módszer eredményeit és azok különbségeit. Ezen kívül a numerikus módszer nagyobb jégtestekre alkalmazható igazán, mivel kisebb jégtestek mozgásánál nem feltétlenül a belső plasztikus deformáció a legfontosabb, hanem például a kárgeccserek csuszamlás jellegű, rotáló mozgása. Az elméleti alapokat Benn és Hulton (2010), valamint kárpáti példán keresztül Ignécki (2014) alapján fogalmaztam meg. A numerikus modellezésekhez mindhárom völgyben hossz- és keresztszelvényeket vettem fel az 5.2.3.2. fejezetben leírtak szerint (72. ábra).

A hossz-szelvények menti magasságokat a Microsoft Excelben számítható Benn és Hulton (2010) módszer alapján készítettem. A modellhez szükséges folyáshatár és alaki
paraméter értékeket szakirodalmi adatok és saját számítások alapján adtam meg. Az alapsúrlódási nyomás (basal shear stress) leggyakrabban használt, már-már kanonikus értéke 50–100 kPa között változik (Paterson, 1994), azonban a gyakorlat nagyobb szórást mutat: Makos és Nitychoruk (2011) kárpáti (Magas-Tátra) rekonstrukciójuk során a gleccsernyelv környékén 40–85 kPa-t, míg a völgyek felső részén, a kárfülkék térségében 100–120 kPa-t használtak. Előbbi értéket azzal magyarázták, hogy a jég vastagságának növekedésével kisebb lejtés is elegendő a mozgás megindulásához, míg utóbbinál a vékonyabb jégtest megmozdulásához kell nagyobb lejtés és folyáshatár, amely egybecseng Hooke (2005) megállapításaival is. Cuffey és Paterson (2010) gleccsértípusok szerint differenciálja a folyáshatár értékét, így lassabban mozgó (100 m/év) gleccserek esetén 100 kPa az átlagos érték, míg nagy kiterjedésű jégtakaróknál 30–120 kPa. Tökéletesen plasztikus folyás esetén, a Nye modell értelmében τ_d (hajtónyomás) = τ_y (folyáshatár) = τ_b (alapsúrlódás) 50–200 kPa a nyomás, amely érték megegyezik a gleccsereken legtöbbször mérttel (ezért is terjedt el ez a leginkább). Kevesebb paraméterrel végzett, alapszintű vizsgálataimhoz a szakirodalomban alpesi gleccserekhez használt 100 kPa-t használtam, a komplexebb, több változós modelllezhéshez pedig 40–140 kPa-t. Speciális esetekben a jég anyagi tulajdonságai, valamint a nagy nyomású olvadékvizek miatt a gleccsérjég folyása alacsonyabb nyomáson is megindulhat (Ignéczi, 2014).
A modell alaki paraméterezéssel \((f)\) tovább pontosítható, mivel bevezetésével figyelembe vehető a völgy és az oldalfalak keltette súrlódás hatása is (Nye, 1952; Benn és Hulton, 2010). Mint ismeretes \(f=1\), csak völgyi súrlódástól teljesen mentes, nagy kiterjedésű platógleccserek és jégsapkák esetén alkalmazható (Benn és Hulton, 2010; Ignéczi, 2014), azonban mintaterületemén más típusú jégárakat (elsősorban meleg talpú völgyi- és kárgleccserek) rekonstruáltam, így a modellt a völgyoldalakkal fellépő súrlódással – melyet az alaki paraméterrel lehet bevezetni – kompenzálnom kellett. Összesen 26 keresztszelvényt vettem fel: a Zănoaga Mare-völgyben 7, a Zănoaga Iezerului-völgyben 8, a Buhăescu Mare-völgyben pedig további 11 darabot (73.., 74., 75. ábra).
73. ábra. A Zánoaga Mare 1-gleccser keresztszelvényei
74. ábra. A Zánoaga lezerului 1-gleccser keresztszelvényei
75. A Buháescu Mare 1-gleccser keresztszelvényei
Az alaki tényezők teljes mintaterületre terjedő szórása 0,41 és 0,64 között alakult (1. táblázat). Minél kisebb az alaki paraméter értéke, annál jelentősebb a völgyoldal és a jégtest között a súrlódás az alapi súrlódáshoz képest.

<table>
<thead>
<tr>
<th>Gleccser neve</th>
<th>Keresztszelvény neve</th>
<th>Alaki tényező (f)</th>
<th>Átlagos alaki tényező</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zănoaga Mare 1</td>
<td>Zanoaga_Mare_kszelv_01</td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_Mare_kszelv_02</td>
<td>0,48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_Mare_kszelv_03</td>
<td>0,49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_Mare_kszelv_04</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_Mare_kszelv_05</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_Mare_kszelv_06</td>
<td>0,58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_Mare_kszelv_07</td>
<td>0,58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_IEzerului_kszelv_01</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_IEzerului_kszelv_02</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_IEzerului_kszelv_03</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_IEzerului_kszelv_04</td>
<td>0,51</td>
<td>0,55</td>
</tr>
<tr>
<td></td>
<td>Zanoaga_IEzerului_kszelv_05</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_IEzerului_kszelv_06</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_IEzerului_kszelv_07</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zanoaga_IEzerului_kszelv_08</td>
<td>0,58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_001</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_002</td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_003</td>
<td>0,53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_004</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_005</td>
<td>0,64</td>
<td>0,54</td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_006</td>
<td>0,53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_007</td>
<td>0,43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_008</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_009</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_010</td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buhăescu_Mare_kszelv_011</td>
<td>0,41</td>
<td></td>
</tr>
</tbody>
</table>

1. táblázat. A Rebra fázis gleccsereinek alaki paraméter értékei

0,64-es értéket a Buhăescu Mare-völgy legkisebb kárfülkéjének két legfelső szelvényében mértem. Ezek a legsekkélyebb völgyzakaszok, ahol a legnagyobb eljegesedések alkalmával is csak lejtőgleccserek lehettek, amelyek viszont kellően szélesek, laposak voltak, így az oldalirányú súrlódás is kisebb lehetett. A minimális értéket (0,41) szintén a Buhăescu Mare-völgyben jelentkezett, azonban annak felső-középső szakaszán, ahol a jégtest a lapos, széles felső gyűjtőterületről egy oldalfalakkal
határolt területre torlódott. A falak keltette hatást az időben felerősödő glaciális exkaváció tovább erősítette.

A völgyi átlagok vonatkozásában elmondható, hogy a legnagyobb szórást a Buhăescu Mare-völgy mutatja (min: 0,41/max: 0,64), ami a völgy komplexitásából is adódik: felső részen laposabb, platójellegű, míg az alsón parabola, amely fokozatosan megy át folyóvízi eróziós, V profilúba. A Zănoaga Mare-völgy keresztszelvényeiben és alaki paramétereiben is kiválóan megmutatkozik, hogy szinte teljesen hiányzik a felszíni vízfolyás és így a folyóvízi erózió. Az alsó szelvénynél (Zanoaga_Mare_kszelv_01) csak a legjelentősebb esőzések alkalmával jelenhet meg víz.

A keresztszelvényeken szemléletesen jelennek meg a geomorfológiai formák is. Így például morénák a Zanoaga_Mare_kszelv_05, valamint a Buhaescu_Mare_kszelv_011 (kiugró vállak), fosszilis szikkallgeccser a Zanoaga_Lezerului_kszelv_07, illetve folyóvízi bevágódás a Zanoaga_Lezerului_kszelv_06 keresztszelvény esetében.

A hossz- és keresztszelvények menti rekonstrukciók eredményei további inputként szolgáltak a teljes körű, csak a legnagyobb gleccserekre kiterjesztett sodorvonal módszeren alapuló háromdimenziós numerikus jégfelszín becsélésekhöz. A sodorvonal rekonstrukciókat fix folyáshatárral és 1-es alaki paraméterrel, gleccser-szakaszonként változtatható alaki paraméterrel, valamint változtatható folyáshatárral és alaki paraméterrel is elvégeztettem. A választott hossz-szelvények mentén profil rekonstrukciókat készítettek az alábbi tartalommal: Felszín-DDM (domborzat); Jégfelszín (sodorvonal menti kétdimenziós gleccser-rekonstrukció), Gleccser neve (manuális rekonstrukcióval becslült paleogleccser felszín); Moréna (oldalmoréna, csak a 3. típusú rekonstrukció esetében).

Valamennyi fix folyáshatárral, 1-es alaki tényezőjű profil esetében látszódik (76. ábra), hogy a rekonstruált gleccserek a völgyek középső, laposabb, kisebb lejtésű részén megvastagszanak. Fix folyáshatárral számolva a lejtőcsökkenés következtében – a modell értelmében – ez csak a jég vastagodásával érhető el, mivel így a lejtőirányba mutató hajtónyomás értéke eléri a folyáshatárt. Ahol a lejtés megnő, ott már kisebb jégvastagság is elegendő a jég folyásának megindulásához. Az is nyilvánvaló, hogy a legfelső szakaszokat kivéve a sodorvonal mentén számított jégprofilok alulbecsülik a kézi rekonstrukciókat. Ez valószínűleg az oldalfalakkal való súrlódás elhanyagolásának tudható be. A jégvastagság maximumát is ezekben a zónákban érte el: Zănoaga Mare: 53, Zănoaga lezerului: 88, Buhăescu Mare-völgy: 115 méter. A Buhăescu Mare 1 E szelvény –
amelyik különálló és a fővölgy egykori gleccsereihez nem csatlakozó völgy – esetében a felső szakaszon látható, hogy a kézi rekonstrukció alulbecsléshez vezet. Az elemzés arra is rávilágít, hogy itt a klasszikus kárfülke felső falának (headwall) hiánya miatt a gleccser folyása csak nagyobb jégvastagság esetén indulhatott meg.

76. ábra. Kétdimenziós sodorvonal módszer alkalmazása 100 kPa-os folyáshatár, illetve 1-es alaki paraméter esetén; domborzatmodell (barna), modell szerinti gleccser felszín (piros), manuális rekonstrukció (kék szaggatott vonal)
Az alaki paraméter 0,41–0,64 közötti változtatása kismértékű eltérést mutat a sodorvonal és a kézi rekonstrukciós módszer között (77. ábra). A sodorvonal módszer szinte minden esetben nagyobb jégvastagságot mutat, mint a kézi rekonstrukciós vizsgálat. Számottevő eltérés elsősorban a kárfülkék felső falánál jelentkezik. Az alaki paramétert használó sodorvonal esetében a 100 kPa-os folyáshatár és a terepen mért moréna magasság között jelentős, maximálisan 71 méter különbség, míg a kézi rekonstrukciós vizsgálat esetében az érték eléri az 50 métert.

77. ábra. Kétdimenziós sodorvonal módszer alkalmazása 100 kPa-os folyáshatárral és alaki paraméterrel; domborzatmodell (barna), modell szerinti gleccser felszín (piros), manuális rekonstrukció (kék szaggatott vonal)
A maximális jégvastagságok ennél a modellnél az alábbiak: Zănoaga Mare: 73, Zănoaga Iezerului: 120, Buhăescu Mare-völgy: 188 méter. Utóbbi érték már alpesi viszonylatban sem alacsony. Ez a hely (Buhaescu_Mare_kszelv_008 és Buhaescu_Mare_kszelv_009 között) egyértelmű konfluenciát jelöl, amely mélyen exkaválódott a glaciális erózió következtében. Itt húzódik ugyanis a prekambriumi Lespedes Formáció gneisz es anyagának és a Stiol Formáció szintén metamorf, szericit, klorit palás kőzetének határa. Utóbbi az erózióval szemben kevésé ellenálló kőzetanyag, így a megnövekedett glaciális erózió és a kőzethatár egyértelmű magyarázatot ad a kimagasló jégvastagságra (78. ábra).

78. ábra. Az 1:50 000-es geológia térképen sárga körrel jelölt területen az alaki paramétert használó sodorvonal módszer alapján 188 méteres jégvastagság lehetett; itt húzódik két geológiai formáció határa: az erózióval ellenálló gneisz es anyag (rózsaszín) és a szericit, kloritos pala (spenótzöld) határa; a világosabb zöld az Izvorul Ceppii Formáció szericit, grafitos, kloritos palája; a térképen a glaciális akkumulációs formák is fel vannak tüntetve (világos poligonok, szögletes, zöld körvonalú mintával), amelyek felvételezése – a méretarányból fakadóan is – elnyagolt és keverednek a glaciális/periglaciális formák

A vizsgált konfluenciánál a rekonstruált eljegesedés alatt ennél vélhetően kisebb lehetett a jégvastagság, de azt a posztglaciális (fluviális) erózió – a Buhăescu tavak kifolyó vize – tovább mélyíthette. A Buhăescu Mare-völgy legfelső szakaszán található
Izvorul Cepii Formáció sötét színű, grafitos, szeríctes palája rendkívül rossz állékonyságú kőzet, amely az eljegesedések során alkalmatlan volt arra, hogy abban mély kárfülkék alakuljanak ki. Meredek falak hiányában a jég laposabb felszínen halmozódott fel, ahonnan – a glaciodinamika értelmében – csak nagyobb jégvastagság (és felhalmozódás) esetén indult meg a jégtest folyása.

A legkomplexebb megközelítést nyújtó sodorvonal rekonstrukció már nem csak az alaki paramétert, hanem egy további tényezőt, a változtatható folyáshatárt is használja, amelynek bevezetésével a model pontossága növelhető, hiszen így a globálisan elfogadott folyáshatár tartomány a mintaterületéhez igazítható. A model előfeltétele a pontos glacio-geomorfológiai térképezés, illetve a formák pontos értelmezése. Mint ismeretes az oldalmorénák az egyensúlyi vonal közelében jelennek meg és ideális esetben épen megmaradnak (pl. Zănoaga Mare-völgy), ekkor a végmorénáig húzódhatnak. Ezeket a formákat kalibráló magasságként használhatjuk, hiszen jól mutatják a gleccserek nemcsak sík-, hanem térbeli kiterjedésének határát, magasságát is.

Az ablációs (tehát az egyensúlyi vonal alatti) területen – az oldalmorénák megjelenésének – a jég felszíne enyhén domborodó, így a moréna magasságok minimális magasságként is értelmezhetők. Ugyanakkor számításba kell vennünk azt is, hogy a morénák periglaciális folyamatok révén lejtőirányba elmozdulhatnak, a gerincüket alkotó tömbök aprózódhatnak, így a teljes forma alacsonyodhat. Ezeket figyelembe véve kijelenthetjük, hogy igen jó közelítést adnak a jég felső peremét illetően.

Három hossz-szelvény – Zănoaga Mare 1 A, Buhăescu Mare 1 A és 1 C – mentén állt rendelkezésre a modellben használható oldalmoréna (79. ábra). E model esetében az alaki paramétereket meghagyva a kezdő folyáshatár értéket 100 kPa-ra állítottam. Az oldalmorénákhoz – mint kalibráló magasságokhoz – fokozatosan állítottam a folyáshatár értéket 40–100 kPa közöttire, hogy a legjobb illeszkedést érjém el. A Zănoaga Mare-völgyben a kézi rekonstrukció és a harmadik típusú model is tökéletesen egybeesett (itt a minimális folyáshatár érték 45 kPa volt). A Buhăescu Mare-völgyben a kézi és a modellel számolt magasságértékek között enenyésző eltérések adódtak. A kézi model a nyelvnél, valamint a völgy felső szakaszán alulbecsléshez, míg a középső szakaszon kismértékű felülbecsléshez vezetett, de mindkét rekonstrukció felszínmagassága meghaladta az oldalmorénákét.
Hat különböző paleoglecser-felszínrekonstrukciót hasonlíttottam össze a Buhăescu Mare-völgy 1 A hossz-szelvénye mentén és egy közös ábrán jelenítettem meg (80. ábra).

Választásom azért esett erre a szelvényre, mivel a völgy rendkívül komplex, a firngyűjtőnél lapos, plató jellegű, továbbá a szelvény közepén és nem pedig a végén található az oldalmoréna (szemben a Zănoaga Mare-völgyel), ahol jelentős magasságkülönbségek adódtak az egyes modellek esetén.

A minimális magasságot az egyes típusú model, alacsony folyáshatárral (\(\tau_b = 50\ kPa; f=1\)) adja meg, amely az oldalmoréna magasságát nem is érinti. Ugyanez a folyáshatár alaki paraméter használatával (\(\tau_b = 50\ kPa; f=0,41–0,64\)) gyakorlatilag megegyezik a fix 100 kPa folyáshatárú (\(\tau_b = 100\ kPa; f=1\)) modelllel, amelyek már az oldalmoréna magasságát elérik. A 3-as típusú model és a kézi rekonstrukció futása nagyban megegyezik, ám előbbi az oldalmoréna megjelenési magasságát jobban közelíti, míg utóbbi a firngyűjtőnél alulbecsül. A maximális magasságot fix 100 kPa és alaki paraméter használatával (\(\tau_b = 100\ kPa; f=0,41–0,64\)) kaphatjuk meg, a teljesen manuális rekonstrukciójánl 40%-kal nagyobb jégfelszín magassággal (80. ábra).

A lejtőmeredekség csökkenésével a folyáshatár megindulásához nagyobb jégvastagság szükséges, míg nagyobb lejtés esetén kevesebbnél is megindul. Alaki paramétert használó modellek ugyanazon folyáshatár érték esetén rendre nagyobb
jégvastagságot eredményeztek, mivel a hajtányomás jelentős része a völgyoldali súrlódás leküzdésére fordítódik, így nagyobb jégvastagság szükséges a mozgást megindító hajtányomás eléréséhez.

80. ábra A Buhăescu Mare-völgy 1 A hossz-szelvénye mentén különböző folyáshatár értékeivel, valamint kézi rekonstrukcióval modellezett jégfelszín magasságok: kézi rekonstrukció (szaggatott világos kék); sodorvonal alaki paraméter nélkül, f=1, végig 50 kPa-os folyáshatárral (sárga); sodorvonal alaki paraméter nélkül, f=1, végig 100 kPa-os folyáshatárral (világos barna); sodorvonal alaki paraméterrel, végig 50 kPa-os folyáshatárral (zöld); sodorvonal alaki paraméterrel, végig 100 kPa-os folyáshatárral (sötét kék); sodorvonal alaki paraméterrel, változó folyáshatárral a morénánál (3. típus)(piros); kalibráló magasság: moréna (fekete)
Kézi rekonstrukciós eljárással valamennyi gleccser (20 darab) háromdimenziós modelljét elkészítettem, az 5.2.3.3. fejezetben leírtak szerint (81. ábra). A Rebra fázis három gleccserét numerikus modellezés segítségével rekonstruáltam. Valamennyi modell esetében a háromdimenziós felszínből szintvonalakat generáltam, így a szintvonalak futását összehasonlítottam. A manuális rekonstrukció a nyelv, illetve a firngyűjtő területén alulbecsül, a középső területen pedig enyhén felülbecsül.

![Rebra fázis numerikus modellezéssel előállított gleccserfelszíni térkép](image)

81. ábra A Rebra fázis numerikus modellezéssel előállított gleccserfelszínei

A Rebra fázis gleccsereihez fotorealisztikus nézeteket generáltam (Knoll et al., 2009) ArcScene-ben (82., 83. ábra).
82. ábra. A Rebra fázis rekonstruált gleccsere a Buhăescu-völgyrendszerben

83. ábra. A Zănoaga-lezerului és a Zănoaga Mare-gleccserek rekonstrukciója

A numerikus modellezés a völgyek felső szakaszain, különösen a Buhăescu Mare komplexumhoz tartozó völgyeknél, erősen utalnak vastagabb jégmezők jelenlétére,
melyek részben befedhették a felső hátakat. Itt a manuális rekonstrukció alapján nem lehetett kvantitatív meganalapozott következtetéseket alkotni.

A feldolgozás során több hibalehetőséget is feltártam, amelyek elsősorban az inputokra vezethetők vissza. Az interpolációs eljárások révén előálló domborzatmodell is csak a domborzati környezet becslése, sőt a szintvonal inputok is hibahatárral terheltek. Arról sem szabad megfeledkeznünk, hogy a számítás alapjául szolgáló domborzatmodell sem az eljegesedéskori állapotot, hanem a jelenlegi, posztglaciális domborzatot adja vissza. A hossz- és keresztszelvények nem minden pontja kalibrált.

4. tézis
Terepi mérések és domborzatmodell adatok felhasználásával az egyensúlyi vonal rekonstrukciók alapját képező paleogleccser-felszínrekonstrukciók elvégzése a mintaterületen. Ezek alapján a manuális módszer gyorsabb kevésbé input igényes, bárhol használható, míg a két-, valamint a háromdimenziós numerikus modellezés inputigénységebb és valamivel pontosabb.

6.3. Gleccser paraméterek: paleo-hóhatár magasság, térfogat, jégvastagság

<table>
<thead>
<tr>
<th>Gleccser</th>
<th>Völgyrendszer</th>
<th>Kitetség</th>
<th>Max</th>
<th>Min</th>
<th>S</th>
<th>V</th>
<th>h</th>
<th>ssAAR</th>
<th>ssAAR ELA</th>
<th>AAR 0,67 ELA</th>
<th>0,45 ELA</th>
<th>MELM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zănoaga Mare 1</td>
<td></td>
<td>EK</td>
<td>2223</td>
<td>1146</td>
<td>981 413</td>
<td>0,0278</td>
<td>28</td>
<td>48</td>
<td>1745</td>
<td>1600</td>
<td>1631</td>
<td>1426</td>
</tr>
<tr>
<td>Zănoaga Mare 2</td>
<td></td>
<td>EK</td>
<td>2220</td>
<td>1279</td>
<td>726 289</td>
<td>0,0185</td>
<td>25</td>
<td>46</td>
<td>1805</td>
<td>1700</td>
<td>1702</td>
<td>1416</td>
</tr>
<tr>
<td>Zănoaga Mare 3</td>
<td>Zănoaga Mare</td>
<td>EK</td>
<td>2219</td>
<td>1658</td>
<td>406 172</td>
<td>0,0084</td>
<td>21</td>
<td>42</td>
<td>1942</td>
<td>1835</td>
<td>1910</td>
<td></td>
</tr>
<tr>
<td>Zănoaga Mare 4</td>
<td></td>
<td>EK</td>
<td>2219</td>
<td>1683</td>
<td>326 299</td>
<td>0,0062</td>
<td>19</td>
<td>41</td>
<td>1982</td>
<td>1876</td>
<td>1924</td>
<td>1848</td>
</tr>
<tr>
<td>Zănoaga Mare 5</td>
<td></td>
<td>EK</td>
<td>2219</td>
<td>1727</td>
<td>208 240</td>
<td>0,0053</td>
<td>18</td>
<td>40</td>
<td>2003</td>
<td>1894</td>
<td>1948</td>
<td>1859</td>
</tr>
<tr>
<td>Zănoaga lezerului 1</td>
<td></td>
<td>EK</td>
<td>2250</td>
<td>1235</td>
<td>1 045 572</td>
<td>0,0303</td>
<td>29</td>
<td>49</td>
<td>1790</td>
<td>1700</td>
<td>1692</td>
<td></td>
</tr>
<tr>
<td>Zănoaga lezerului 2</td>
<td>Zănoaga lezerului</td>
<td>EK</td>
<td>2240</td>
<td>1277</td>
<td>849 326</td>
<td>0,0228</td>
<td>27</td>
<td>47</td>
<td>1895</td>
<td>1822</td>
<td>1710</td>
<td></td>
</tr>
<tr>
<td>Zănoaga lezerului 3</td>
<td></td>
<td>EK</td>
<td>2236</td>
<td>1755</td>
<td>498 556</td>
<td>0,0111</td>
<td>22</td>
<td>44</td>
<td>1965</td>
<td>1874</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td>Zănoaga lezerului 4</td>
<td></td>
<td>EK</td>
<td>2236</td>
<td>1768</td>
<td>416 378</td>
<td>0,0087</td>
<td>21</td>
<td>43</td>
<td>2004</td>
<td>1896</td>
<td>1979</td>
<td>1840</td>
</tr>
<tr>
<td>Zănoaga lezerului 5</td>
<td></td>
<td>EK</td>
<td>2235</td>
<td>1831</td>
<td>241 162</td>
<td>0,0041</td>
<td>17</td>
<td>39</td>
<td>2050</td>
<td>1935</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>lezerlele Buhăescu 3</td>
<td></td>
<td>DK</td>
<td>2128</td>
<td>1830</td>
<td>291 112</td>
<td>0,0053</td>
<td>18</td>
<td>40</td>
<td>1990</td>
<td>1950</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>lezerlele Buhăescu 4</td>
<td></td>
<td>DK</td>
<td>2127</td>
<td>1885</td>
<td>163 042</td>
<td>0,0024</td>
<td>15</td>
<td>37</td>
<td>2020</td>
<td>1975</td>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>lezerlele Buhăescu 5</td>
<td></td>
<td>DK</td>
<td>2123</td>
<td>1910</td>
<td>115 669</td>
<td>0,0015</td>
<td>13</td>
<td>34</td>
<td>2040</td>
<td>2000</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Buhăescu Mare 1</td>
<td></td>
<td>EK</td>
<td>2165</td>
<td>1086</td>
<td>4 978 738</td>
<td>0,2517</td>
<td>51</td>
<td>59</td>
<td>1760</td>
<td>1675</td>
<td>1572</td>
<td>1695</td>
</tr>
<tr>
<td>Buhăescu Mare 2</td>
<td>Buhăescu</td>
<td>DK/EK</td>
<td>2161</td>
<td>1544</td>
<td>3 150 591</td>
<td>0,1353</td>
<td>43</td>
<td>56</td>
<td>1895</td>
<td>1855</td>
<td>1822</td>
<td>1667</td>
</tr>
<tr>
<td>Buhăescu Mare 3</td>
<td></td>
<td>K/EK</td>
<td>2161</td>
<td>1578</td>
<td>2 000 515</td>
<td>0,0730</td>
<td>37</td>
<td>53</td>
<td>1945</td>
<td>1900</td>
<td>1840</td>
<td>1925</td>
</tr>
<tr>
<td>Buhăescu Mare 4a</td>
<td></td>
<td>K</td>
<td>2162</td>
<td>1874</td>
<td>316 797</td>
<td>0,0060</td>
<td>19</td>
<td>41</td>
<td>2010</td>
<td>1975</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Buhăescu Mare 4b</td>
<td></td>
<td>ÉK</td>
<td>2080</td>
<td>1805</td>
<td>884 642</td>
<td>0,0241</td>
<td>27</td>
<td>48</td>
<td>1990</td>
<td>1935</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>Buhăescu Mare 5a</td>
<td></td>
<td>K</td>
<td>2160</td>
<td>1895</td>
<td>227 528</td>
<td>0,0038</td>
<td>17</td>
<td>39</td>
<td>2040</td>
<td>1970</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Buhăescu Mare 5b</td>
<td></td>
<td>ÉK</td>
<td>2080</td>
<td>1916</td>
<td>214 915</td>
<td>0,0035</td>
<td>16</td>
<td>38</td>
<td>1990</td>
<td>1975</td>
<td>1990</td>
<td></td>
</tr>
</tbody>
</table>

2. táblázat. Alapvető morfometriai paraméterek és a négy különböző hóhatár becslési módszer eredményei a Radnai-havasok nyugati felén; Max-maximum magasság, Min: minimum magasság, S: becsült terület m^2-ben, V: becsült térfogat km^3-ben, h: becsült átlagos jégvastagság m-ben, ssAAR: méret-specifikus AAR, THAR 0,45: magassági arány a gleccsernyelv és a homlokfal között, 0,45 arányszámmal; AAR 0,67: akkumulációs arányszám, 0,67 arányszámmal, MELM: az oldal morénák maximális magassága méterben

5. tézis

Az egyensúlyi vonal rekonstrukciós módszerek statisztikai összehasonlítása alapján kijelenthető, hogy a méretspecifikus akkumulációs arányszám (ssAAR) a legmegbízhatóbban használható. Ennek első kárpáti alkalmazására itt került sor.

A Chen és Ohmura egyenletből csak a jégvastagság átlagértéke fejezhető ki. A jégvastagság értéke a Buhăescu Mare 1-gleccser esetében a 174 métert is elért, amelynek morfológiai/szerkezeti okait fentebb már tárgyaltaam. A vizsgált gleccskerek maximális vastagságukat – így a Zănoaga lezerului 1- és a Buhăescu Mare 1-gleccser – a sodorvonal mentén érték el, kivétel a Zănoaga Mare 1- gleccser, amelynek sodorvonal menti maximális magassága (73 méter) elmaradt a legnagyobb, 103 méteres jégvastagságtól. Utóbbit a sodorvonalon kívül, egy glaciálisan túlmélyített medencében mértém.
Mivel a gleccserkontúron belül a magassági pontok eloszlása a hossz-szelvények vonalára koncentrálódik, a jégterfogat mintavételezése nem egyenletes, így lesznek adathiányos területek. A jégvastagság értékek akár negatív értéket is felvehetnek, ekkor a jégfelszín belemetsz a domborzatba, ami csak elvi oldalról hiba. Ezek a területek azonban a teljes terület 1%-át sem teszik ki (így a statisztikát is csak kis mértékben torzítja), továbbá olyan helyek ahol a jégterületen kívüli szintvonal vége és a kontúron belüli hossz-szelvény menti magasság pont között pozitív, a két pontnál magasabb forma van – jellemzően kisebb tetőszintek, vagy csuszamlások akkumulációs formái (hupák). A negatív jégvastagságot a hibás területeken felvitt kiegészítő pontokkal tudjuk javítani.

A térfogat és jégvastagság számítást Rebra fázis gleccserein is elvégeztettem. A kalkulációt az 5.2.3.3. fejezetben bemutatott numerikus modellezésre épülő gleccserfelszín meghatározás segítségével fejeztem ki (84. ábra), így lehetőségem nyílt a Chen és Ohmura egyenlet és a térinformatikai szoftver eredményeinek összevetésére.

<table>
<thead>
<tr>
<th>Gleccser</th>
<th>Glaciális fázis</th>
<th>V</th>
<th>h_{max}</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zănoaga Mare 1</td>
<td></td>
<td>0,0534</td>
<td>95</td>
<td>51</td>
</tr>
<tr>
<td>Zănoaga Iezerului 1</td>
<td>Rebra</td>
<td>0,0767</td>
<td>120</td>
<td>69</td>
</tr>
<tr>
<td>Buhăescu Mare 1</td>
<td></td>
<td>0,5372</td>
<td>174</td>
<td>102</td>
</tr>
</tbody>
</table>

3. táblázat. A térinformatikai szoftver segítségével kiszámolt gleccser paraméterek a három legnagyobb gleccserre. V: becsült térfogat km3-ben, h_{max}: legnagyobb jégvastagság, h: becsült átlagos jégvastagság m-ben

A korábbi térfogatszámitás eredményei (2. táblázat) a Zănoaga Mare 1- és a Buhăescu Mare-gleccser esetében kétszeres, míg a Zănoaga Iezerului 1-gleccser esetében két és félszeres alulbecslést mutatnak (3. táblázat). Az átlagos jégvastagság értékét a V/S egyenletből vezettem le. A térinformatikai környezetben végzett számítások a Chen és Ohmura egyenlet alulbecslését mutatják.
Ábra. ArcGIS-ben számolt jégvastagság értékek a Rebra fázis esetén; a jégvastagság alapja a háromdimenziós numerikus modellezés.

A lichenometria vizsgálat alapját képező mikрогlécssereken a hőhatár meghatározásnak nincsen értelme, mivel kialakulásuk mikroklimatikus és speciális morfológiai adottságokhoz és nem a hegységre jellemző klimához kapcsolódik.

A rekonstruált jégkiterjedés alapján B2/1 területe 0,025 km², B3/1 területe 0,011 km², az átlagos jégvastagsága pedig 7,6 és 5,8 méterre becsülhető.
6. tézis

A legnagyobb kiterjedésű gleccser a Rebra fázis alatt alakult ki, amelynek területe kb. 5 km², míg hossza 4,2 km volt és végmorénája 1086 m-en húzódott a Buhăescu-völgy nyugati felén. A legkisebb kárgleccser a Zănoaga Mare fázisban alakult ki 0,115 km²-nyi területtel. Ezt a fázist kárgleccserek és kitűntetett helyeken periglaciális folyamatokhoz köthető aktív sziklagleccserek jellemzték.

6.4. Lichenometriai vizsgálat

A kárpati hegyi alap kutatások egyik kulcskérdése, hogy a magasabb, alpin régiókban mikor voltak aktívak a glaciális folyamatok. Mint ismeretes a Radnai-havasokban ma már nincsenek ilyenek, jelenlétükre csak az egykori gleccserekhez köthető formák, az egykori jégkiterjedés vonalát kijelölő morénák a leginformatívabbak.

A Buhăescu a/b-völgy épen megőrződött morénáinak keletkezési dátumát lichenometriai módszerrel határoztam meg. A lichenometriai vizsgálatokhoz Rhizocarpon geographicum zuzmófaj telepátmérőit méretem, majd a telepátmérőkből kalibráló egyenes segítségével abszolút koradatokat rendeltem a morénákhoz. Mintaterületemre kalibráló egyenes nem állt rendelkezésre, így a Magas-Tátrában (Kotarba, 1988) konfiguráltat alkalmaztam, mivel légvonalbeli távolsága kevesebb, mint 400 km és kőzetanyagában (kristályos) is hasonló, sőt ott is az északias völgyek zuzmótelepein kerültek górcső alá. Kolonizációs késésnek is az ott használatos 10 évet számítottam. Ezt a módszert a Kárpátokban eddig csak, a Magas-Tátrában alkalmazták eredménnyel (Jonasson et al., 1991).

A Magas-Tátrában a növekedési ráta alapján elkülönítének egy hűvös (1550-1850 m) és egy hideg (1850-2200 m) magassági zónát (85. ábra), mivel a zuzmók növekedése jelentős mértékben függ az éghajlati viszonyoktól (Kotarba, 1988). A minták tengerszint feletti magassága alapján a hideg zónát alkalmaztak.
Összesen 34 kötömb 223 zuzmótelepét mértem meg, majd az eredményeket Microsoft Excelben dolgoztam fel úgy, hogy az öt legnagyobb telep átmérőjét és Kotarba (1988) hideg zónára vonatkozó lineáris kalibráló egyenesét vettem alapul:

\[Zuzmó kora = \frac{z + 4.87}{0.429} \]

ahol \(z \) a zuzmótelep átmérője mm-ben.

A B2/1 vizsgálat esetében a legnagyobb zuzmótt kihagytam az elemzésből, mivel egyedüli mintaként erősen elütött a többtől. Csak ezt a mintát vizsgálva (B2/1 max) 1885-ös morénakort kaptam volna.
<table>
<thead>
<tr>
<th>B2/1</th>
<th>26,8</th>
<th>86,71</th>
<th>1916</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3/1</td>
<td>44,2</td>
<td>127,27</td>
<td>1879</td>
</tr>
</tbody>
</table>

4. táblázat. A Buhăescu-völgy lichenometria vizsgálatának eredményei; két mintaterület összesen 223 telepátmérőjének mérést végezem el; B2/1 korának megállapításakor a legidősebb mintát (1885) kivettem
7. Következtetések

7.1. Gleccser-felszínrekonstrukciós eljárások

Négyféle paleogleccser-felszínrekonstrukciós eljárást alkalmaztam. A kézi rekonstrukciót valamennyi rekonstruált (20 darab) gleccser esetében használtam, míg a numerikus eljárást kizárólag a vizsgált völgyek Rebra fázishoz tartozó gleccsereire (3 darab) végeztetem el, mert méretükből fakadóan jól láthatóak az egyes számítások közötti különbségek. Különböző módszerek alkalmazásával összehasonlítottam és megállapítottam az egyes eljárások különbségeit, illetve használhatóságukat.

A kétdimenziós, sodorvonal alapú módszerhez hossz- és keresztszelvényeket vettem fel és háromféle eljárással is alkalmaztam: fix folyáshatárral (1. típus), fix folyáshatárral és alaki paraméterrel (2. típus), valamint fix folyáshatárral, alaki paraméterrel és kalibráló magassággal (3. típus). Keresztszelvények alkalmazásával (2. és 3. típus esetében) az alaki paraméter meghatározható és gleccserszakaszonként – mint szakaszjellemző érték – alkalmazható. A módszer mindenképpen pontosabb és jobb becsléshez vezethet, mint az alaki paraméter nélküli (f=1) 1. típus, amelyik csak platógleccsereket esetén használható nagy biztonsággal. Az alaki paraméter változtatása már érzékelhető eltérést okozott az egyes jégfelszin rekonstrukciós vizsgálatok között, mivel használata nagyobb jégvastagságot eredményezett.

A sodorvonalra épülő rekonstrukciók közül a 3. típusú model a legalkalmasabb paleogleccser-felszínrekonstrukciójához, hiszen így gleccseren belül, szakaszonként adhatjuk meg a folyáshatárt. Ugyanakkor fontos megjegyezni, hogy csak kalibráló formák megléte esetén alkalmazható. Amennyiben csak a gleccserek kiterjedése ismert és vizsgálatunk fókuszában platógleccsereknél, de kalibráló magasságunk nincsen, a leggyorsabban sodorvonal módszert (1. típus) kell használni. Ha a völgyprofil szakaszonként változik, több keresztszelvény felvétele indokolt, hogy az f alaki paraméter minél több profil esetében legyen kiszámítható és így nagyobb pontosságot
érjünk el (2. típus). Ignéczi (2014) a dél-kárpáti Godján-hegységben a folyásértéket 50 és 100 kPa-ra is kiszámolta, mivel így kapott egy alulbecsült minimális magasságot (50 kPa) és egy a szakirodalomban leggyakrabban használt értéken alapuló, legvalószínűbb értéket (100 kPa). A konstans 50 kPa-os határt alsó küszöbértéknél is tekinthetjük, mivel rendkívül ritka, extrém – például nagy kiterjedésű sarkvidéki jégtakarók – esetekben indul meg ennél alacsonyabb értéknél a jég folyása (Cuffey és Paterson, 2010; Ignéczi, 2014).

A legösszetettebb sodorvonal módszerhez az alaki paraméteren túl olyan kalibráló magasságok (morénák, trimline-ok) is kellenek, amelyek nem minden völgyben adottak, így például mintaterületen több völgy esetében sem (például Zânoaga lezerului-völgy). Valamennyi most bemutatott sodorvonal módszer a jelenlegi domborzatból indul ki. A domborzatot azonban a posztglaciális folyamatok átalakították, így a domborzati magasságok valamelyest torzulhattak, elsősorban a folyóvízi völgybevágódás következtében. Ez magyarázza azt is, hogy a Buhăescu Mare-völgy 1 C hossz-szelvény esetében – 3. típusú modellt használva – a minimális folyáshatárt egy rövid szakasz esetében 40 kPa-ra kellett állítsam (79. ábra). Megjegyzendő, hogy itt volt a legmagasabb f értéke is, ami azt mutatja, hogy adott jégvastagság esetén kisebb folyáshatár mellett is megindulhatott a folyás.

A manuális és a kétdimenziós eljárásokat a Buhăescu Mare-völgy 1 A hossz-szelvényén összehasonlítottam (80. ábra). Hat darab paleogleccser rekonstrukciós eljárás (6.2.2. fejezet) alapján az alábbi következtetéseket vontam le: hossz-szelvény menti minimális magasság megadásához az 1. típusú modell alaki paraméter nélkül (f=1), 50 kPa-os folyáshatárral adja a legalacsonyabb értéket, így minimális magasságként is értelmezhető. Alaki paraméter és 100 kPa-os folyáshatárral számolva a maximális érték is kiszámolható. Az 1. típusú fix 100 kPa-os, valamint a 2. típusú fix 50 kPa-os és alaki paramétert is használó modell futása gyakorlatilag megegyezik, így ha alaki paraméter értékek nem állnak rendelkezésünkre, az 1. típusú fix 100 kPa-os modell használatával rekonstrukciónk jó közelítés mellett jelentősen gyorsabb. Ugyanazon folyáshatár ám alaki paraméter használata jelentős jégvastagságbeli eltérést okoz, mivel a hajtónyomás megoszlik a teknő alja és az oldala között (gyakorlatilag hajtónyomás vész el az oldalfalakon), ezért összességében nagyobb hajtónyomás (tehát jégvastagság) szükséges a folyáshatár eléréshez és így a gleccser mozgásának megindulásához. A manuális rekonstrukció lefutását tekintve a 3. típusú modellhez áll a
legközelebb, azonban manuális esetben a 3. típushoz képest a rekonstruált gleccserek a völgyek középső, laposabb részén megvastagodnak. A kézi rekonstrukciós vizsgálatokhoz képest a 3. típusú modell alulbecslést mutat a középső szakaszon, míg a nyelvnél, illetve a felső szakasz kismértékben felülbecsül. A manuális rekonstrukció bizonytalansága az egyensúlyi vonal értékeket csak kis mértékben befolyásolja, mivel a jégárok alsó és felső szakaszán tapasztalható alulbecslés kiegynlítődik a középső (felülbecsül) szakaszon.

A háromdimenziós paleogleccser felszín rekonstrukciót a kézi módszerrel meghatározott szintvonalak alapján interpolációs eljárással, vagy a sodorvonal mentén modellezett kétdimenziós hossz- és keresztszelvényekkel, valamint gleccserpoligon rekonstrukcióval és domborzatmodell használatával készíthetjük el. Számos interpolációs eljárás közül az ArcGIS Topo to Raster funkciója hozta a legjobb eredményt. Az elkészült paleogleccser felszíneket lokális magassági mintavételezéssel, valamint kézi rekonstrukció esetén az input és a generált szintvonalak összehasonlításával ellenőriztem. Ezek az egyszerű, szúrópróba jellegű mintavételek elengedhetetlenek, mivel valamennyi módszer bonyolult műveletsorrendre épül, ahol egy hiba akár a teljes rekonstrukció kudarcával és kényszerű újrakezdésével, vagy fals végeredményel járhat.

A kézi rekonstrukciós eljárás szubjektív, ugyanakkor bárhol alkalmazható és glacio-dinamikai megfontolások figyelembe vételével jó közelítést ad és nem igényel összetett elemzőképességű térinformatikai szoftvert. A numerikus modellezésen alapuló eljárások jelenleg a legkorszerűbb, a térinformatika „nyelvéhez” legközelebb álló elemzések. Bár használatuk elméleti és gyakorlati ismeretei kíván meg, a megfelelő – lehetőség szerint 3. típusú – modell használatával a legpontosabb kvantitatív eredmény érhető el.

7.2. Gleccser hóhatár magasság, térfogat és jégvastagság

A munkámban bemutatott területek glacio-geomorfológiai térképezését követően öt, egymástól jól elkülöníthető gleccseregenerációt állapítottam meg. Figyelembe véve a relatív sorrendet (hogy a hosszabb és nagyobb kiterjedésű idősebb) és hogy az egyes
völgyek legnagyobb gleccserei azonos fázishoz tartozhatnak, őt eljegesedési fázist állapítottam meg a Radnai-havasok nyugati felének északi lejtőin.

Vizsgálati területem legnagyobb jégborítását a Rebra fázis alatt érte el, amikor az átlagos pELA érték 1765 m-ig csökkent, míg a soron következő Zănoaga lezerului fázis alatt ez az érték 1865 m-re, a harmadik fázis – lezerele Buhăescu – alatt (jelentősen kisebb jégborítással) pedig 1960 m-re emelkedett. A Buhăescu Mare fázis és a Zănoaga Mare fázis morénáinak átlagos hóhatárértéke 2001 és 2025 m. E két fázis gyakran recessziós morénákkal kísért és peremi formáik számos helyen a periglaciális folyamatok eredményeként átformálódtak (Sailer és Kerschner, 1999; Shroder et al., 2000). A leginkább említésre méltó periglaciális jelenség a Zănoaga lezerului-völgyben elterülő fosszilis szilikaglet, amely vélhetően a Zănoaga Mare fázis alatt még aktív volt és a Zănoaga lezerului 4-gleccserből fejlődött ki.

Megállapítottam, hogy a mintaterület környékén a gerinctől északra és délre található területek glaciális morfológiában jelentősen különböznek. Ennek magyarázatát a déli területekre érkező nagyobb hőfluxus, a nyugatias szelek, valamint az eljegesedések előtt domborzat sajátosságai adják. A kárfülkék glaciális erózióját tovább fokozta a hóbefúvás, amely az északias-keleties kitettségű völgyek esetében szembetűnő, mivel szakirodalmi adatok (pl. Mindrescu et al., 2010) alapján a nyugatias szelek voltak dominánsak az utolsó glaciális maximuma alatt (LGM).

Az egyensúlyi vonal átlagértékeinek összehasonlítása világos tendenciát mutatott (5. táblázat). A THAR 0,45 eredményezte a legalacsonyabb, míg az ssAAR a legmagasabb pELA értéket. Ez megegyezik a szakirodalmi összehasonlító kutatásaim eredményeivel. A gleccserekre számított, egyedi pELA értékek közül a MELM adja meg a legacsonyabb magasságot (2. táblázat). A terepi vizsgálatok arra is rámutattak (Zănoaga Mare-völgyben a Rebra és Zănoaga lezerului fázis alatti gleccser), hogy mintaterületeken a morénák erodálódhattak, így a MELM-ből számított hóhatár értékek is jóval alacsonyabbak lehetnek, ellentmondásokhoz vezethetnek. Mintaterületeken két olyan összetett táplálóterületi gleccser – Buhăescu Mare 1- és Buhăescu Mare 3-gleccser – akadt, ahol az AAR 0,67 valamivel, míg a THAR számottevően alacsonyabb ELA értéket produkált a MELM-nél, amely jól tükrözi a módszer pontatlanságát (Torsnes et al., 1993). Utóbbi arra is jó példa, hogy a 0,45-ös THAR arányzám a hóhatár alulbecsléséhez vezet a vizsgálati helyszíneimen. A legmagasabb hóhatár értékek a Zănoaga lezeruli- és a lezerele Buhăescu-kárfülke három legkisebb kárgleccserén.
mutatkoztak. A kárfülkék falai meredek és magasak, így az akkumulációs terültre kerülő hó mennyisége is magasabb lehetett, sőt az akkumulációt tovább növelhette a lavina általi hógyarapodás (ma is sok az aktív lavinacsatorna). A meredek falak okozta árnyékoló hatás szintén jelentős többletet okozhat a gleccserek tömegegyensúlyában az északi, északkeleti kitettségű völgyek esetében. Az akkumulációs területre hulló plusz hó mennyisége, a szél hófelhalmozó hatása, valamint a speciális morfológia a helyi ELA-t szintben lejebb tudja nyomni, amely magyarázatot ad a Zănoaga Mare-kárfülke négy alacsonyabb pELA értékre is.

Gheorghiu (2012) pELA számításokat csak a maximális és a legkisebb eljegesedések gleccsereire végzett, amelyeket AAR (0,65 és 0,75) és AABR módszerekkel számított. Eredménye az AABR módszerrel a legterjedelmesebb helyi maximális eljegesedéshez (LLGM=Local Last Glacial Maximum) 1258 m, míg a legkisebb fiatal driázs fázis gleccserehez 1846 m lett. Mivel gleccserkiterjedéseinek felső peremét alacsonyabba vette, nem húzta fel azokat a kárfülkék felső szakaszát, így a rekonstrukciók pontatlannak, amelyek a pELA értékek alulbecsléséhez vezetnek. Ez a kisebb fázis gleccsereinek esetében az akkumulációs terület nagymértékű alulbecslése miatt jobban érvényesül. Rekonstrukciók legnagyobb és legkisebb eljegesedési állapotához tartozó, 0,67-es AAR arányszámmal kalkulált egyensúlyi vonal értéke 1658, illetve 1955 méter (5. táblázat).

Az LLGM fázishoz tartozó két gleccser pELA értéke 1280, illetve 947 méter, amelyek erős szórást mutatnak. A két érték közötti 333 méteres különbség azt jelzi, hogy a két jégkiterjedés nem egy eljegesedési fázist reprezentál. A fiatal driázs fázis pELA értékét az öt rekonstruált gleccser közül a legnagyobb alapján adta meg. Az értékek számtani átlaga azonban már magasabb, átlagosan 1920 méter pELA-t mutat, amely jól közeli Zănoaga Mare fázisom pELA (AAR 0,67) értékét, 1955 méterről. A hóhatár értékek alapján a két egymástól független rekonstrukció legkisebb gleccserekhez tartozó fázisa megegyezik.

Szakirodalmi források mai gleccserek AAR-alapú egyensúlyi vonal magasság meghatározásai alkalmazhatóságát vizsgálva arra jutottak, hogy a módszernek nincsen univerzális aránysága, sőt nem alkalmas kisebb méretű alpesi gleccserek ELA becslésére, amely megállapítást a Radnai-havasok vizsgált paleogleccsereinek esetében a magas szórási érték is alátámasztja. Mindezeket figyelembe véve az ssAAR módszer tűnt a leginkább megbízhatónak, így a jövőbeli paleogleccser ELA-számításokhoz ezt
ajánlom közepes szélességi völgyi gleccserekhez. Több kárpáti területen használták eredménnyel az ssAAR módszert (László et al., 2013; Makos et al., 2013).

A jégtérfogat- és átlagos jégvastagság számításaimat Chen és Ohmura egyenletével (5. táblázat), illetve ArcGIS térinformatikai szoftverrel is kiszámoltam (3. táblázat). Ebből kitűnik, hogy a legfiatalabb Zănoaga Mare és a legidősebb Rebra fázis gleccserei közötti (Chen és Ohmura egyenlet) közel hétszeres területkülönbség mindösszesen kétszeres átlagos jégvastagság különbséget eredményezett, míg a jégtérfogatok között tizenhétszeres volt a különbség. Ugyanezket a számításokat térinformatikai szoftverkörnyezetben (ArcGIS) elvégezve a Rebra fázis jégtérfogat összege 0,6673 km3, míg átlagos jégvastagsága 74 méter (számtani átlaggal), ami kétszer több mint a Chen és Ohmura összefüggés alapján számított. A szerzők publikációjukban felhívják a figyelmet arra is, hogy egyenletüket 63 gleccsert megvizsgálva állapították meg. Táblázatos formában összehasonlításként mutatják be a korábbi hasonló egyenletek-, a saját képletük-, valamint az egyszerű (és általam is használt) térfogat/területszámítás eredményeit. Utóbbi egyes esetekben alul-, míg más esetekben felülbécsült mutat, ami nem mutat egyértelmű összefüggést a gleccser méretével, jégtérfogatával, így az okokat morfometriai, gleccsertípus és klimatikus okok között kell keresni. Alpesi típusú gleccserek esetében az összefüggés nagyobb jégárakra lett megállapítva, szemben mintaterületen más geometriájú és kisebb gleccsereivel. A térinformatikai szoftverkörnyezetben végzett jégtérfogat és az abból származtatott jégvastagságok alapja a jelenlegi domborzat. A völgyek a posttglaciális – elsősorban fluviális – erózió következtében tovább mélyültek, így ezek a számítások domborzat rekonstrukció nélkül felülbécsüléshez vezethetnek. Mindezek jól mutatják, hogy az átlagos jégvastagság értékek számítása esetén a Chen és Ohmura összefüggés felett még nem járt el az idő, azonban a jégvastagság maximumának meghatározásakor – lehetőség szerint – térinformatikai módszerekre (tekintettel az eljegesedés kori domborzatra) kell hagyatkozzunk.
5. táblázat. Összefoglalt morfometriai paraméterek és három különböző hóhatár becslési módszer eredménye fázisonként a Radnai-havasok nyugati felé n; 'Glaciális fázis' oszlop nemcsak a nevet, hanem a relatív kronológiát (lefelé fiatalodást) is mutatja; a gleccserek csoportosítása morfosztratigráfiai alapokon történt; 'S': becsült terület m²-ben; 'V': becsült térfogat km³-ben, 'h': becsült átlagos jégvastagság m-ben, 'ssAAR': méret-specifikus AAR, 'THAR 0.45': magassági arány a gleccseryél és a homlokfal között, 0.45 arányszám, 0.67 arányszámmal; az ELA értékek méterben értendők, zárójeles értékek a hóhatár becsléseket szórását mutatják

<table>
<thead>
<tr>
<th>Glaciális fázis</th>
<th>Gleccser</th>
<th>S</th>
<th>V</th>
<th>h</th>
<th>ssAAR</th>
<th>AAR 0.67</th>
<th>THAR 0.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebra</td>
<td>Zănoaga Mare 1</td>
<td>7 005 723</td>
<td>0,3097</td>
<td>36</td>
<td>1765 (23)</td>
<td>1650 (52)</td>
<td>1631 (60)</td>
</tr>
<tr>
<td></td>
<td>Zănoaga lezerului 1</td>
<td>4 726 206</td>
<td>0,1766</td>
<td>32</td>
<td>1865 (52)</td>
<td>1792 (82)</td>
<td>1745 (67)</td>
</tr>
<tr>
<td></td>
<td>Buhăescu Mare 1</td>
<td>3 196 354</td>
<td>0,0978</td>
<td>24</td>
<td>1960 (22)</td>
<td>1890 (48)</td>
<td>1922 (61)</td>
</tr>
<tr>
<td></td>
<td>Zănoaga Mare 2</td>
<td>2 107 158</td>
<td>0,0475</td>
<td>23</td>
<td>2001 (15)</td>
<td>1931 (45)</td>
<td>1966 (37)</td>
</tr>
<tr>
<td></td>
<td>Zănoaga lezerului 2</td>
<td>1 087 454</td>
<td>0,0183</td>
<td>18</td>
<td>2025 (26)</td>
<td>1955 (41)</td>
<td>1994 (27)</td>
</tr>
</tbody>
</table>

5. táblázat. Összefoglalt morfometriai paraméterek és három különböző hóhatár becslési módszer eredménye fázisonként a Radnai-havasok nyugati felé n; 'Glaciális fázis' oszlop nemcsak a nevet, hanem a relatív kronológiát (lefelé fiatalodást) is mutatja; a gleccserek csoportosítása morfosztratigráfiai alapokon történt; 'S': becsült terület m²-ben; 'V': becsült térfogat km³-ben, 'h': becsült átlagos jégvastagság m-ben, 'ssAAR': méret-specifikus AAR, 'THAR 0.45': magassági arány a gleccseryél és a homlokfal között, 0,45 arányszámmal; 'AAR 0.67': akkumulációs arányszám, 0,67 arányszámmal; az ELA értékek méterben értendők, zárójeles értékek a hóhatár becsléseket szórását mutatják

7. tézis

Az átlagos egyensúlyi vonal érték a legnagyobb gleccsereket tömörítő Rebra fázis alatt 1765 m volt, amely a további négy fázisban 1865, 1960 és 2001 m-re, majd a legutolsó fázis alatt 2025 m-re emelkedett.

7.3. Korábbi rekonstrukciókkal való összehasonlítás

Négy, a mintaterület glaciális jelenségeit bemutató térképet hasonlítottam össze vízsgálataimmal. A három korábbi rekonstrukciót a Rebra fázissal vetettem egybe (86. ábra), míg Gheorghiu (2012) eredményeit és a Rebra fázist külön ábrán elemeztem, mivel nem volt teljesen egyértelmű melyik fázisát használjam referenciaiknak, így a Rebra fázishoz leginkább hasonlító hármat választottam ki (87. ábra). A glaciális jelenségeket
hordozó kárfülkék környékét vizsgálva megállapítható, hogy Sawicki (1911) rekonstruálta a legkeskenyebb jégkitöltést, sőt azok felső határát is csak a kárfülkék talpszintjéig húzta meg, ami tudományos ismeretem (Meierding, 1982; Canadas, 2004; Knoll et al., 2009; Makos és Nitychoruk, 2011) és összehasonlító vizsgálataim alapján nem helytálló. Gheorghiu gleccsereinek és morénáinak lefutása nagyban hasonlít ehhez, ami a legkisebb fázis pELA értékeinek alulbecslését is okozza. Saját vizsgálatom Zánoaga Mare fázisának egyensúlyi vonal magasságával összevetve a 35 méternyi különbség oka is erre vezethető vissza, mivel glaciódinamikailag megalapozottabb, alaposabb rekonstrukciókat készítettel, így számításaimhoz nagyobb, a kárfülkék felső részét jobban kitöltő jégárakat használtam.

Ahhoz, hogy ilyen alacsony magasságban (8-900 m), a tápláló területtől távolra érjen a jégnyelv, jóval nagyobb akkumulációs területre, vagy jelentősen nagyobb jégvastagságra és hőmennyiségre lett volna szükség, amely ellentmondásban áll a glacio-
geomorfológiai törvényszerűségeken alapuló térinformatikai elemzéseimmel és terepi vizsgálataimmal. Úgy vélem ezek az erratikus blokkok egy jég-lezúdulás (surge) eredményeként szállítódtak mai helyükre (Haeberli et al., 2004; Kotlyakov et al., 2004; Evans et al., 2009). Mivel a Sîrcu (1978) és a Szilády (1907) által jelölt moréna ugyanoda lett bejelölve, ezt a helyszínt kiemelten vizsgáltam, azonban karakterisztikus, ívelt, morénára emlékeztető formát nem tudtam azonosítani és a megfigyelt üledékek is inkább kerekdekek voltak, amelyek így sokkal inkább fluviális, vagy részben fluviális szállításra, azaz fluvio-glaciális eredetre utalnak. A román geológiai térkép (78. ábra) ezt a feltételezést erősíti, mivel a szóban forgó területre fluvio-glaciális üledéket jelöl.

86. ábra. Három glaciális vizsgálat: (1) Sîrcu (1978), (2) Sawicki (1911) és (3) Szilády (1907) eredménytérképe összehasonlítva a Rebra fázis gleccsereivel
87. ábra. Gheorghiu (2012) gleccserrekonstrukciói nem mutatnak egyértelmű korrelációt a Rebra fázis gleccsereivel; a 26 ka-s fázis felül, míg a 18 ka-s alulreprezentálja a Buhăescu-völgy gleccsereit; a 17 ka-s esetében már nincsen konfluencia a Zânoaga Mare és a Zânoaga lezerului völgy találkozásánál; fekete vonalak morénák, fekete fogazott vonalak kárfülke peremek
8. tézis

7.4. Kronológiai és klimatikus megállapítások

A dendrokronológiai adatokkal (Popa és Kern, 2009; Popa és Bouriaud, 2014) történő összevetés arra is rávilágít, hogy az ígéretes alkalmazási lehetőségek miatt a jövőben helyi kalibráló görbét szükséges készíteni. A lichenometriai adatok segítségével datált mikrogleccserek az ettől független faévgyűrűkön alapuló vizsgálatok nyári középhőmérséklet értékeivel kiegészülve alkalmak lehetnek téli csapadékosszeg rekonstrukciókra is.

A Magas-Tátrában Kotarba (1988) a 100 éves zuzmótelepek átmérőjét (zuzmó faktor) az alacsonyabb hűvös zónában 38,1, míg a hideg zónában 35,2 mm-ben állapította meg. Azt is hozzátette, hogy a kormeghatározási egyenletek csak 300 éves

88. ábra. A Radnai-havasok keleti felének dendrokronológiai vizsgálata; a círboolafenyők évgőzői alapján a nyári középhőmérséklet értékek jól kialakolják a kisjégkorszaki lehűlési szakaszokat, illetve egyezőséget mutatnak a mikrogleccser morénák korával (A); a standardizált (mértékegység nélküli) évgőző szélességek görbéi összehangolják más európai vizsgálatokkal azt mutatják, hogy a 19. század elején hasonló környezeti hatások értéktől mintaterületet (B) (Popa és Bouriaud, 2014)

9. tézis
A Buhăescu-völgy rekonstruált mikrogleccsereinek lichenometriai morénaanyag-vizsgálata alapján a kisjégkorszak felszínformálódásában itt is megjelent a glaciális erózió, és a glaciális folyamatok a XX. század elején lehűlések során ismét aktivizálódtak.
A régió kitettségi kormeghatározással datált legalacsonyabb fluvio-glaciális nyomainak kora 37-26 ka közé tehető a Radnai-havasok területén (Gheorghiu et al., 2011, Gheorghiu, 2012).

Gheorghiu kitettségi koradatai alapján a Zănoaga Mare-völgyben a Zănoaga Mare 5- és 3-gleccser végmorénái 11,2±1,0, illetve 12,1±1,1 ka, míg a Zănoaga Mare 2- és 1-gleccser oldalmorénái 16,7±1,5 és 18,3±1,6 ka korúak (89. ábra). Gheorghiu szerint a Zănoaga Mare 4-gleccser csak recessziós morénában végződik, így azt külön nem vizsgálta. A mintavételi pontok beazonosítása a koordináták közlési pontossága, esetleges mérési hibája miatt körülményes, így az sem kizárható, hogy a Zănoaga Mare 3-gleccser végmorénája kimaradt a mintavételekből. A völgy alsóbb szakaszának koradatai erős szórást mutatnak, ami csak megerősíti azon feltételezésemet, hogy a 26,6±2,4 és 37,2±3,4 ka kor közötti minták fluvioglaciális folyamatok következtében mobilizálódtak, így a belőlük számolt koradatok nem köthetők egyensúlyi gleccserállapotohoz.

A Zănoaga Lezerului-völgyben koradatok csak a kárfülkében találhatók (89. ábra). A Zănoaga Lezerului 4-gleccser oldalmorénája megfeleltethető a 13,1±1,2 ka, a Zănoaga Lezerului 3-gleccser végmorénája pedig a 13,4±2,2 ka kora. A 13,1±1,2 ka a morénacsoport maximális korát adja meg, így az annál fiatalabbb, minimálisan 11,5±1,0 ka korú is lehet. A kárfülke két legmagasabb mintavételi pontja alapközethől lett véve, így ezek a korok a jégmentessé válást mutatják. Úgy vélem a 12,5±1,2 ka morfológiai helyzete miatt kizárható (magasabb van, mint a fiatalabb minta), így e terület 9,5±0,9 ka korú része ekkor már jégmentes volt, így a Zănoaga Lezerului 5-gleccser ennél csak idősebb lehet.

A Buhăescu-völgy legidősebb mintája egy 93,2±8,7 ka korú szában álló közet. Az elenyésző térképi pontatlanságot lezámítva gleccserrekonstrukcióim megerősítik, hogy e terület hosszú ideje jégmentes lehet. A Buhăescu Mare 2-gleccser végmorénája megfeleltethető a 15,8±1,4 ka korú mintának, de az sem kizárható, hogy ennél valamivel idősebb. A 14,1±1,3 ka egy csiszolt felszín kora, ami a Buhăescu Mare 3-gleccseren kívül, de a Buhăescu Mare 2-gleccseren belül található, így megadja a Buhăescu Mare 3-gleccser maximális korát. A Buhăescu Mare 2-gleccser pereménél mért 13,0±1,1 ka korú forma egy moréna eredetű, ám periglacikális átkervert forma (71. és 89. ábra), ami mivel a Buhăescu Mare 2-gleccser oldalmorénája felett található, megerősíti a Buhăescu Mare 3-gleccserrekonstrukciót. Utóbbi rekonstrukciót a nyelvek szétválásánál, a
14,3±1,3 ka mintánál lehet – kismértékben – módosítani. A 13,1±1,2 ka korú – látszólag a Buhăescu Mare 4a-gleccserhez tartozó – moréna az eggyel korábbi eljegesedési fázis Buhăescu 3-gleccserének periglaciálisan elmozdult oldalmorénája.

A lezerel Buhăescu-völgy lezerele Buhăescu 3-gleccserének végmorénája 12,4±1,1 ka korú. A moréna koradatai közül azonban Gheorghiu kihagyta a 16,7±1,5 ka korú mintát, ami a Buhăescu Mare 2-gleccser oldal-/középmorénája, amire ráhalmozódott lezerele Buhăescu 3-gleccser morénaanyaga.

Bár Gheorghiu (2012) gleccserrekonstruksiói nem minden esetben egyeztethetők össze saját kutatásaimmal, mégis kitettségi koradat a legtöbb esetben megfeleltethetők (89. ábra) eredményeimmel és tovább erősítik glacio-geomorfológiai vizsgálataimat. Ezek alapján a Zănoaga Mare fázis gleccserei a fiatal driászban, míg a Buhăescu Mare fáziséi 12,5 ka, a lezerele Buhăescu fáziséi 13,5 ka, a Zănoaga lezerului fáziséi 16,7 ka, és a Rebra fáziséi 18,3 ka körül stabilizálódtak. Véleményem szerint a Rebra fázis gleccserei és morénái a globális LGM-ben alakultak ki, azonban a zord klíma okán a gleccserjég nem olvadt el azonnal, így a kitettségi kor értéke a morénák végső stabilizálódását mutatják. Ez az értelmezés összhangban áll nagyobb mintaszámokon nyugvó kutatási eredmények során levont következtetésekkel is (pl. Akçar et al., 2014).
A hegység középső részén található Poiana Stiol tőzeglápjának radiokarbon kormeghatározása azt mutatja, hogy a terület lakusztris üledékképződése már 11 000 cal BP idején megindult, így az akkor már jégmentes lehetett (Tantau et al., 2011). Terepi vizsgálatok és a kitettségi koradatok azt mutatják, hogy a Poiana Stiol esetében leírt jégvisszahúzódás nem tekinthető érvényesnek a hegység teljes egészére (Nagy et al., 2004), következésképpen a jelen vizsgálatban bemutatott Zánoaga Mare fázis ennél csak kis mértékben lehet idősebb. A legfiatalabb kárglegcserék fiatal driásh előrenyomulásokhoz kapcsolódnak. A közelmúltban publikált adatok szintén megerősítik a fiatal driásh gleccser előrenyomulását a Cserna Hora (Rinterknecht et al., 2012), a Balkán nyugati és déli hegységei esetében (Hughes et al., 2006; 2010; 2011), dél-kárpáti tavi vegetációs vizsgálatok (Magyari et al., 2009) a Retyezáthban, sőt a Fogarasi-havasokban holocén előrenyomulást is leírtak (Kuhlemann et al. 2013b).

Ezek a kárpáti sajátosságok csak alátámasztják azt, hogy a doktori kutatásom glacio-geomorfológiai térképezése mellett az egyes glaciális fázisokhoz felvett morénák kitettségi kormeghatározása is rendkívül fontos. Az a tény, hogy a Keleti-Kárpátokban csak egyetlen völgyből van LGM közeli moréna, csak tovább erősíti azt a tudományos igényt, hogy e vizsgálatokat ki kell terjeszteni, így a datálás eredményei tovább gazdagíthatják a kárpáti glaciális kronológiákat és környezetrekonstrukciós vizsgálatokat.

Kuhlemann et al. (2009, 2013a, 2013b) balkáni és dél-kárpáti glaciális vizsgálata újszerű klimatikus megfontolásokat fogalmaz meg. Az LGM idején a Kárpátok romániai területén az egyensúlyi vonal magassága 1400-1700 méter lehetett (90. ábra), amely kismértékben alulbecsüli az ELA magasságát, mivel a Kárpátok legészakabbi, legmagasabb csúcsokat hordozó és legalacsonyabb LGM ELA-jú területén – a Magas-

Az LGM légkörzés kismértékben, de eltért a maitól, ami az előzetes becsléseknél alacsonyabb hóhatárértékeken is megnyilvánnult. Az eredetileg nyugatias áramlású téli északi futóáramlás (poláris jet) a belföldi jégzavar miatt torzult. A kitérített sarki poláris és a mérsékeltövi melet et elválasztó polárfononnál jelentős volt a hőmérsékletkülönbség, ami tovább erősítette az áramlást. A Földközi-tenger medencéjének tölcsérszerűen összetorlódó áramlások mentén jelentős volt a ciklonképződés és a feláramlás. A nedves, instabil légtömeg a középső mediterrán térségtől északra a Kárpátokat csapadéktöbblettel láthatta el (Kuhlemann et al., 2009). A csapadékoszegek azonban így is jelentősen elmaradtak a jelenlegitől: a Magas-Tátra esetében 60%-kal kevesebb hullott (580 mm) az egyensúlyi vonalnál (Makos et al., 2013).

90. ábra. Egyensúlyi izovonal magasságok ma (piros) és az LGM alatt (fekete) (balra); mediterrán ciklonok útvonala az LGM alatt; piros négyszög: Radnai-havasok térsége (jobbra) (Kuhlemann et al., 2009)
10. tézis
Kárpáti analógiák, valamint az itt rekonstruált egyensúlyi vonal-magasságok alapján a Rebra fázis gleccserei a LGM idején is képződhettek, de mindenképp idősebbek a fiatal driásznál. A Radnai-havasok glaciális formáinak kitettségi kormeghatározás értékei jól megfeleltethetők glaciális rekonstrukcióimmal.

7.5. Térinformatikai következtetések

Vizsgálataim során nagy mennyiségű adat keletkezett: vektoros, raszteres, szöveges dokumentumok, táblázatok, projektfájlok, ábrák, fotó dokumentációk, amelyek strukturált tárolását meg kellett oldjam. A térinformatikai adatoknál törekedtem arra, hogy lehetőség szerint minél több adat kerüljön ESRI geoadatbázisokba, amelyek mérete így meghaladta a 60 GB-ot. ESRI fájl geoadatbázisok használatával eltűnt a korábbi ESRI shape-fájlokra jellemző zavart tárolás és helyette az adatokat strukturált módon tárolhattam/rendezhetettem, sőt a számolási sebesség is jelentősen nőtt.

A térinformatikát eszközöként használva valamennyi, glaciodinamikai modellezést, rekonstrukciót, térbeli számítást és azok előkészítését ESRI ArcGIS szoftvercsaláddal és táblázatkezelővel végeztem. Ehhez az ArcGIS belső, gyári eszközökön és Internetről letöltött, ArcGIS alá importálható, valamint saját ArcGIS alatt futtatható eszközöket használtam. A gyári eszközök használatával rengeteg bonyolult programozási feladattól mentesültem és a felhasználói grafikus felületek révén könnyen tudtam paraméterezni azokat. Számos olyan új rendszereszköz segítette a munkámat, amelyek korábbi elemzések elvégzését nem tették volna lehetővé (pl. Terrain Dataset, Mosaic Dataset). Egyedi eszközcsoportokat is létrehoztam, amelyekben a gyári alap eszközökökön túl saját készítésű modelleket is készítettem/paramétereztem.

Térinformatikai szoftverkörnyezetben glacio-dinamikai megfontolásokat és egyenleteket felhasználva, szelvények menti két- illetve háromdimenziós, valamint manuális gleccser-felszínrekonstrukciókat készítettem. Ezek az elemzések két évtizeddel ezelőtt még papíralapúak voltak, jelenlegi feldolgozásuk kizárólag térinformatikai környezetben történik, mivel a legkülönbözőbb elvi és gyakorlati megfontolások integrálhatók egyetlen rendszerbe.
A terepi adatgyűjtés korszerű, műholdas helymeghatározó eszközökkkel történt, így lehetőség nyílt az adatok közvetlen feldolgozására, valamint a számítógépes környezetben végzett rekonstruálások terepi verifikálására, amikor is az újbóli terepi bejárások során a már kész rekonstrukciókat ellenőriztem. Az egységes szimbolikát szavatoló térképi összeállításokat mxd-fájlból mentettem el, amelyek „Layout” nézetébe sablon kimeneteket terveztem, ahonnan azokat kiexportálva disszertációomba ábráként beillesztettem. Az ESRI környezet nemcsak az adatok homogenitását és feldolgozását biztosította, hanem azt is, – lévén a legismertebb térinformatikai szoftver – hogy vizsgálataim bárhol, bármikor, tetszőleges mintaterületen megismételhetők.

Kutatásomban bemutattam, hogy a klasszikus geomorfológia eszközéktárában ma már a térinformatikának is ott a helye, hiszen alkalmazásával nagyobb területek felmérése és az adatok feldolgozása gyorsabban valósítható meg, az eredmények pedig pontosabbak. Lehetőség van modellek iteratív futtatására, így egy módszer beállításának vizsgálatára. A Radnai-havasok mintaterülete pilot területként is értelmezhető, ahol a logikai modelleket is tartalmazó térinformatikai módszertan kidolgozásra és dokumentálásra került, így adoptálható a hegység egészére és más mintaterületekre.
8. Összefoglalás

Doktori kutatásom során a Radnai-havasok nyugati felén három reprezentatív glaciális völgyet határoltam le, ahol részletes glacio-geomorfológiai szemléletű térképezéssel a glaciális/periglaciális formakincs felvételezését korszerű terepi adatgyűjtő eszközökkel végeztem el.

Morfosztratigráfiai alapon öt moréna generációnhoz kötődő eljegesedési állapotot határoztam meg. A legnagyobb kiterjedésű gleccser a Rebra fázis alatt alakult ki, amelynek területe kb. 5 km², hossza 4,2 km volt és végmorénája 1086 m-en húzódott a Buhăescu-völgy nyugati felén. A legkisebb gleccser a Zănoaga Mare fázisban létezett 0,115 km²-nyi területtel. Ezt a fázist kárgleccserek és kitüntetett helyeken periglaciális folyamatokhoz köthető aktív szildagleccserek jellemzették.

Négy különböző egységegy vonal becslési módszert alkalmaztam, amelyek statisztikai összehasonlítása azt mutatja, hogy a méret specifikus akkumulációs arányszám (ssAAR) a legmegbízhatóbben használható. Az átlagos egyensúlyi vonal érték a legnagyobb gleccserek tömörítő Rebra fázis alatt 1765 m volt, amely a további négy fázisban 1865, 1960 és 2001 m-re, majd a legutolsó fázis alatt 2025 m-re emelkedett.

A rekonstruált legfiatalabb eljegesedési fázis gleccserei a fiatal driászban, míg a legidősebbek az LGM-ben képződtek. A Buhăescu-völgy rekonstruált mikrogleccsereinek lichenometriai morénaanyag vizsgálata megerősítette, hogy a kisjégkorszak felszínformálódásában megjelent a glaciális erózió, sőt a mikrogleccserek a XX. század elejei lehűlések során ismét aktivizáltak.

Térinformatikai eszközök és módszerek az adat-felvételezéstől a feldolgozáson, elemzéseken át a térképi kimenetek készítéséig végig jelen voltak munkámban. A disszertációban bemutatott térinformatikai környezet biztosította az adatok homogenitását, az egzakt térbeli számításokat és azt, hogy vizsgálataim bárhol, bármikor, tetszőleges mintaterületen megismételhetők legyenek.
9. Summary

In my PhD Dissertation detailed geomorphological survey was carried out in three representative glacial valleys in the western part of the Rodna Mountains, where glacial/periglacial landforms were mapped with modern survey and equipment.

Morphostratigraphic considerations yielded five glacial phases indicated by five moraine series. The most extensive glacier extent as a part of the Rebra phase was about 5 km2 in area and 4.2 km in length, represented by a well-preserved terminal moraine at 1086 m in the western part of the Buhăescu valley. The smallest glacier with an area of 0.115 km2 existed during the Zănoaga Mare phase. This phase was characterized by cirque glaciers and active rock glaciers in particular areas.

Four different methods used for equilibrium line altitude ELA estimations and statistical comparisons show that the size-specific accumulation-area ratio (ssAAR) method seems to be the most reliable one. The average ELA of the Rebra phase, characterized by the most extensive glacier cover, was 1765 m. During the less extensively glaciated phases, the mean ELAs elevated to 1865 m, 1960 m, 2001 m and to 2025 m at the time of the final phase.

The reconstructed youngest glacial phase was developed during YD, while the oldest during the LGM. Lichenometric dating of the Buhăescu valley’s reconstructed microglacier moraines shows that these forms were deposited during the Little Ice Age and were active again during the early 20th century’s cooler periods.

My new data on paleoglacier extent were compared to former studies and show that only the most extensive glaciations were mapped by Szilady (1907), Sawicki (1911) and Sîrcu (1978). My research shows that those features could not have been terminal moraines of Rebra phase (i.e. the most extensive glaciation studied here). The comparison with previous reconstructions pointed out that a simple merging of the previously reconstructed glacial extents and overlapping maximum or minimum area is not a reasonable approach for future glacial-geomorphological reconstructions.

Methods and equipment of geoinformatics (GIS) supported my complete work from data survey through analyses to map layouts. The GIS environment presented in ensures data homogenity, precise spatial calculations and assures that my research can be repeated anytime and any location.
10. Köszönetnyilvánítás

Doktori kutatásom közel tíz évé alatt rengeteg kitűnő embert, szakembert, segítőt és támogatót ismertem meg. Mindenekelőtt köszönöm Dr. Nagy Balázs türelmét és töretlen bizalmát, mindig tökéletes időzítéseit, a kényszerű, mégis vidám sátorfogságot a Radnai-havasok főgerince alatt, valamint azt a példaértékű szemléletet és utat, amit személyében megismerhettem.

Köszönöm Dr. Gábris Gyulának, hogy egy évig vállalta doktori témavezetésemet és kimeríthatatlan történeteivel mindig elkápráztatott. Köszönettel tartozom Dr. Kern Zoltánnak, aki egy téma kapcsán mindig higgadtan elmagyarázta a tudomány aktuális állását és naprakész publikációkkal terelte utamat. Hálás vagyok Ignéczi Ádámnak, hogy újszerű gondolataival sokat tett ahhoz, hogy munkám igazán aktuális lehessen. Köszönet illeti még az ELTE TTK FFI Természetföldrajzi Tanszékén: Árvai Mátyást, Dr. Horváth Erzsébetet, Dr. Karátson Dávidot, Dr. Kohán Balázt, Dr. Mari Lászlót, Dr. Ruszkiczay-Rüdiger Zsófiát, Dr. Sík Andrást, Takács Katát, Dr. Telbisz Tamást; továbbá Bugya Évát, Dr. Leél-Őssy Szabolcsot, Pintér Zoltánt, Dr. Szabó Máriát; az innsbrucki Leopold-Franzens-Universitáten: Dr. Hanns Kerschnert, Dr. Karl Krainert; valamint Galgóczi Tamást, Dr. Ionel Popat, Kákonyi Gáborra, Dr. Marcel Mindrescut, Németh J. Andráстав (ESRI Magyarország Kft.), Dr. Péntek Attilát, Dr. Phil Hughes-t és Salamon Márkot.

És akiknek nem lehetek elégszer hálás, akik mindig támogattak: a családomnak és neked külön, Réka!
11. Irodalomjegyzék

BALOGH, E. 1939. Új adat hegyeink eljegesedéséhez és az eljegesedés általános okaihoz – Erdélyi Múzeum, XLIV. 1. füzet, pp. 63-78.

ESRI, 2015a. Types of geodatabases.

 http://support.esri.com/en/knowledgebase/Gisdictionary/browse

GĄDEK, B. AND KOTYRBA, A., 2007. Contemporary and fossil metamorphic ice in Medena kotlina (Slovak Tatras), as mapped by ground-penetrating radar, Geomorphologia Slovaca et Bohemica, 1., pp. 75-81.

GHEORGHIU, D., FABEL D., XU S., 2011. Cosmogenic 10Be constraints on the deglaciation history in the Rodna Mountains, Northern Romania. Climate change in the Carpathian-Balkan region during the Late Pleistocene and Holocene, Book of Abstracts, Suceava, Romania, p. 33.

KĘDZIA, S., 2013. Nowa krzywa lichenometryczna dla polskiej części Tatr (A new lichenometric curve for the Polish part of the Tatra Mountains) PRZEGLĄD GEOGRAFICZNY, 85, 1, pp. 53-63.

KUHLEMANN J, DOBRE, F., URDEA, P., KRUMREI, I., GACHEV E., GIKOV A., KUBIK, P.W.,
Rahn, M., 2013b. Last Glacial Maximum glaciation of the central South Carpathian
range (Romania). Austrian Journal of Earth Sciences 106/2, pp. 50-62.

KUHN, M., 1995. The mass balance of very small glaciers, Zeitschrift für Gletscherekunde

LÁSZLÓ, P., KERN, Z., 2010. Az elmúlt 150 év aktív glaciális folyamatai a Radnai-havasok
Szemle könyvtára 3, p. 56.

LÁSZLÓ, P., KERN, Z., NAGY, B., 2013. Late Pleistocene glaciers in the western Rodna
Mountains, Romania. Quaternary International, VOL. 293, pp. 79-91,

LEHMANN, P., 1891. Der ehemalige Gletscher des Lala-Thales im Rodna Gebirge,
Petermanns Mitteilungen, t. XXXVII, pp. 98-99.

Ges. für Erdkunde zu Berlin, Bd. XX., pp. 325-386.

 glaciations in the Tatra Mountains.: their development, age and limits. Geological

LÓCZY, D., 2013. A jég munkája. In: Gábris, Gy. (szerk.), Általános természettőrdjag II.,
Budapest, pp. 200-222.

Oecologia 147, pp. 223-229.

LUKAS, S., 2006. Morphostratigraphic principles in glacier reconstruction – a
perspective from the British Younger Dryas. Progress in Physical Geography 30,
pp. 719-736.

Radiocarbon chronology of glacial lake sediments in the Retezat Mts (South
Carpathians, Romania): A window to Late Glacial and Holocene climatic and paleoenvironmental changes. Central European Geology 52:(3-4) pp. 225-248.

MAKOS, M., NITYCHORUK, J., ZREDA, M., 2013. Deglaciation chronology and paleoclimate of the Pięciu Stawów Polskich/Roztoki Valley, High Tatra Mountains, Western Carpathians, since the Last Glacial Maximum, inferred from 36Cl exposure dating and glacier-climate modelling, Quaternary International 293, pp. 63-78.

distribution in the Romanian Carpathians: paleowind directions during glacial
NAGY, B., KERN, Z., BUGYA, É., KOHÁN, B., 2004. Investigation of postglacial surface-
evolution in the alpine region of the Calimani Mountains -with an outlook to the
cirque region of the Rodnei Mountains., Analele Universitatii de Vest din
Timisoara, Geografia, 14, pp. 101-118.
information systems. Earth-Science Reviews 85, pp. 1-22.
masses to inform palaeo-glacier reconstructions. Quaternary Science Reviews, 29,
pp. 3340-3255.
Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated
by dendrochronological analysis of living trees and subfossil logs – In: Veget Hist
Archaeobot, 14, pp. 221-234.
Journal of Glaciology 38, pp. 397-411.
OMSZ, 2015. ÉGHAJLAT/Föld éghajlata http://www.met.hu/eghajlat/fold_eghajlata
OSMASTON, H., 2005. Estimates of glacier equilibrium line altitudes by the
Area×Altitude, the Area×Altitude Balance Ratio and the Area×Altitude Balance

REUTHER, A.U, URDEA, P., GEIGER, C., NILLER, H. P., HEINE, K., 2004. Determining the glacial equilibrium line altitude (ELA) for the Northern Retezat Mountains, Southern Carpathians and resulting paleoclimatic implications for the last glacial cycle. Analele Universitatii de Vest din Timisoara, Geografie, 14, pp. 11-34.

RUSZKICZAY-RÜDIGER, ZS., KERN, Z., URDEA, P., BRAUCHER, R., MADARÁSZ, B., SCHIMMELPFENNIG, I., 2015. Late Pleistocene glacial chronology of the Retezat

SZILÁDY, Z., 1907. A Nagy-Pietrosz czirkus-völgyei, Földrajzi Közlemények, 35/1., pp. 6-8.

ADATLAP
a doktori értekezés nyilvánosságra hozatalához

I. A doktori értekezés adatai
A szerző neve: László Péter
MTMT-azonosító: 10035922
A doktori értekezés címe és alcíme:
 Jégárak geomorfológiai-glaciológiai rekonstrukciója térinformatikai és terepi módszerekkel a Radnai-havasok területén
DOI-azonosító39: 10.15476/ELTE.2015.059
A doktori iskola neve: Földtudományi Doktori Iskola
A doktori iskolán belüli doktori program neve: Földrajz-Meteorológia Doktori Program
A témavezető neve és tudományos fokozata: Dr. Nagy Balázs Ph.D., habil. egyetemi docens
A témavezető munkahelye: ELTE-TTK, Földrajz- Földtudományi Intézet, Természetföldrajzi Tanszék, 1117 Budapest, Pázmány Péter sétány 1/C

II. Nyilatkozatok
A doktori értekezés szerzőjeként
 a) hozzájárulok, hogy a doktori fokozat megszerzését követően a doktori értekezésem és a tézisek nyilvánosságra kerüljenek az ELTE Digitális Intézményi Tudástárban. Felhatalmazom a Természettudományi Kar Tudományszervezési és Egyetemközi Kapcsolatok Osztályának ügyintézőjét ………………………………………., hogy az értekezést és a téziseket feltöltse az ELTE Digitális Intézményi Tudástárba, és ennek során kitöltse a feltöltéshez szükséges nyilatkozatokat.
 b) kérem, hogy a mellékelt kérelemben részletes szabadalmi, illetőleg oltalmi bejelentés közzeteltelég a doktori értekezést ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban;41
 c) kérem, hogy a nemzetbiztonsági okból minősített adatot tartalmazó doktori értekezést a minősítés (dátum)-ig tartó időtartama alatt ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban;41
 d) kérem, hogy a mű kiadására vonatkozó mellékelt kiadói szerződésre tekintettel a doktori értekezést a könyv megjelenéséig ne bocsássák nyilvánosságra az Egyetemi Könyvtárban, és az ELTE Digitális Intézményi Tudástárban csak a könyv bibliográfiai adatait tegyék közzé.
 Ha a könyv a fokozatszerzést követően egy évig nem jelenik meg, hozzájárulok, hogy a doktori értekezésem és a tézisek nyilvánosságra kerüljenek az Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban.43

2. A doktori értekezés szerzőjeként kijelentem, hogy
 a) az ELTE Digitális Intézményi Tudástárba feltöltendő doktori értekezés és a tézisek saját eredeti, önálló szellemi munkám és legjobb tudomásom szerint nem sértem vele senki szerzői jogait;
 b) a doktori értekezés és a tézisek nyomtatott változatai és az elektronikus adathordozón benyújtott tartalmak (szöveg és ábrák) mindenben megegyeznek.
 3. A doktori értekezés szerzőjeként hozzájárulok a doktori értekezés és a tézisek szövegének plágiumkereső adatbázisba helyezéséhez és plágiumellenőrző vizsgálatok lefuttatásához.

Kelt: Budapest, 2015.06.28.

…………………………………………
a doktori értekezés szerzőjének aláírása

39 A kari hivatal ügyintézője tölti ki.
40 A megfelelő szöveg aláhúzandó.
41 A doktori értekezésben nyilvánosságba hozzájáruló adatokban végső soronak hozzájáruló bejelentés fenntartása iránti kérelmet.
42 A doktori értekezésen nyilvánosságba hozzájáruló adatokban végső soronak hozzájáruló bejelentés fenntartása iránti kérelmet.
43 A doktori értekezésen nyilvánosságba hozzájáruló adatokban végső soronak hozzájáruló bejelentés fenntartása iránti kérelmet.