Doktori értekezés

Hazai élelmiszerek és az előállításukhoz felhasznált víz arzéntartalmának vizsgálata

Sugár Éva

Eötvös Loránd Tudományegyetem
Kémia Doktori Iskola
Analitikai, kolloid- és környezetkémia, elektrokémia program

Iskolavezető: Dr. Inzelt György, DSc
Programvezető: Dr. Záray Gyula, DSc

Témavezető: Dr. Záray Gyula
egyetemi tanár, DSc

Konzulens: Dr. Mihucz Viktor Gábor
adjunktus, PhD

Budapest, 2015
Szonjának...
Tartalomjegyzék

1 BEVEZETÉS ... 7

2 IRODALMI ÁTTEKINTÉS ... 8

2.1 Az As felfedezése, előfordulása és története napjainkig ... 8
 2.1.1 Az As természetes előfordulása ... 8
 2.1.2 Geológiai jellemzők .. 9
 2.1.3 Az As ásványai ... 9
 2.1.4 Az As antropogén kibocsátása ... 10
 2.1.5 Az As ipari előállítása ... 10
 2.1.6 Az As ipari felhasználása .. 10
 2.1.7 Az As speciációja ... 12

2.2 Az As élettani hatása ... 16
 2.2.1 Az As hatása az emberi szervezetre ... 16
 2.2.2 Az As hatása az állati szervezetekre ... 20
 2.2.3 Az As hatása a növényekre ... 21

2.3 Az ivóvíz As-tartalma ... 22
 2.3.1 Magyarország felszín alatti vizeinek As-konzentrációja .. 24

2.4 Az ivóvízek As-konzentrációjának csökkentése ... 26

2.5 Élelmiszerek As-tartalma .. 27
 2.5.1 A rizs As-tartalma ... 28
 2.5.2 Az uborka és a csiperkegomba As-tartalma .. 29
 2.5.3 Halak As-tartalma ... 29
 2.5.4 A magyarországi élelmiszerek As-tartalma .. 31
 2.5.5 Konyhateljesítményi paraméterek hatása az élelmiszerek As-tartalmának változására 32

3 AZ ARZÉN MINŐSÉGI ÉS MENNYSÉGI MEGHATÁROZÁSÁNAK MÓDSZEREI ... 35

3.1 Klasszikus nedves kémiai módszerek ... 35
 3.2 Műszeres analitikai méréstechnikák .. 36
 3.2.1 Az összes As meghatározására elterjedt spektrometriás módszerek ... 36
 3.2.2 Csatolt méréstechnikák arzénspeciesek meghatározására ... 44

4 CÉLKITŰZÉSEK ... 49

4.1 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának meghatározása 49

4.2 Az összes As valamint As(III) és As(V) koncentrációjának meghatározása közkutak ivóvízében 49

5 ANYAGOK ÉS MÓDSZEREK .. 50

5.1 Mintavétel ... 50
 5.1.1 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának meghatározása 50
 5.1.2 Arzénspeciáció ivóvízben ... 52

5.2 Reagensek ... 53
 5.2.1 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának vizsgálata 53
 5.2.2 Arzénspeciáció ivóvízben .. 53

5.3 Mintaelőkészítés ... 54
5.3.1 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának vizsgálata
5.3.2 Arzénspeciáció ivóvízben
5.4 Módszerek
5.4.1 HG-AAS
5.4.2 Q-ICP-MS
5.4.3 HR-ICP-MS
6 EREDMÉNYEK
6.1 Az alkalmazott módszerek teljesítményjellemzői
6.1.1 HG-AAS- és Q-ICP-MS-vizsgálatok
6.1.2 HR-ICP-MS-vizsgálatok
6.2 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának vizsgálata
6.2.1 Az As-bevitel becslése
6.2.2 A lakosság egészségügyi állapota és a becsült As-expozíció kockázatának értékelése
6.3 Az összes As és az As-speciáció meghatározása kútvízben
6.3.1 Oxoanion-képző elemek koncentrációjának alkalmazhatósága ivóvízminták redox környezeti
mutatójaként
7 ÚJ TUDOMÁNYOS EREDMÉNYEK
8 KÖZLEMÉNYEK
9 ÖSSZEFoglaláS
10 SUMMARY (Angol nyelvű összefoglaló)
11 MELLÉKLETEK
11.1 Rövidítések jegyzéke
11.2 Hazai élelmiszerek és az előállításukhoz felhasznált víz vizsgálatához tartozó minták
11.3 A vizsgált kutak helykoordinátái
11.4 A vizmintavétel során használt terepi eszközök
11.5 Az MGSZHk IMEP 107 nemzetközi körvizsgálatban való részvételének az eredménye
11.6 A vizsgált élelmiszerek és az előállításukhoz felhasznált víz As-tartalma
11.7 A vizsgált ivóvízminták As(III) és As(V) koncentrációinak megoszlása a környezeti paraméterek
függvényében
11.8 Egyes élelmiszerek As-ra vonatkozó hatáértékei a 17/1999 EüM rendelete szerint
11.9 A tüdőírak előfordulása az Európai Unió 27 tagállamában (2008)
12 IRODALOMJEGYZÉK
1 Bevezetés

Az arzén (As) különös és ellentmondásos tulajdonságai miatt már nagyon régóta foglalkoztатja az emberiséget. Különböző vegyületei (más néven specieszei) más és más élettani tulajdonságúak. Biológiai hatását tekintve az As mind ártalmatlan vegyületek, mind pedig veszélyes mértéke módban előfordulhat, de ismert gyógy- és roboráló hatása is. A szervetlen As-vegyületek (iAs) méregezőbbek a szerves As-vegyületeknél. Az As az emberi szervezetbe nagyjából 90%-ban az élelmiszerrel és az ivóvízzel jut be, de a tüdőben és a bőrön keresztül is felszívódhat. A iAs-specieszek biometileződése a májban történik és a keletkezett metabolitok a vizeleettel üregek. Az As-expozíció mértéke földrajzilag, társadalmi és egyéni szokásoktól függően eltérő lehet. Felszíni vizekben az As főleg arzenit- (AsO$_3$3-) és arzenáció (AsO$_4$3-) különböző protonált specieszeinek formájában fordul elő. A környezetben az iAs-specieszek biometileződése főleg mikroorganizmusok hatására valósul meg. Gyakori szerves As-speciesz a dimetil-arzinsav, más néven kakodilsav [DMA(V)] és a mono-metil-arzonsav [MMA(V)], de előfordulhat még arzeno-betain (AB) és arzeno-kolin (AC) formában is. Magyarországon az élelmiszerek As-nél való szennyeződése jellemzően az elkészítés során felhasznált ivóvíznek tulajdonítatlan.

Vizsgálataim során ezért egyrészt az ivóvíz és az élelmiszerek As-tartalmának összefüggéseit kutattam, másrészt vizsgálataim kiterjedtek az ivóvízben található iAs-specieszek [As(III), As(V)] koncentrációjának meghatározására is, mivel az As toxikus hatása nagymértékben függ a vegyértékállapottól.
2 Irodalmi áttekintés

2.1 Az As felfedezése, előfordulása és története napjainkig

Az As-t már az időszámításunk kezdete előtt ismerték. Görög elnevezése az arzenikosz vakmerőt, férfias jellemet jelent [3,4]. Hippokratész az i. e. V. században fekélybetegeket kezelt As-tartalmú szulfidásványokkal, nevezetesen realgárral (As₂S₄) és auripigmenttel (As₂S₃). Az i.e. III. században Arisztotelész az ezüst aranyszínűre való festésére alkalmas anyagként említí az As₂S₃-ot. Az As-tartalmú vegyületeket festékként és bőrök cserzésére is használták. Az As mérgező hatása szintén évszázadok óta ismert. Arzénmérgezés áldozata volt többek köztt Claudius római császár is. Magyarországon a XIX. végén és a XX. század elején derült fény arra, hogy a Tiszazug környékén élő asszonyok sorozatos gyilkosságokat követték el légyölő papírról leoldott As-nal.

Az As felfedezését Albertus Magnusnak tulajdonítják (1250 körül) [4]. Oxidjából azonban Johann Schröder állított először elő elemi állapotú As-t 1694-ben [3]. Georg Brandt svéd kémikus foglalkozott elsőként az As-vegyületek összetételének szisztematikus meghatározásával, vizsgálva azok oldhatóságát. Tapasztalatait 1733-ban tette közzé [4].

2.1.1 Az As természetes előfordulása

Az As a természetben a ritkábban előforduló elemek közé tartozik, az elemek gyakorisági listáján a 47. helyen áll a germanium és a berillium között. Erősen oxoanion-képző tulajdonságú félfém, amely többnyire arzenit- (As(III)) vagy arzenát (As(V)) formájában fordul elő. A közönséges szürkearzén (elemi As), amelybe az összes többi As-módosulat átalakul 358 °C-ra való hevítés hatására, nem átlátszó, acél szürke, fémesen fénylő rideg, romboéderesen kristályosodó anyag. Egyes nemfémekhez hasonlóan az As-gőzök nem egyatomosak, hanem mintegy 800 °C-ig As₄ összetételűek, és 1300 °C fölött As₂-molekulák képződnek [4]. Az As egyetlen stabil természetes izotóppja a ⁷⁵As. Előfordul stabilabb fémes állapotban (szürkearzén) és labilis nemfémek alakban (sárgaarzén) is. Emellett létezik még fekete- és barnaarzén is, amelyek finom eloszlású szürkearbénből állnak [4].

Az As a kőzetek, a vulkánkitörések, a köszén, a tűzek, valamint a felszíni és felszín alatti vizek természetes komponense, de kimutatható a növényekben, az állatokban és az emberben is. A levegőbe természetes körülmények között jellemzően vulkánkitörések révén kerülhet.
A legfelső szilárd földkéreg 5,5 × 10⁻⁴ %-a As. A földkéregben 0,1 – 20 mg/kg között, átlagosan 1,8 mg/kg koncentrációban fordul elő [5]. A tőzegekre jelentős mértékű (16 – 340 mg/kg) As-tartalom jellemző.

2.1.2 Geológiai jellemzők

Az As a talajban és az üledékben általában együtt található meg az alumínium-oxiddal, a vas-, valamint a mangán-oxi-hidroxidokkal, és az ásványi oxoanionokkal (SO₄²⁻, PO₄³⁻ és CO₃²⁻), amelyek jelentős mennyiségű As-t tartalmazhatnak [6]. Az agyagásúnyok és a vasoxi-hidroxidok finom szemcséi megkötik az As nagy részét a nagy fajlagos felületnek köszönhetően. Az As mozgását a rétegvizekben sok olyan reakció vezérlí, mint az oldódás/csapadékkiválás, az adszorpció és a redoxi folyamatok. A természetes vizek világszerte előforduló nagy As-koncentrációval jár, ezért a talajvíz redox körülményeitől, a fém-oxi-hidroxidok adszorpció/deszorpció folyamataitól és az As forrásától függ [6]. Rahman és mtsai megfigyelték, hogy a savas pH-jú talajoknál, különösen pH < 5 esetén, az összes As-tartalom nagyobb az átlagosnál [8].

A talajban 200 – 500 mV redoxpotenciál tartományban főleg a kis mobilitású arzenátok fordulnak elő, reduktív környezetben, illetve nagyobb pH-n a jóval mobilisabb arzenit keletkezik (0 – 100 mV). Az As oldhatóságát a vasoxi-hidroxidok kontrollálják, azaz erősen reduktív környezetben (~200 mV) jelentősen nő az As oldhatósága a Fe(II) keletkezése miatt.

2.1.3 Az As ásványai

Az As általában olyan ásványokban fordul elő, amelyek szulfidot, rezet, nikkelt, ólmat vagy kobaltot is tartalmaznak. Az As-nak számos ásványa ismert, leggyakoribbak a szulfidjai úgyminthet a FeAsS, az As₂S₃ vagy a As₄S₄, de ismertek más ásványai is, mint például az arzenolit (As₄O₆) vagy az enargit (Cu₃AsS₄). Az FeAsS Magyarországon a nagybőrsönyi ércesedés fontos ásványa. A As₄S₄ a Kárpát-médence egyik jellemző ásványa, amely Magyarországon az FeAsS társaságában Reesken, Nagybőrsönyben és Rákfán ismert. Realgár az olaszországi Vezů és Etna vulkanok területén ma is képződik [9]. Kevés
kristályos As-t találtak még Szibériában, Németországban, Franciaországban, Olaszországban, Romániában és az USA-ban is [10].

2.1.4 Az As antropogén kibocsátása

A legjelentősebb antropogén eredetű levegőszennyezést olyan ipari tevékenységek okozzák, mint az üveggyártás, a cementipar, a fémkohászat, a bányászat, valamint a hő- és elektromos energia előállítása. A levegő As-tartalma a kibocsátástól függően széles skálán, 1–1000 ng/m³ között ingadozhat [11]. Az As főszfátercekben is előfordul, és ezek feldolgozásával nyert műtrágyáékkal és főszfáttartalmú mosószerekkel kerülhet ki a környezetbe. A talajok és felszíni vizek szempontjából jelentős As-terhelést jelentettek korábban a növényvédő-, a rovarirtó- és a rágesálóirtószerek is.

Mind a háztartási, mind az ipari hulladékok tartalmazhatnak As-t. Az elektronikai berendezésekebe és azok hulladékaiba például félvezetők révén kerülhet As. Az ipari hulladékok közül a különböző szennyvíziszapokban vagy a timföldgyártás vörösiszapjában lehet jelentősebb As-szennyezéssel számolni.

2.1.5 Az As ipari előállítása

Az elemi As ipari előállítása szulfidjaiból kohászati úton történik. Arzenopirit hevítésével közvetlenül kinyerhető, de egyéb As-tartalmú ércek pörkölése során keletkező arzén-trioxidot (As₂O₃) szén mellett történő redukcióját is széles körben alkalmazzák. A világ As-termelése mintegy 50000 tonna, amely messze meghaladja az ipar által igényelt mennyiséget. Kíná a fő exportáló ország, ezt követi Chile és Mexikó [10].

2.1.6 Az As ipari felhasználása

Az As előállítása kb. 100 × 10³ t/év. A legnagyobb gyártó Svédország és a legnagyobb felhasználó az USA. Régebben növényvédőszer-gyártásra, fakonzerválásra, napjainkban inkább fémek kinyerésére, a félvezetőgyártásban, ötvözetek előállításánál, az üveggyártásban és a gyógyszeriparban alkalmazzák. Szulfidját ma főként savgyártásra és tüzijátékkozh használják [9].

Szerves As-vegyületet tartalmaztak régen a rovarirtószerek, a gyomírtók, a patkánymergek, továbbá használták még kitömött állatok és szőrmék konzerválására is. Az ólom-hidrogén-arzenátot (PbHAsO₄) és a kalcium-arzenátot (Ca₃(AsO₄)₂) előszerezettel használták a kolorádóbogár és a molylepék ellen. A párizsizöld v. schweinfurtizöld (réz(II)-
acetoarzenit) erősen mérgező szervetlen vegyület, amelyet rovarölőszereként és rágesálóírtásra egyaránt alkalmaztak. Elterjedt használatuk miatt az As-mérgezés kialakulásának régen nagyobb valószínűsége volt [12–14]. Mivel ezek a szerek erős sejtmérgek, răkkeltő és feltehetően mutagén hatásúak is, célként jelent meg felhasználásuk korlátozása, illetve más hatékony vegyületekkel történő kiváltása. A múlt század kilencvenes éveitől pedig számos országban, köztük Magyarországon is, betiltották a felhasználásukat.

Az As ásványai élénk színűek, ezért alkalmazásuk az ókor óta kézenfekvő volt festékek előállítására. Közismert As-tartalmú festék volt régen az arzénsárga, amelyhez As_2S_3 használtak. Az arzénsöld vagy svédzöld (CuHAsO_3) élénkzöld színű festék, amely erősen mérgező vegyület [15]. Arzént tartalmazott még a fukszin is, amit játékot, textíliák és tapéták festésére használtak. A hosszú évszázadok alatt az As_2S_3 és a As_2S_2 színe elhalványodik, mert elemi kénny és mérgező As_2O_3-dá porlad [16].

A félvezetőgyártásban napjainkban is használnak As-t, főként gallium-arzenid (GaAs) előállítására. Így felhasználják diódákban, lézerekben, napelemekben és az űrkutatásban is.

Az As-t a gyógyszergyártásban máig alkalmazzák. Az első hatékony gyógyszer a szifilisz kezelésére a Salvarsan® (1. ábra), amelyet Paul Ehrlich német kutató fedezett fel 1909-ben. A Salvarsan® az első olyan gyógyszerek közé tartozik, amelyet kemoterápiás készítményként említenek. Később a Salvarsant® már kiváltották az antibiotikumok [17].

![1. ábra: A Salvarsan® szerkezeti képlete](image)

2001 óta használják az As_2O_3-tartalmú Trisenox®-ot a leukémia egyik ritka fajtájában, az akut promielocitás leukémiában szenvedő felnőttek kezelésére. A Trisenox®-ot olyan betegek esetében alkalmazzák, akiknek a szervezete a rák elleni terápiákra nem reagál, illetve a betegségük a kezelés után visszatért [18].

Megjegyzendő, hogy jelenleg ma is kereskedelmi forgalomban vannak As-tartalmú homeopátiás szerek. Ilyen például az Arsenum iodatum (AsI_3), illetve az As_2O_3 tartalmú Arsenicum album [19].
Több háborúban is használtak As-vegyületeket vegyi fegyverként. Az ókori görögök a peloponészszösi háborúban (i.e. 428 és 424 között), a XVIII. és a XIX. században a napoleoni háborúk során, majd az I. és a II. világháborúban, valamint a vietnámi háborúban is bevetettek különböző As-származékokat. A lewisit olyan As-tartalmú gáz halmazállapotú vegyület, amely ingeri a légutakat (2. ábra). A kakodil-oxid, [(CH₃)₂As₂]₂O, pedig olajszerű, a fényt erősen törő, áttetsző folyadék, szaga rendkívül kellemetlen, gőze belélegezve rosszullétet okoz, de nem lépnek föl az As-mérgezés tünetei [3].

![2. ábra: A lewisit képlete](image)

2.1.7 Az As speciációja

Kémiai elemformának nevezzük egy meghatározott elem olyan speciális formáját, amit az izotóp-összetétel, az ionos vagy oxidációs állapot és/vagy a komplex- vagy a molekulászerkezet határoz meg. A speciációs analízis egy elem több kémiai módosulatának azonosítására és/vagy méréseire irányuló analitikai tevékenység. Egy rendszerben egy adott elem megoszlását kémiai módosulatai között az elem speciációjának hívjuk. A frakcionálás egy komponens és/vagy vegyületcsoport osztályozása fizikai (pl. méret vagy oldhatóság) vagy kémiai (pl. kötés, reaktivitás) tulajdonságok alapján [21, 22].

Az 1900-as évek második felében már világossá vált, hogy léteznek tengeri halból vagy más tengeri élőlényből készült, az egészségre nem veszélyes nagy As-koncentrációjú élelmiszerek [20]. A tapasztalatokat később kísérletekkel is igazolták, és a 2000-es évektől külön kutatási területté vált a különböző elemek, köztük az As speciécseinek vizsgálata is. A speciációs analitikai szemlélet abból a következtetésből indult ki, hogy egy elem kémiai tulajdonsága eltérő lehet különböző kémiai környezetben, vagyis biológiai és kémiai tulajdonságai erősen függnek egy adott molekula kémiai szerkezetétől vagy oxidációs állapotától. Így már nem minden esetben elegendő egy élelmiszér összes As-tartalmát meghatározni, hanem azt is vizsgálni kell, hogy az As milyen kémiai formában van jelen az adott mátrixban.

A speciációs analízisnek az ivóvizek és az élelmiszerek As-tartalmának meghatározásában van különbösen nagy jelentősége. Az H₃AsO₄ és H₃AsO₃ metilált specieszei főleg mikroorganizmusok hatására keletkeznek. Legjelentősebb a dimetil-arzinsav [DMA(V)]
és a monometil-arzonsav [MMA(V)]. A H₃AsO₄ és H₃AsO₃ savi erősségük függvényében fiziológiás pH-értéken részleges negatív töltésű specieszekkel rendelkezik (3. ábra).

3. ábra: H₃AsO₄ és H₃AsO₃ különböző specieszeinek százalékos eloszlása a pH függvényében [24].
A DMA(V) és az MMA(V) savi disszociációs értékeit a 1. táblázatban foglaltam össze. A szerves As-tartalmú vegyületek közül gyakori még az arzeno-betaín (AB) és az arzeno-kolin (AC) (4. ábra).

1. táblázat: As savspecieszeinek pK_s értékei [25]

<table>
<thead>
<tr>
<th>Speciesz</th>
<th>pK_{s1}</th>
<th>pK_{s2}</th>
<th>pK_{s3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_3AsO_3</td>
<td>9,2</td>
<td>12,13</td>
<td>13,40</td>
</tr>
<tr>
<td>H_3AsO_4</td>
<td>2,19</td>
<td>6,94</td>
<td>11,5</td>
</tr>
<tr>
<td>DMA(V)</td>
<td>6,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMA(V)</td>
<td>4,11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

($K_s=$ termodinamikai savi disszociációs állandó)

Szervetlen As-vegyületek

a.) arzin v. arzénhidrid
 (AsH₃)
b.) arzénessav
 (H₃AsO₃)
c.) arzénsav
 (H₃AsO₄)

Szerves As-vegyületek

d.) metil-arzin
 (AsH₂CH₃)
e.) monometil-arzonossav
 (MMA(III))
f.) monometil-arzonsav
 (MMA(V))

4. ábra: A leggyakrabban előforduló szervetlen és szerves As-vegyületek
g.) dimetil-arzin (AsH(CH₃)₂)

h.) dimetil-arzinessav (DMA(III))
i.) dimetil-arzinsav v. kakodilsav (DMA(V))

j.) trimetil-arzin (As(CH₃)₃)
k.) trimetil-arzin-oxid (TMAO)
l.) tetrametil-arzónium ion (TMA)

m.) arzeno-betain (AB)
n.) arzeno-kolin (AC)
o.) példa arzeno-szénhidrátra

p.) nátrium-metil-arzenát

q.) dinátrium-metil-arzenát

r.) kalcium-metil-arzenát

s.) réz(II)-aceto-arzenit

4. ábra folytatása: A leggyakrabban előforduló szervetlen és szerves As-vegyületek
(Megjegyzés: p-s: szerves As-tartalmú, már betiltott rovarirtó- és növényvédőszerek)
Élő szervezetekből általában a következő As-veyületek mutathatók ki: As(III), As(V), MMA(V), DMA(V), TMA, AsH₃, AsH₂CH₃, AsH(CH₃)₂, As(CH₃)₃, AC, AB és arzeno-szénhidrátok (más néven arzenocukrok) [23]. Lehetséges még MMA(III) és DMA(III) keletkezése is, amely specieszeik kis élettartamúak és oxidációjuk során karcinogén hatást fejtenek ki. Az As metabolizmusát az 5. ábra szemlélteti.

5. ábra: Az As metabolizmusa a környezetben [26]

2.2 Az As élettani hatása

2.2.1 Az As hatása az emberi szervezetre

Az As emberi szervezetben játszott szerepe még nem teljesen tisztázott [27]. Az elemi állapotú As az ember számára közvetlenül nem mérgező, mert a vízben és az emésztőnedvekben gyakorlatilag oldhatatlan, ezért nem dúsul fel az emberi szövetekben és mérgező hatása nagymértékben függ a vízben való oldhatóságtól. A vízoldékony As-sók a gyomor és a tüdő nyálkahártyájáról könnyen felszivódnak. A lágy szervekbe jutott As ugyan gyorsan kiürül, de a szaruképletek és a csontok akkumulálják, ezért idült mérgezésnél elsősorban hajból és körömből mutatható ki.
Az As-specieszek eltérő toxicitással rendelkeznek: a szerves vegyületek (iAs) toxiszabban, mint a szerves vegyületek (2. táblázat), bár bizonyított tény, hogy az MMA(III) és DMA(III) is indukálhat rákos megbetegedést. Az As(V)-vegyületek kevésbé mérgezőek, mint a As(III)-vegyületek. Általánosságban elmondható, hogy az As(III) és az As(V) könnyebben felszívódó toxikus iAs, míg a szerves As-vegyületek kevésbé jelentenek veszélyt az ember számára, és léteznek szerveskötésben levő kevésbé vagy egyáltalán nem mérgező As-vegyületek is (pl. AB, AC). A nátrium- és a kálium-arzenit jól oldódik vízben, de az erősen mérgező As₂O₃-ból még forró vízzel is csak kb. 10 %-os oldat készíthető.

Az As-vegyületek mérgező hatása azzal magyarázható, hogy az As affinitása az enzimek –SH csoportjához nagy, ezáltal a tioceportokat tartalmazó enzimeket irreverzibiliszen blokkolja, enzim-inhibitor komplexeket képezve. Az As a ditiolokkkal gyűrűs vegyületeket képez, amelyek lényegesen stabilabbak, mint a monotiollal képződött nem gyűrűs vegyületek. A mikroorganizmusok elősegíthetik az As(V) → As(III) redukciót, majd pedig metilezési reakciók játszódnak le [28]. Továbbá az AsO₄³⁻ a sejtekben a foszfátion (PO₄³⁻) helyére beépülve számos anyag aktivitását, biokémiai folyamatok lejátszódását gátolja [11, 14]. Az emberi szervezetben az As-vegyületek metabolizációja főleg a májban lejátszódnó biometileződéssel történik, amelyet a keletkezett metabolitok vizeletben való ürítése követ (6. ábra).

A metilcsoportot az S-adenozil-L-metionin szolgáltatja, de e folyamat során glutation (GSH) vagy egyéb tiolok jelenlétében az As(V) As(III)-má is redukálódhat. A metilezett As(III)-specieszek nagyon reakcióképesek, blokkolják a GSH- és a tioredoxin reduktázat valamint rövid élettartamuk miatt nehezen kimutathatók, károsítják a DNS-t, így genotoxikusnak tekinthetők [1, 29-31]. Szervetlen As-nek való kitettség esetén az emberi szervezetben az MMA(III+V) és a DMA(III+V) a fő metabolitok. Szervetlen As-expozíció esetén így az As 10 – 30 %-ban szervetlen specieszek, 10 – 20 %-ban MMA(III+V) és 60 – 80 %-ban DMA(III+V) formájában ürülnek ki vizelettel az emberi szervezetből [1, 32].
2. táblázat: Egyes As-vegyületek LD₅₀ 1 értékei (patkány és egér, orális exposíció) [35–39]

<table>
<thead>
<tr>
<th>Vegyület</th>
<th>LD₅₀ [mg/kg]</th>
<th>Vegyület</th>
<th>LD₅₀ [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsH₃</td>
<td>3</td>
<td>Tet ametil-arzónium kation (TMA)</td>
<td>890</td>
</tr>
<tr>
<td>As(III)</td>
<td>15 – 42</td>
<td>Trimetil-arzin-oxid (TMAO)</td>
<td>10,6 × 10³</td>
</tr>
<tr>
<td>As(V)</td>
<td>20 – 800</td>
<td>Arzeno-kolin (AC)</td>
<td>> 6,5 × 10³</td>
</tr>
<tr>
<td>Monometil-arzinát (MMA(V))</td>
<td>700 – 1800</td>
<td>Arzeno-betain (AB)</td>
<td>> 10,0 × 10³</td>
</tr>
<tr>
<td>Dimetil-arzinát (DMA(V))</td>
<td>1200 – 2600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A gyógyszatban régóta alkalmazott As-vegyületek hatásmechanizmusai még nem teljesen tisztázottak. A kutatások eredményei arra utalnak, hogy egyes As-vegyületek csökkentik az anyagcserét, gátolják a pajzsmirigyhormon képződését és csökkentik a sejtlégzést. Kis mennyiségben az As izgatja a csontvelőt, aminek következtében nő a vörösvértestek száma. Ezt a hatását használják ki a vészes vérszegény ség kezelésénél. Az As

1 Az LD₅₀-érték megadja, hogy a vizsgált vegyületből mekkora mennyiség okozza a kísérleti állatok 50%-ának pusztulását 24 órán belül.
kis adagokban tágítja a bőr kapillárisait, ezért a bőr kipirul. Lehetséges, hogy ez átmenetileg javítja a bőr táplálását – As hatására az állatok szörzete fényesebbé válik – de ez valószínűleg a kapillárisérülés első fázisának hatása. Az As kis adagokban feltethetőleg elsősorban a lebontási folyamatokat gátolja, ezért figyelhető meg kezdeti javulás, azonban ez feltehetően már toxikus hatás, amely az általános enzimbénítás első fázisaként fogható fel [14].

A iAs-vegyületek orálisan bejutva súlyos gyomor- és bélproblémákat okozhatnak, mint például hányást, hasmenést, étvágytalanságot és húgyhólyag károsodást. Más akut tünetek is előfordulhatnak, mint például a vizenyős arc vagy izomgörcsök. A krónikus As-mérgezés jellegzetes tünetei például a hasmenés vagy olyan jellegzetes bőrelváltozások főleg a talpon és a tenyéren, mint például a bőrpír, a pigmentáció és az elszarudás. Az idegrendszeri gyulladás idővel bénulásokat idézhet elő, valamint pszichés leépülés figyelhető meg. A beteg végül végző fizikai kimerülésben meghal [33, 34]. Az As-vegyületek iránti érzékenység egyénenként igen eltérő lehet, és például a szulfidjaival szemben tolerancia alakulhat ki. Ha az adagokat fokozatosan emelik, akkor akár a halál általános mennyiség többszöröse sem okoz mérgezést [14].

Egyértelmű összefüggés van az As-exponáció és különböző rákos megbejegedések (pl. bőr- és tüdőrák) kialakulása között, különösen akkor, ha a tartósan fogyasztott ivóvíz As-koncentrációja meghaladja a 100 μg/l értéket [40]. Ugyanakkor 100 μg/l As-koncentráció alatt a szakvélemények nem egybehangzóak. Az As karcinogenitása elsősorban a tüdőrák esetében jelentkezik [41].

Egy szál cigaretta általánosságban 12,3 – 37 μg, míg annak füstje 1,8 – 3,5 μg As₂O₃-ot tartalmaz [42]. Epidemiológiai vizsgálatok igazolták, hogy a cigarettafüst és a belélegzett As növeli a tüdőrák előfordulásának kockázatát [43]. Becslések szerint a dohányosok 0,8 – 2,4 μg iAs-t lélegeznek be egy doboz cigaretta elszívásával, aminek kb. 40 %-a szívódik fel a légutakban [44]. A kozmetikumok 20 %-ában átlagosan 1,8 mg/kg As-t találtak (1,2 – 70 mg/kg) [45].

Az Egészségügyi Világszervezet (WHO) 2010-ben készült útmutatásában 3,0 μg / testtömeg kg / nap As-ban határozta meg az As-ra vonatkozó dóziskészöbértéket (angolul, benchmark dose limit), amely 0,5 %-kal növeli meg a tüdőrák előfordulásának kockázatát (BMDL₀.₅) [46].
Az Európai Élelmiszerbiztonsági Hatóság (EFSA) tanulmánya szerint az átlagos napi iAs-bevitel 0,13 – 0,56 µg / testsúly kg között mozog. Három év alatti gyerekek esetében 0,50 – 2,66 µg / testsúly kg. Sok rizs és tengeri hal, kagyló fogyasztása esetén az As-bevitel meghaladhatja a napi 4 µg / testsúly kg-t. Míg egyes személyeknél mérgezés már 20 µg / testsúly kg / napnál jelentkezik, másoknál még 150 µg / testsúly kg / napnál sem [47].

Bizonyos munkakörök esetén komoly egészségügyi kockázatot jelenthet a nagy As-expozíció. Ilyen például a fapácolás, a növényvédőszer-gyártás és -felhasználás (DMA(V)), képzőművészeti tárgyak (pl. üvegek, kerámiák) készítése, nem vastartalmú ötvözetek előállítása, félvezetőipar (pl. GaAs), illetve a szénégetés hőerőművekben.

2.2.2 Az As hatása az állati szervezetekre

A tengeri élőlényekben az As nagymértékben felhalmozódik és akár több száz mg/kg mennyiségben is megtalálható, így élelmiszer formájában a tengeri halak és más tengeri élőlények fogyasztása jelentheti a legnagyobb As-bevitelt, de ezek a szervezetek, mint már korábban említettem, az As-t kevésbé mérgező szerves As-vegyületek ké, főleg AB és AC specieszkek alakítják.

A sazirodalomban felléphető adatok szerint a haszonállatok szöveteiben felhalmozódott As-vegyületek koncentrációja arányos a takarmány As-tartalmával. A fogyasztást követően, az As koncentrációja kezdetben megemelkedik a májban, a vesében, a lépben és a tüdőben [48, 49], de néhány óra múlva az ektodermális szövetekbe (szőr, köröm) is kijut. Ennél fogva As(V) tartalmú takarmánnyal táplált marha [50, 51], bárány [52, 53] és baromfi [54] ehető szöveteiben (máj, vese, izom) rendszerint az összes As-koncentráció nedves tömegre kisebb, mint 0,001 mg/kg, mind az As(V)-tal kezelt, mind a kontrollcsoportban. A monitoring-vizsgálatok során is hasonló összes As-koncentrációkat mérték különböző mezőgazdasági területről származó állati eredetű élelmiszerekben [47, 55, 56].

A kísérleti vizsgálatok során a nagyobb As-tartalmú takarmány mind a természetes eredetű As-nal szennyezett területekről, mind az ipari területekhez közel található területekről származó állatok esetében megnövelte minden vizsgált szövetben az As-koncentrációt a kontrollcsoporthoz viszonyítva. Ugyanakkor, a visszamaradt As mennyisége jelentős mértékben függ az állat fajtájától, az As-vegyület típusától, az As-speciesztől, és a kitettség időtartamától. Például három hónap után állatoknál is napi 33 mg As(V)-tartalmú takarmánnyal táplált tehénnek izomszöveteiben az összes As-koncentráció kis mértékben emelkedett csak meg, az 5 µg/kg kontrollhoz képest 20 µg/kg-ra. A májban a 12 µg/kg
kontrollhoz képest 30 μg/kg-ra nőtt az As-konzentráció. A tejben, valamint a vesében az As koncentrációja a kontrollosoportnál mért értéken maradt [49, 50]. Az említett tanulmány azt is kimutatta, hogy 15 – 28 hónap után a 33 mg/nap As(III)-terhelésnek kitett állatok teje az 1 μg/kg kontrollhoz képest 2 μg/kg, az izomszövet az 5 μg/kg kontrollhoz képest 30 μg/kg, a máj a 12 μg/kg kontrollosoporthoz képest 100 μg/kg és a vese az 53 μg/kg kontrollértékhez képest 160 μg/kg As-t tartalmazott [50]. Egy hétbeli az As-tartalmú takarmányozás leállítása után a tej As-konzentrációja visszaállt a vizsgálat megkezdésekor megfigyelt értékre. Rosas és mtsai Mexikóban, As-szennyezett területeken a tej átviteli tényezőjét 6 × 10⁻⁴ értékben határozták meg [47, 57]. Az átviteli tényező a takarmány és az állati szövet As-konzentrációjának aránya.

2.2.3 Az As hatása a növényekre

A legtöbb növény As-tartalma 10 mg/kg alatt van. A növények által felvetett AsO₄³⁻ a PO₄³⁻ helyére beépülve felborítja azok energiaháztartását. Talajban az As hozzáférhetőségét főleg a vas kémiaja határozza meg. Aerob közegben (pl. aerob talajban) az AsO₄³⁻ az uralkodó speciesz, így a növények leginkább ezt a specieszt tudják felvenni. Az As-fitotoxicitása szorosan függ a talaj összetételétől, pH-jától és nem utolsó sorban a növény As iránti toleranciájától [58].

1994-ben Magyarországon egy hosszú távú kísérletet kezdtek el, hogy tanulmányozzák néhány talajszennyező toxikus elem viselkedését (lektödés, átalakulás, kilúgás), a növények általi felvehetőségüket, akkumulációjukat a növényi szervekben és fitotoxicitásukat. A kísérletet 1994 őszén állították be nyolc elemmel (Al, As, Cd, Cr, Cu, Hg, Pb, Zn), három terhelési szinten (30, 90 és 270 kg elem/ha), három ismétlésben, 3,5 m × 10 m-es parcellákon. Az As-t As₂O₃ és NaAsO₂ formában adagolták. A tapasztalat az volt, hogy az As még extrém nagy talajterhelés esetén sem épül be a szemtermésbe. A szem, mint generatív szerv, genetikailag valószínűleg védett e szennyezővel szemben [59]. Az As-terhelést jól tűri a burgonya (Solanum tuberosum), a paradicsom (Solanum lycopersicum) és a sárgarépa (Daucus carota), de nagyon érzékeny rá a vöröshagyma (Allium cepa), a lucerna (Medicago sativa) és a csemegekukorica (Zea mays) [60].

2 carry over effect
Az As nehezen mozog a talajban, így a növényeknél ritkán okoz mérgezést vagy termécsökkenést. Az AsO₄³⁻ és a PO₄³⁻ kémiai hasonlósága miatt a P/As arány döntő a növénytoxicitás kialakulásakor, mert a hasonló kémiai szerkezet révén megakadályozza a P növény általi felvételét, illetve a növényen belüli transzportját. Vízoldható As-vegyületek a növényekben As-mérgezést okozhatnak, ilyenkor a növények növekedése lelassul, szöveteik rózsaszínűek, majd világossárgák lesznek, és az idősebb levelek rözsaszínű foltojai jelentkeznek [10].

2.3 Az ivóvíz As-tartalma

Földünk számos víztározó rétegének As-szennyezettsége geológiai eredetű. Ez az amerikai kontinens északi részén Nyugat-Amerikát, a déli feltekén Chile és Argentína kiterjedt területeit, Ázsiaiban Kína egyes tartományait, illetve a Bengáli-öbölt és a hozzá kapcsolódó deltavidéket érinti. Európában természetes As-szennyezéssel a Kárpát-medencében Magyarországon és ezen belül elsődlegesen a dél-keleti régióban kell számolni [61].

Míg az édesvizek As-tartalma tág határok között (1 – 200 μg/l) ingadozik, addig a világ tengereinek és oceánjainak As-tartalma átlagosan 1 – 5 μg/l [62]. A iAs-módosulatokon kívül a felszíni vizekben feltehetően a biológiai folyamatok következtében kis mennyiségben MMA(V) és DMA(V) is található [63]. Vízkémiai rendszerekben az As viselkedése rendkívül bonyolult. Előfordulhat több szervetlen és szerves módosulata a pH, a sótartalom, valamint a redoxpotenciál függvényében. Nem találtak egyértelmű összefüggést az As-konzentráció és a nedves/száraz évszakok között [64] vagy az esős időszakok között [65].

Világszerte problémát jelent az ivóvizekben előforduló természetes eredetű As-konzentráció. A világon a legveszélyeztetettebb Banglades lakossága, mert itt a kutak több mint 60 %-ában a természetes iAs-konzentráció meghaladja a 100 μg/l-t, és nem ritkák a 300 – 500 μg/l As-konzentrációjú kutak sem. A veszélyeztetett területeken a lakosság akár 10 %-a is érintett valamilyen rákos megbetegedésben, főként tüdő- és bőrrákban, ami összefüggésbe hozható az ivóvíz nagy As-konzentrációjával [66].

Feltételezhető, hogy a vas(III)-oxi-hidroxidok és -hidroxidok reduktív oldódása vezet a nagy As-konzentrációhoz nem oxidatív talajvízben. Ezt a folyamatot katalizálhatják olyan mikroorganizmusok, mint például az Acidithiobacillus ferrooxidan és a Leptospirillum ferrooxidan [6]. Széles körben elfogadott az a tény, hogy az As As(V) formában fordul elő természetes vizekben, azonban a mintavételi módszerek és a minta tartósítása, valamint az
analitikai módszerek fejlődésének köszönhetően egyre több és több adat támasztja alá bizonyos mintákban az As(III) forma jelenlétéét [67].

Smedley és Kinniburgh szerint [61], ott ahol nincs bányászati tevékenység, az As környezetbe való visszaoldódását a kis redoxpotenciállal és oldott oxigén koncentrációval, nagy Fe-, Mn-, NH$_4^+$-, kis SO$_4^{2-}$ (< 5 mg/l) koncentrációval, lügössággal (> 500 mg/l), esetleg nagy oldott szervesanyag-tartalommal (> 10 mg/l) lehet jellemezni. Az oxidáló környezetre jellemző a magas pH-érték (pH > 8), a nagy alkálifémtartalom (> 500 mg/l), az esetlegesen nagy F-, U-, Mo-, Se-koncentráció, a megnövekedett sótartalom, redoxpotenciál, és oldott oxigén-tartalom [61]. Ez azt is jelenti, hogy nagyobb koncentrációban az As oxidatív visszaoldódását olyan o xoanion-képző elemekkel is igazolni lehet, mint a Se, a V, a Mo és az U. Ezeket az elemeket nagy felbontású induktív csatolású plazma tömegspektrometriás (HR-ICP-MS) technikával könnyen meg lehet határozni [68 – 70].

Észak-Görögországban vett felszín alatti vizek U koncentrációját és az As(III) / összes As koncentrációjának arányát ábrázolva, azok erősen korreláltak (r^2 = 0,84), így jellemezhető volt a felszín alatti vizek redox állapota [70]. Ugyanakkor nem találtak egyértelmű összefüggést Indiában különböző kutak vizének U, V és As(III) koncentrációja
között, a korreláció 0,23 és 0,74 között változott [68]. Ebben az esetben lehetséges, hogy a redoxfolyamatok mikrobiálisan szabályozottak.

2.3.1 Magyarország felszín alatti vizeinek As-koncentrációja

A természetes eredetű As-szennyezéssel sújtott magyarországi régiókban a kút vizek As-koncentrációja számos esetben meghaladja a korábban Magyarországon hatályos 50 μg/l határértéket (8. ábra).

![Diagram](http://www.oki.antsz.hu)

8. ábra: Vezetékes ivó vizék As-tartalma Magyarországon (2007)^3

Hough és mtsai [71] Közép-Európában vizsgálták a lakosság élethosszig tartó ivívíz eredetű As-kitettségét. 1980 és 2002 között figyelemmel kísérték 50 magyarországi, romániai és szlovákiai településen a lakosság által fogyasztott ivívizek As-konzentrációjának alakulását. Az eredményekből azt a következtetést vonták le, hogy a jogi szabályozások és az As-konzentráció csökkentésére irányuló technológiáknak köszönhetően folyamatosan csökkent az ivívíz As-terhelése, de még mindig akadnak olyan esetek, ahol előfordulhat a 100 μg/l feletti As-konzentráció. Hough és mtsai az élethosszig tartó kitettség vizsgálatával megállapították, hogy az ivívíz átlagos As-konzentrációja akár egy nagyságrenddel is nagyobb lehet a veszélyeztetett területeken a kontrollcsoportokhoz képest [71].

3. táblázat: Az As ivívízben való jelenléte miatt kifogásolt települési vízművek (2006)4

<table>
<thead>
<tr>
<th>As-konzentráció</th>
<th>Érintett település (db)</th>
<th>Veszélyeztetett lakos (fő)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 50 μg/l</td>
<td>11</td>
<td>23836</td>
</tr>
<tr>
<td>31 – 50 μg/l</td>
<td>62</td>
<td>15181</td>
</tr>
<tr>
<td>10 – 30 μg/l</td>
<td>312</td>
<td>1154231</td>
</tr>
</tbody>
</table>

A magyarországi nagy As-konzentrációjú rétegvizek eredetét sokan kutatták. Az As rétegvizekbe történő oldódására Magyarországon kétféle elmélet létezik. Az egyik az As reduktív oldódása szulfid- és vastartalmú ércekből, a másik elmélet pedig az As oxidatív oldódása FeAsS-ből. A Magyar Földtani és Geofizikai Intézet előzetes vizsgálatai szerint főleg iAs specieszek előfordulásával kell számolni ezeken a területeken [69, 72]. Itt azok a magyarázatok is megemlíthetők, amelyek a mélyről felfelé áramló termálvíz As-tartalmával, illetve az As vas(III)-oxi-hidroxidókon való adszorpciójával és vas-ásványok vízben való kismértékű oldódásával számol. Valószínűleg még ennél is több tényező játszik szerepet az oldott As-konzentráció kialakulásában. Varsányi és mtsai szerint az As fémorganikus komplexekben mobilizálódik. Megállapították, hogy az As-specieszeknek nincsenek regionális, az egész Kárpát-medencére érvényes szabályai [72]. Tóth és mtsai [73] 1985-ben kimutatták, hogy a fiatal üledékek rétegvizeiben az As két szinten dúsul: egyrészt közvetlenül az aljzat fölött, másrészt a felszín közelében. A kettő között, közepes mélységben a víz As-

2006-ban Varsányi és Kovács [72] vetették fel azt, hogy Magyarországon az As kötődik a vas(III)-oxi-hidroxidokhoz, a szerves üledékekben is jelen van és mikrobiológiai úton hozzájárul a vas(III)-oxi-hidroxidok reduktív oldódásához, amely elsősorban As(III)-at szabadít fel a felszín alatti vizekben [72]. Továbbá, Szöcs és mtsai [69] számoltak be arról, hogy azokban a Bács-Kiskun megyében vizsgált sekély mélységű (max. 15 m) kutakból származó vízmintákban, amelyekben az As(V) volt az uralkodó speciesz, az o xoanion-képző elemek (Mo, Se, V, U és W) koncentrációja is nagyobb volt [69].

2.4 Az ivóvizek As-koncentrációjának csökkentése

Magyarország az utóbbi két évtizedben nagy erőfeszítéseket tett az ivóvíz As-koncentrációjának csökkentésére, víztisztítók kialakításával, koaguláció-szűréssel, ioncserével, membrántechnológiával, illetve kis As-tartalmú vízzel való keveréssel. Az Európai Unió anyagi támogatásával megvalósuló Ivóvízminőség-javító Programhoz valamennyi jogosult település csatlakozott [143].

Az As-koncentrációjának csökkentésére irányuló technológiákat két fő csoportba lehet sorolni. Az egyik a koaguláció, azaz az As kicsapásán és üleptésén vagy szűrésén alapul, a másik eljárás pedig valamilyen ioncserélő oszlop alkalmazása az As megkötésére. Az As(V) sokkal hatékonyabban távolítható el a vízből, mint az As(III), mert az H₃AsO₄ a 7 – 9 pH-jú rétegvízben részben disszociált, azaz ionos formában van jelen, és így könnyen adsorbeálódik más részecske felületén. A fent említett pH-tartományban nem disszociálódó
gyengébb saverősségű H₃AsO₃-ra ez nem jellemző. Ezért célszerű a tisztítandó vízhez valamilyen módon oxidálószert (oxigént, ózont, klórt, kálium-permanganátot) adni. A koagulációs-flokkulációs technológia az ivóvízkezelésben régóta elterjedt megoldás. Az eljárás lényege, hogy többértékű fémsó (pl. FeCl₃, Al₂(SO₄)₃, Fe₂(SO₄)₃) adagolásával az ivóvízben található kolloid mérettartományba eső szennyező anyagok felületi töltését semlegesítk, így azok aggregálódnak. A pelyhesedés után ülepítéssel és/vagy szűresszel a szilárd fázis leválasztható [76]. Hazánkban az As vassal együtt történő eltávolítása terjedt el a legjobban.

A kálium-ferrát (K₂FeO₄) kedvező kémiai tulajdonságai miatt a korábban két lépésben történő As-mentesítést (1. oxidáció, 2. koaguláció) egy lépésben valósítja meg, azaz a vízkezelés során először az As(III)-mat As(V)-t oxidálja, és az ezzel egyidejűleg keletkező vas(III)-hidroxid adszorpció révén megkötő az As(V)-t [24].

Létezik még az ioncserén alapuló As-mentesítési technológia, ahol az eltérő sav diszszociációról valóan a valamilyen As-szelektív aktív töltetű ioncserélőn megkötik az As-iónokat.

2.5 Élelmiszerek As-tartalma

Yost és mtsai megállapították, hogy ott, ahol a lakosságra nem jelent veszélyt az ivóvíz As-tartalma, az elfogyasztott élelmiszer járulhat jelentős mértékben a iAs beviteléhez [77].

Egy Bangladesben készült tanulmány rámutatott arra, hogy az ivóvíz As-szennyezettségének csökkentése nem volt elég ahhoz, hogy jelentős mértékben csökkenjen az élelmiszerek As-mentesítésére. A napi zöldségfogyasztás például Európában 153 g és Ázsiában 250 g körül mozog [79]. Chilében főtt zöldségek összes és iAs-tartalmát határozták meg. A vizsgálatot az ivóvízként és főzésre használt vízből végezték el. Az eredmények azt mutatták, hogy az élelmiszerek is hozzájárulnak az iAs beviteléhez és ez különösen a 15 éves vagy annál fiatalabb vízszint személyekre jelent nagyobb kockázatot [80]. Mexikóban As-nal szennyezett forrásvíznek kitett vidéken élő iskoláskorú gyermekeket (n = 55) vizsgáltak. A víz nagy As-koncentrációja összefüggést mutatott a helyi lakosság hajmintaiból vizsgált As-koncentrációval. A szerzők azt feltételeztek, hogy a főzésre felhasznált szennyezett víz lehet az As-terhelés fő forrása [81]. Az As-mérgezés másik kockázata a rossz minőségű máz és máz nélküli agyagedények [82]. A nem mázas agyagedények áztatóvízének As-koncentrációja 30,9 – 800 µg/l között mozgott, míg a mázas agyagedényeké általában a kimutatási határ alatti szint (0,5 µg/l) és 30,6 µg/l között volt.
Valentine és mtsai [83] összehasonlították a táplálkozási szokásokat két földrajzilag eltérő As-szennyezéssel érintett területen (Mexikó vs. Kalifornia), ahol gyakran fordulnak elő As-mérgezésre jellemző bőrbetegségek. Mivel a lakosság hasonló As-konzentrációjú ivóvizet fogyaszt, különbséget csak a bőrre pozitív hatást kifejtő A-vitamin-bevitelben figyeltek meg a csoportok táplálkozásában [83].

A rizs az ember számára az egyik legfontosabb élelmiszer, amely gyakran szennyezett As-nal. Egy amerikai felmérés szerint pedig a gyermekek számára még mindig a rizs fogyasztása jelenti a legnagyobb As-exponzciót az USA-ban [84 – 86].

2012-ben tették közzé, hogy Latin-Amerikában az élelmiszer-lánc As-tartalmának felülvizsgálata magában foglalja az elkészített élelmiszerek As-tartalmának vizsgálatát is [87]. A közelmúltban pedig megvizsgálták két európai régióban (Franciaország és Katalónia) és Hongkongban is az élelmiszerek As-exposzciónját [88 – 90].

2.5.1 A rizs As-tartalma

A rizs a világ egyik legfontosabb élelmiszere, amelyből rendkívül nagy mennyiséget fogyasztanak Ázsiában, de hazánkban is nagy népszerűségnek örvend. A rizsnövényeket a termesztés során vízzel árasztják el. Csapadékos időszakban általában felszíni vízkészletekből öntöznek, azonban száraz időszakokban a felszín alatti vízkészleteket használják öntözésre, ezért a vizek természetes és antropogén eredetű szennyezőinek a növény általi felvételével számolni kell [92]. A rizspalánta a növekedése során az As-t a többi tápanyaggal együtt veszi fel a vízből és a talajból. Az As a növényben 90 %-ban iAs formában van jelen. A növény különböző részeiben eltér az As-konzentráció. Smith és mtsai [93] méréseik során a termény << levél << szár << gyökér sorrendet állapították meg. A terményben található a legkisebb, átlagosan 1,25 ± 0,23 mg/kg koncentráció, míg a talajjal folyamatos kapcsolatban lévő gyökérzetben sokkal nagyobb, 248 ± 65 mg/kg átlagos értéket mérték [93]. A rizs As-tartalma úgy csökkenthető, ha kis As-konzentrációjú vízzel öntözik [92, 94].
2.5.2 Az uborka és a csiperkegomba As-tartalma

Hazánkban As specieszeit vizsgálták nagy hatékonyságú folyadékkromatográfiával összekapcsolt nagy felbontású induktív csatolású plazma tömegspektrometriás (HPLC-HR-ICP-MS) technikával uborkanövények (Cucumis sativus) xilémnedvében. Megállapítást nyert, hogy az As(III) és As(V) tartalmú tápoldaton nevelt uborkanövények xilémnedvében az eredeti As(III)/As(V) aránytól függetlenül az As(III), az As(V) és a DMA(V) volt meghatározható, és minden esetben az As(III) volt az uralkodó speciesz. Ez arra utal, hogy a növényen belül az As(V) redukálódik. Megfigyelték, hogy az As(III)-t tartalmazó tápoldatban az As(III) speciesz körülbelül 10 %-a 48 óra eltelté után As(V)-t oxidaálódik, amely magyarázatot adhat arra, hogy az As(V) is kimutatható vol a As-nal kezelt növények nedveiben [58].

A legtöbb szabadon élő gomba főként szerves As-vegyületet tartalmaz. Sörös és mtsai ellenőrzött körülmények között termesztett csiperkegombában (Agaricus bisporus) vizsgálták az As-vegyületek mennyiségét [91]. A Földművelési és Vidékfejlesztési Minisztérium felmérése szerint Magyarországon 2002-ben a gombafogyasztás éves szinten átlagosan 2,5 – 3,0 kg/fő volt. A gomba jellemzően gazdag fehérjében és ásványi anyagban, de szegény szénhidráttal és zsirban, ugyanakkor olyan elemeket akkumulál, mint az Pb, a Hg, a Cs, a Cd és az As, amelyek komoly egészségügyi kockázatot jelenthetnek [91]. Míg az As-nél nem kezelt kontrolltápaljon termesztett csiperkegomba száraz tömegre vonatkoztatva 0,5 ± 0,03 μg/g As-t tartalmazott, addig az 1000 mg/kg As-t AS(V) formájában tartalmazó tápaljon ez 22,8 ± 1,0 μg/g érték volt. Az extraktum speciációs vizsgálata azt mutatta, hogy az As főként szervetlen formában fordult elő az As-nal kezelt tápataljon, és ugyanezen a tápataljon nevelt gombában a DMA(V) koncentrációja kétszer, az MMA(V)-é négyszer nagyobb volt, míg az AB koncentrációja csak a fele volt a kontrollmintákéhoz képest. Ha a jelentős As-tartalommal bíró kútvizet locsolásra használták, akkor a termesztett gomba fogyasztása egészségügyi kockázatot jelenthet, ugyanakkor a tápataljon élő mikroorganizmusok ezt a kockázatot biometileződés révén csökkenthetik [91].

2.5.3 Halak As-tartalma

A tengervízben élő szervezetek As-ban viszonylag gazdagok, As-tartalmuk főképp AB formájában van jelen, de tengeri halakból egyéb metilezett As-vegyületeket is kimutattak. Igen nagy egyes kagylófélék As-tartalma, mivel ezek akkumulálják az As-t, így elfogyasztásuk akár mérföldet is eredményezhet [14].
2004 júniusában Schäffer és mtsai [95] az édesvízi élőlények széles skálájának összes As-konzentrációját valamint az As-specieszek előfordulását vizsgálták. Az összes As-konzentrációt induktív csatolású plazma tömegspektrometriával (ICP-MS), a specieszeket pedig HPLC-ICP-MS-csatolással elemezték. Eredményeik szerint az édesvízben az algák főként As(V) formában előforduló arzeno-szénhidrátokat, a vízi növények iAs, DMA(V) és TMA(V) specieszeket, a kagylók különböző szerves As-vegyületeket, kevésbé AB-t, a halak pedig főként o xo-arzeno-szénhidrátokat és nyomokban AB-t tartalmaztak. A tengeri élőlényekben az AB a meghatározó speciesz, míg az édesvízi élőlényekben gyakorlatilag nem fordul elő.

Az édesvízi élőlények As-tartalmára fellelhető adatok is ellentmondásosak. Shiomi és mtsai [97], Slejkovec és mtsai [98] édesvízi halakban főleg AB-t találtak, Zeng és Hintelmann [99] csak kevés AB-t, míg Lawrence és mtsai nem mutattak ki édesvízi halakban AB-t [95, 100]. Tengeri halakban inkább a kevésbé mérgező AB-t fordul elő, ennélfogva ennek az As-speciesznak a felhalmozódása nem jelent egészségügyi kockázatot. Más élőlények viszont tartalmazhatnak iAs-t és/vagy arzeno-szénhidrátokat, amelyek már mérgezőek lehetnek az ember számára [95].

Az utóbbi időben a legtöbb As-speciációs vizsgálat a tengeri élővilágra irányult, és az édesvízi ökológiára csak elvétve található szakirodalom. Ennek valószínűleg az lehet az oka, hogy a tengeri élőlények összes As-konzentrációjá sokkal nagyobb, mint az édesvízben élőké. A tengeri halak és a tenger gyümölcséinek a fogyasztása világviszonylatban igen jelentős, de vannak olyan országok, mint például Magyarország, ahol a lakosság elsősorban édesvízi halakat fogyaszt [95].

Az Élelmezésügyi és Mezőgazdasági Világszervezet (FAO) 2009-es felmérése szerint halászati termékekből a világon az egy főre jutó fogyasztás éves szinten átlagosan 18,4 kg volt. Magyarországon azonban a halfogyasztás nem jelentős: ugyanebben az évben az egy főre jutó halfogyasztás mindössze 5,1 kg volt. A Központi Statisztikai Hivatal (KSH) 2011-es felmérése szerint 2011-ben az élelmiszerekre fordított kiadások csupán 1,1 %-át tette ki a háztartások halfogyasztása, és ennek a fogyasztásnak is a negyede halkonzerv vásárlását jelentette. A halfogyasztás területileg is jelentős különbséget mutat az országban: a magasabb jövedelem miatt a halfogyasztás a fővárosban a legmagasabb, az Észak-Magyarországra és az Észak-Alföldre jellemző fogyasztás ugyanakkor a fővárosi fogyasztáshoz képest 40 % körül van [96].
A 4. táblázatból látszik, hogy As-tartalomra a leginkább vizsgált élelmiszer a hal, a rizs és a zöldségfélék, míg speciációs vizsgálatokat a halak és a rizs mellett főleg kagylóban és búzában végeznek.

4. táblázat: As-tartalomra leginkább vizsgált élelmiszerek, illetve As-vizsgálatok ivóvízre 2004 és 2014 között

<table>
<thead>
<tr>
<th>Élelmiszertípus</th>
<th>Összes As-tartalom</th>
<th>As-speciáció</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Publikációk száma (db)</td>
<td>Publikációk száma (db)</td>
</tr>
<tr>
<td>ivóvíz</td>
<td>15 117</td>
<td>4 622</td>
</tr>
<tr>
<td>hal</td>
<td>14 2 4</td>
<td>3 777</td>
</tr>
<tr>
<td>rizs</td>
<td>8 950</td>
<td>2 647</td>
</tr>
<tr>
<td>zöldség</td>
<td>8 016</td>
<td>1 696</td>
</tr>
<tr>
<td>gyümölcs</td>
<td>6 594</td>
<td>1 130</td>
</tr>
<tr>
<td>hús</td>
<td>5 151</td>
<td>904</td>
</tr>
<tr>
<td>búza</td>
<td>4 926</td>
<td>1 413</td>
</tr>
<tr>
<td>kagyló</td>
<td>3 127</td>
<td>1 327</td>
</tr>
<tr>
<td>burgonya</td>
<td>2 893</td>
<td>646</td>
</tr>
<tr>
<td>paradicsom</td>
<td>2 418</td>
<td>692</td>
</tr>
<tr>
<td>alma</td>
<td>2 267</td>
<td>487</td>
</tr>
<tr>
<td>gomba</td>
<td>1 857</td>
<td>473</td>
</tr>
<tr>
<td>kakaó</td>
<td>852</td>
<td>148</td>
</tr>
<tr>
<td>mangó</td>
<td>445</td>
<td>125</td>
</tr>
<tr>
<td>uborka</td>
<td>245</td>
<td>82</td>
</tr>
</tbody>
</table>

2.5.4 A magyarországi élelmiszerek As-tartalma

Az As-tartalma illetően az Európai Unióban jelenleg csak az ivóvízre vonatkozóan van előírt határérték (98/83/EK irányelv), az élelmiszerekre nincs. Magyarországon azonban jelenleg is érvényben van az 17/1999 EüM-rendelet, amely előírja az egyes élelmiszerek megengedett maximális As-tartalmát [2, 102].

A Mezőgazdasági Szakigazgatási Hivatal Központ (MGSZHK) 2003 és 2008 között élelmiszerekre (3207 vizsgálat, ebből 773 tej- és 288 tojásminta) vonatkozó As-meghatározása szerint a vizsgált élelmiszerek As-konzentrációja viszonylag kicsi volt (5. táblázat) [103]. Ezt támasztja alá az az EFSA által anyagilag is támogatott kísérlet, amely igazolta azt, hogy a tej esetében nem várható nagy As-konzentráció még extrém nagy As-bevitel esetén sem [47].
5. táblázat: Hazai élelmiszerek átlagos As-tartalma 2003 – 2008 között [102, 103]

<table>
<thead>
<tr>
<th>Élelmiszerek</th>
<th>Átlagos As-tartalom (mg/kg)</th>
<th>Határérték(^5) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabonafélék</td>
<td>0,046</td>
<td>0,1</td>
</tr>
<tr>
<td>Húskészítmények</td>
<td>0,007</td>
<td>0,2</td>
</tr>
<tr>
<td>Tojás</td>
<td>0,005</td>
<td>0,1</td>
</tr>
<tr>
<td>Tejtermék</td>
<td>0,005</td>
<td>0,3</td>
</tr>
<tr>
<td>Halak</td>
<td>0,262</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

2.5.5 Konyhatechnológiai paraméterek hatása az élelmiszerek As-tartalmának változására

Az élelmiszerek As-tartalma, illetve az As-specieszek eloszlása a tárolási és hőkezelési körülményektől függően változhat [104]. A rizsminták As-speciációjának vizsgálata nem új keletű, de a 2000-es évek közepéig megjelentetett és idevenhatózó tudományos közlemények figyelmen kívül hagyók, hogy humántoxikológiai szempontból cél szerű lenne meghatározni a különböző konyhatechnológiai eljárásokkal készített rizsételekben az As-specieszek koncentrációját és részarányát [92].

Devesa és mtsai [104] vizsgálatai megmutatták, hogy tárolás során főként a mikrobiológiai folyamatok következtében, főzés során pedig a termikus folyamatok, a víztartalom megváltozása és az illékony komponensek távozása miatt akár szignifikánsan is változhat mind az összes As-koncentráció, mind pedig a specieszek összetétele. A halak esetében például a sütési hőmérsékleten a szerves As-vegyütnek közül az AB más szerves és szervetlen komponensekké alakulhat át a hőmérséklet és az idő függvényében [104].

Bae és mtsai [105] hívták fel először a figyelmet arra, hogy a rizsszemek As-t vesznek fel As-nel szennyezett, főzésre használt vízből, míg Ackermann és mtsai [106] az enzimatikus extrakció fontosságát hangsúlyozták As-nel szennyezett vízben főtt rizsminták speciációs elemzésekor [105, 106]. Rizs esetén α-amiláz és proteáz keveréke nyújt hatékony segítséget az enzimatikus extrakcióban. Noha a hatékonyság jelentősen nő enzimatikus extrakció esetén, viszonylagosan nagy időigénye miatt mégis bekövetkezhet az As-specieszek egymásba való

\(^5\) Egyes élelmiszerek As-tartalmára vonatkozó határértékei a 17/1999 EüM rendelete szerint
átalakulása. Ennek megelőzésére C. Cámara kutatócsoportja azt a megoldást javasolta, hogy az enzimatikus extrakciót össze kell kapcsolni fókuszált ultrahangos kezeléssel [107]. A korábbi speciációs vizsgálatok során szerzett tapasztalatokat felhasználva az ELTE Kémiai Intézetében működő Környezetkémiai és Bioanalitikai Laboratórium (ELTE KBL) munkatársai As-speciációs analízist végeztek magyar és kínai rizsmintákból (*Oryza sativa L*).

A vizsgálatokhoz a Cámara és *mtsai* [107] által kidolgozott fókuszált ultrahangos kezeléssel támogatott α-amiláz és proteáz keverékét felhasználó enzimatikus hidrolízist alkalmazva egy-egy kínai és magyar fehér rizsmintát (*Zhenshan 97* és *Risabell*), továbbá egy barnarizst (*Kőröstáj-333*) vizsgáltak. A kínai és magyar rizsminták összes As-konzentrációja eltérő volt. Például az *Zhenshan 97* rizsemben az összes As-konzentráció 171 ± 7 ng/g, a *Risabell* rizsé 116 ± 4 ng/g és a *Kőröstáj-333* mintában pedig 139 ± 6 ng/g. Hangsúlyozandó, hogy mindegyik érték kisebb, mint a rizs As-tartalmára hatóságilag előírt határérték, amely hazánkban 0,3 μg/g, míg Kínában 0,7 μg/g. Megállapították, hogy a nyers rizsmintákban az uralkodó speciesz az As(III), ami az összes As közel 50 %-át adta, függetlenül a vizsgált rizs fajtájától és eredetétől. A mintákban AC, As(V), DMA(V) és MMA(V) specieszek is kimutathatók voltak HPLC-HR-ICP-MS technikával.

A kínai rizsmintában az AB is meghatározható volt (a minta összes As-tartalmának közel 5 %-a), amely forró vizes extrakcióval teljes mértékben eltávolítható. Ezzel szemben a főtt rizsmintában az As(V) volt az uralkodó speciesz, ami arra utal, hogy főzés közben az As(III) egy része As(V)-tá oxidálódik. Anyagmérleg segítségével igazolták, hogy a mintából a hideg vizes mosással az As 8 – 17 %-a távolítható el. A főzővíz előténésével az eredeti minták As-tartalmának további 30 – 40 %-a volt eltávolítható. A hideg- és forró vizes extraktumok főleg As(III)-at tartalmaztak, ennek aránya a mintában elért akár a 70 – 75 %-ot is. Ezen felül, jellemzően As(V) és kisebb mennyiségben DMA(V) és AC specieszek voltak kimutathatók, viszont AB-t csak a kínai rizsminták forró vizes extraktumában lehetett meghatározni.

A legtöbb gabonához hasonlóan, a rizs esetében is az elemek eloszlása a szemen belül heterogén. Az As jelentős mértékű eltávolításában fontos szerepet játszik, hogy az As a szem felszínéhez közeli rétegben helyezkedik el, ezért hántolással jelentős mértékben csökkenthető az élelmiszerbe kerülő As-tartalom [94]. Igazolást nyert továbbá, hogy a konyhatechnológia is jelentősen befolyásolja az As-bevitelt.
3 Az arzén minőségi és mennyiségi meghatározásának módszerei

3.1 Klasszikus nedves kémiai módszerek

A kvalitatív analitikai kémiából jól ismert az As nyomokban való kimutatására az úgynevezett Marsh-próba, amelynek lényege, hogy erősen redukáló közegben, az As-vegyületek gáz halmazállapotú AsH₃-dé alakulnak. Hő hatására a hidrid elemi As-re és hidrogén gázra bomlik [110]. Sok As jelenlétében a gáz meggegyújtva fakókék színű lánggal ég, amely fokhagymaszagot áraszt és hideg porcelántállal lenyomva, azon csíllogó fekete As-tükör keletkezik [111]. Ez a régi módszer az alapja a hidridfejlesztéses atomabszorpciós (HG-AAS) technikának, ahol a keletkezett elemi As elnyelési spektrumát vizsgálják.

\[
\begin{align*}
H_3AsO_3 + 6H^+ &= AsH_3↑ + 3H_2O \\
2AsH_3↑ &= 2As↓ + 3H_2↑
\end{align*}
\]

Egy másik kémsőben végezhető egyszerű teszt a Gutzeit-reactió, amellyel körülbelül 0,5 μg As mutatható ki. A vizsgálandó oldathoz két-háromszoros mennyiségben 1 M-os kénsavat, 1–2 szem granulált cinket kell adni. A kémső fölé szűrőpapírra cseppentett ezüstnitrátoldat hatására sárga színű AsH₃ képződik, és az AsH₃ a hígabb ezüstnitrátot fekete fémezüst kiválása közben redukálja [112].

\[
6 Ag^+ + AsH_3 + 3 H_2O = 6 Ag + H_3AsO_3 + 6 H^+
\]

Hasonlóan kémsőben végezhető redukció alapuló színreakció a Sanger-Black próba, amely az AsH₃ higany(II)-kloriddal (HgCl₂) való redukcióján alapul. Az AsH₃ a HgCl₂-os papírt sárgára (Hg₂Cl₃As), majd barnára (Hg₃As₂) színez. E reakciót az SbH₃, a PH₃ és a H₂S is adja [111].

Az As(V) redukcióját a jodidion sósavas közegben katalizálja [112].

\[
H_3AsO_4 + 2I^- + 2 H^+ = H_3AsO_3 + I_2 + H_2O
\]

Enyhén lúgos pH-n pedig a I₂ oxidálja az AsO₃³⁻-t. A jódkeményítő színének megjelenési idejét a H₃AsO₃ mennyisége szabja meg, ezért a reakciót jódóra reakcióknak is nevezik.

\[
H_3AsO_3 + I_2 + H_2O \rightarrow HAsO_4^{2-} + 2I^- + 4H^+
\]

Olyan redoxi pár tagjai (pl. \(E^0 AsO_4^{3-}/AsO_3^{3-} = +0,574 V\)), amelyek standard-redoxpotenciálja a jód-jodid rendszerével (\(E^0 = +0,62 V\) közel megegyezik – de az a pH
változtatásával növelhető vagy csökkenthető –, a reakciókörülményeket megváltoztatva, jodid oxidációval, illetve jódos redukcióval egyaránt meghatározhatók [113].

Az As(III) mennyiségi meghatározása például bromatometriával egyszerűen elvégezhető. Előnye, hogy hig oldatok esetén és halogén vegyületek mellett is megbízható. Bromidion felesleg mellett, sósavas közegben a bromát-mérőoldat a bromidionnal brómot termel, amely pillanatszerűen oxidálja az As(III)-t. A titrálás végpontját p-etoxi-krizoidin indikátor jelzi. Az eljárás szerves As-vegyületek analízisére is alkalmas [112, 113].

\[
\text{BrO}_3^- + 3\text{H}_2\text{AsO}_3^- \rightarrow 3\text{HAsO}_4^{2-} + \text{Br}^- + 3\text{H}^+ \quad (6)
\]

\[
\text{Br}_2 + \text{H}_2\text{AsO}_3^- \rightarrow \text{HAsO}_4^{2-} + 2\text{Br}^- + 3\text{H}^+ \quad (7)
\]

Az iAs(III) meghatározható még permanganometriásan, kromatometriásan és cerimetriás titrálással is, de ezeknek a vizsgálatoknak egyike sem alkalmas nyomnyi mennyiségű As kimutatására.

3.2 Műszeres analitikai méréstechnikák

3.2.1 Az összes As meghatározására elterjedt spektrometriás módszerek

Az As folyadékmintából történő spektrometriás meghatározására elterjedt módszer a láng- és grafitkemencés atomabszorpciós spektrometria (FAAS), a grafitkemencés atomabszorpciós spektrometria (GF-AAS) vagy az elektrotermikus atomabszorpció (ETA-AAS) és az ICP-MS technika. Arzént tartalmazó szilárdminták esetén (pl. talajok, emberi köröm) röntgendiffракciót, illetve neutronaktivációs analízist lehet alkalmazni.

3.2.1.1 Láng- és grafitkemencés atomabszorpció

Az atomabszorpciós spektrometria a főleg alapállapotú atomok fényabszorpciójának mérésén alapul. Az elnyelés mértéke arányos az alapállapotban lévő atomok számával, így a vizsgálandó elem koncentrációjával. Az atomabszorpciós készülék sugárforrásból, mintabeviteli egységből, atomizáló egységből, monokromátból és detektorból áll. A mintabeviteli egység segítségével folyadékban diszpergált részecskéket (szol, szuszpenzió) állít elő. A Hg kivételével, a vizsgálandó elem vegyületeit nagy hőmérsékletű térben (1000 – 3000 K) kell atomokra bontani. Ezt egyrészt lángokkal (pl. acetilén-levegő, acetilén-dinitrogén-oxid stb.) vagy elektrotermikusan fűtött térben történő atomizálással lehet elérni. A legkönnyebben párolgó és disszociáló anyagok vizsgálatára a metán-levegő láng is elegendő,
program, valamint a pirolitikus grafitbevonatot tartalmazó grafitcső bevezetése is jelentős előrelépést jelentett, a mátrix okozta problémákat nem szüntette meg teljesen. Ezért fejlesztették ki az úgynevezett mátrixmódosító vegyületeket, amelyekkel növelhető a különbség a nem kivánt kísérő vegyületek és az elemeznő kivánt komponensek illékonysága között. Shlemmer és Welz kutatása szerint a palládium-nitrát – magnézium-nitrát keveréke univerzális mátrixmódosítónak tekinthető [22]. A palládiumionok a grafiton fém-palládiúmmá redukálódnak és beötvözik a vizsgálandó fém. Az elektrotermikus atomizálásnál nemkívánatos illékon fém-halogenidekből a halogenidionok nitrációkval felszabadíthatók, és ezáltal kiűzhetők. A nitrátok azonban kevésbé illékon fémokkal bomlanak, ami lángos technikánál nem kívánatos, azonban elektrotermikus párologtatásnál kedvező folyamat. A zavaró hatások további csökkentését az izoterm atomizálás bevezetése tette lehetővé. Ilyen megoldás például a L’vov által javasolt pirografit lapból álló betét (platform). A fent említtet módosításokkal a háttéret lényegesen lehetett csökkenteni, de nem sikerült teljesen kiküszöbölni. Emiatt deutériumlámpás vagy Zeeman-korrektciót is szokás alkalmazni. A Zeeman-háttértkorrekción jobban alkalmazható, mert helyes értéket szolgáltat akkor is, ha a háttér nem kontinuum, hanem szerkezetet rendelkezik.

3.2.1.2 Hidridfejlesztéses technikák

A hidridfejlesztéses eljárások az elektrotermikus atomizáláshoz hasonlóan közel két- három nagyságrenddel kisebb kimutatási határt (közel 0,01 ng/ml) biztosítanak. Az illékon fémhidridet lángba helyezett kvarccsőben vagy elektromos fűtéssel rendelkező csőben kell atomokra bontani. Ezek atomizálásához azonban az elektrotermikus atomizálási kijelzés hőmérséklet (T < 1200 K) elegendő. A cél kifejezett illekonyságú szobahőmérsékleten stabil kovalens hidridek a periódusos rendszer IV, V és VI oszlopának nyolc elemével (Ge, Sn, Pb, As, Sb, Bi, Se, Te) képezhetők. Így például az AsH₃ forráspontja -62,5 °C [22]. Az AAS-ban a hidrid-fejlesztést, mint dúsítást és mátrixtól való elválasztást biztosító módszert, Holak alkalmazta először [22]. Az AAS-ban a hidridfejlesztéses technikához egy speciálisan kialakított lángba helyezett atomizáló vagy elektromosan fűtött kvarccső társul [22]. A hidrid bontását egy gázkövetetként is szolgáló, fűtött kvarccsőben végzik, ahol a fényabszorció végbe. A küvetta fűthető az AAS-technikánál alkalmazott lánggal vagy külön elektromos úton. Kedvező kimutatási határ akkor érhető el, ha a hidridfejlesztés kvantitatív lejátszódik. A mérés akkor reprodukálható, ha a hidridfejlesztést
szabályozott körülmények között végzik. Kezdetben a naszczasz hidrogént fém és sav reakciójából nyerték, jelenleg NaOH-dal stabilizált NaBH₄-oldat segítségével történik.

Arzén esetén az alábbi reakcióegyenlet írható fel az AsH₃ keletkezésére:

\[
\text{BH}_4^- + 3\text{H}^+ + 4\text{H}_3\text{AsO}_3 \rightarrow 3\text{H}_3\text{BO}_3 + 4\text{AsH}_3 \uparrow + 3\text{H}_2\text{O}
\] \(8\)

A hidridfejlesztésnél lehet szakaszosan, folyamatosan vagy folyamatos reagens áramba (angolul, flow injection) adagolni a mintát. Az első módszer Hg esetén alkalmazható. A szakaszos módszernél tranziens jel alakul ki, az integrálást a csúcsmagasság meghatározásával végzik. A folyamatos módszer esetén a reagens és a minta meghatározott sebességű folyadékárammal keverőkamrába kerül, majd a gáz-folyadék elválasztó egységbe jutnak. Ez utóbbi a módszer kritikus eleme. A szakaszos méréshez képest a folyamatos módszer hátránya a nagy mintaigény, csaknem egy perc szükséges az egyensúlyi jel kialakulásához. Ezért feleslegessé vált a fent említett folyadékárral, és helyette a minta befolyásolására a módszert alkalmazták. A szakaszos eljárás hátránya, hogy nem automatizálható, és időigényes. Jelentős gondot okozhat, hogy a hidridképző elemek különböző oxidációs állapotban fordulhatnak elő a mintában, mivel a hidridképződés sebessége függ az oxidációs állapototól. Az esetén ez +III, illetve +V-ös oxidációs állapotot jelent. Ezenfelül a kalibrálás elvégzéséhez ugyanazon oxidációs állapotot kell felhasználni. E zavaró hatás kiküszöbölésére a meghatározás előtt az As-t egységesen az alacsonyabb oxidációs állapotban fordulhatnak elő a mintában, mivel a hidridképződés sebessége függ az oxidációs állapototól. Az esetén ez +III, illetve +V-ös oxidációs állapotot jelent. Ezenfelül a kalibrálás elvégzéséhez ugyanazon oxidációs állapotot kell felhasználni. E zavaró hatás kiküszöbölésére a meghatározás előtt az As-t egységesen az alacsonyabb oxidációs állapotban fordulhatnak elő. Az As(V) → As(III) előzetes redukciója leginkább a KI használatra terjedt el. Aszkorbinsav hozzáadásával megakadályozható, hogy a jodidion a levegőn oxidálódjon. Ugyanakkor a KI csak erősen savas közegben képes az As-t redukálni [114]. Szerves As-tartalmú specieszek esetén UV-fénnyel el kell reoncsolni a szerves részt a hidridképzés előtt. Megfelelő oxidációs állapot esetén a hidridképzés pillanatszerűen végbeépő, a sebességmegtartályozó lépés a hidrid felszabadítása az oldatból. A hidridfejlesztéses AAS-os As-meghatározás kromatográfias elválasztás nélküli As-speciációt tesz lehetővé, amivel a vizsgálandó mintában lévő As(III) és As(V) eloszlása adható meg. Ehhez a KI-os redukcióval végzett hidridfejlesztéses eljárás a minta összes As-tartalmát adja meg, míg előzetes redukció nélkül csak a minta As(III)-koncentrációját. A két méréssel kapott koncentráció különbségéből kiszámítható a minta As(V)-koncentrációjá.
3.2.1.3 Induktív csatolású plazma tömegspektrometria As meghatározására

Az induktív csatolású plazma atomemissziós spektrometria (ICP-AES) az ICP-MS-technikához képest kevésbé terjedt el As meghatározására. Ennek oka, hogy az As egyik legintenzívebb, 197,26 nm-es atomvonalán való mérés az Al, Fe jelentős, illetve a Ca, Cr, Cu, Mg, Ni, Mn és V kisebb mértékű interferenciája miatt nem elég megbízható [114]. Így ebben a dolgozatban az As főleg ICP-MS-sel történő meghatározásának előnyeit és hátrányait tárgyalom.

Az ICP-AES-technikához hasonlóan az ICP-MS is Ar-ból előállított 27,12 vagy 40,68 MHz frekvencián üzemelő ICP-sugárforrást alkalmaz. Az ICP-MS-technika kihasználja azt, hogy i) az ICP-ionforrásban az egyszeres töltésű ionok a dominánsak; ii) az ionenergiák viszonylag szűk tartománya tömegspektrometriás meghatározást tesz lehetővé; iii) a háttér szintje alacsony; iv) az elemek többsége legalább 90 %-ban ionizálódik. A mintabevitelis is hasonlóan történik (pl. vizes mintáknál pneumatikus porlasztással). A keletkező aeroszol gyorsan beszárad, deszolvatálódik, elpárolog, atomizálódik és ionizálódik, amint áthalad a plazmán. A plazma atompopulációjában az Ar, azaz a plazmagáz van túlsúlyban (körzbel 10¹⁸ atom/cm³). Az Ar ionizációjának foka kevesebb mint 0,1 %. Ha vizes oldatot porlasztunk a plazmába, az oldószer H és O atomjainak ionizációja révén további H⁺-, O⁺-ionok. Ha a porlasztó 1 ml/perc felszivási sebességgel és 1 % körüli porlasztási hatásfokkal számolunk, a H⁺- és O⁺-ionok koncentrációja közel 2 × 10¹⁴, illetve 1 × 10¹⁴ ion/cm³ ionkoncentrációt eredményez. Az oldatok savanyítására általánosan használatos saléromsav miatt további kb. 10¹² ion/cm³ N⁺-ionkoncentrációval is számolni kell. A meghatározandó elemek ionjai sokkal kisebb koncentrációban vannak jelen (10⁴ – 10¹⁰ ion/cm³). A meghatározandó elemek ionjai atmoszférikus nyomáson keletkeznek, míg az ionok szétválasztásához használt tömeganalizátor nagyvákuumban (legalább 5 × 10⁻⁵ mbar) működik. Ezért általában kétlépcsős szivattyúzott interfészrendszer használnak. Az interfész két, koaxiális fémből (pl. Ni), készült kis átmérőjű furattal ellátott kónuszból áll, melyeket mintázó (sampler), illetve merítő (skimmer) kónusznak neveznek. A kónuszok közötti teret 2,5 mbar nyomáson tartják. A plazmában előállított ionok extrakcióját a merítő kónusz és a tömeganalizátor között elhelyezkedő (negatív) feszültséggel rákapcsolt fémlemezekből és -hengerekből álló ionlencsék valósítják meg.
3.2.1.3.1 Tömeganalizátorok

A plazmából vett ionok szétválasztását tömeg/töltés (m/z) hányadosuk szerint a tömeganalizátor végzi. A legelterjedtebb rendszerek a kvadrupol, a kettős fókuszálású, valamint a repülési idő tömeganalizátorok.

Két azonos intenzitású, szomszédos csúcsot akkor tekinthetünk felbontottnak, ha a csúcsok közötti völgy magassága a csúcsmagasság 10 %-nál nem nagyobb. Ha az \(m_1 \) és \(m_2 \) csúcs által megszabott átlagos tömegszám \(m \) és a két csúcs közötti távolság tömegegységben kifejezve \(\Delta m \), akkor a felbontóképesség (R):

\[
R = \frac{m}{\Delta m} \quad (9)
\]

Mivel a kvadrupol tömeganalizátoronál a teljes mérési tartományban azonos csúcsszélesség állítható be, a gyakorlatban nem a felbontóképességet adják meg, hanem a felbontást. Így a kvadrupolrendszerek teljesítőképességének egyik legfontosabb jellemzője a felbontás. A felbontás a csúcs tömegértékekben kifejezett szélessége a csúcsmagasság 5 %-ánál. A felbontás értékét befolyásolja a kvadrupol frekvenciája, az alkalmazott vákuum, az alkalmazott RF- és DC-feszültségek, valamint a kvadrupolba belépő és kilépő ionok kinetikus energiája. Ezek a paraméterek azonban nem változtathatók tetszőlegesen. Ha a rendszer felbontását növeljük, a csúcsok keskenyebbek és élesebbek lesznek, és vele a görbe alatti terület is kisebb lesz. Ez azt jelenti, hogy a felbontás az érzékenység rovására növelhető.

A plazmában az Ar, illetve a mintából származó ionok olyan többatomos ionokat alkotnak, amelyek átfednek egyes meghatározandó elemek izotópjaival, és ezeket a zavarásokat a kvadrupol tömegspektrométer nem képes felbontani. Ehhez nagyobb felbontást biztosító tömegspektrométerra van szükség. A szerves analitikában már régóta használták a kettős fókuszálású tömeganalizátorokat, de az ICP-ionforrással történő összekapcsolásához számos módosítást kellett végezni mind az interfész egységében, mind az analizátor elrendezésében. A mágneses tömeganalizátor működése azon alapul, hogy a töltött részecskéket a mágneses erőtől eltériti, és a részecskék pályagörbéinek mérése alapján a részecskék tömege számolható. Így gyakorlatilag a mágneses tömeganalizátor egy repülési cső, amely elektromágnes pólusok közötti térben helyezkedik el. Az ionok egy belépő részen át jutnak be a mágneses analizátorba. A nehezebb ionok nagyobb sugarú körpályán fognak haladni. Ha B mágneses térerősség mellett egy bizonyos \(m \) tömegű ion által leírt körpálya sugara megegyezik a repülési cső görbületével, akkor ez az ion eléri a kilépő részt. A mágneses tér változtatásával lehet a különböző tömegű ionokat arra kényszeríteni, hogy ugyanazon a
pályán haladjanak, vagy egy beállított értékű mágneses térben az eltérő ionok megjelenésük helyén detektálhatók. A mágneses tér az ionok eltérítésén kívül irányfokuszlást is végez, amihez feltétlenül szükséges, hogy az ionok kinetikus energiája megegyezzék. Ugyanakkor az azonos tömegű ionok energiája nem szükségszerűen azonos, például az ICP-ben keletkező ionok sebessége széles skálán mozoghat. Ezért előnyös, ha energiafokuszlást is alkalmaznak elektrosztatikus analizátor segítségével. Ez az eszköz két hajlított lemezből áll, amelyek között 0,5 – 1 kV feszültséget alkalmaznak. Általában a külső felület pozitív, a belső felület negatív. Az ICP-MS-be többnyire először a mágneses, majd ezt követően az elektrosztatikus analizátor jelentkezik, amelyet fordított Nier-Johnson-féle elrendezésnek nevezznek, mivel az ICP-MS-ben lehetnek olyan ionok, amelyek az Ar atomjaival ütközve nem semlegesítődnek, csak energiájukból veszítenek. Az így keletkezett kettős fokuszlású rendszerekben a felbontást a belépő és kilépő résszé tétele beállításával lehet szabályozni. Ha ismerettes, hogy egy adott zavarás kiküszöböléséhez mekkora felbontás szükséges, abból vissza lehet számolni az alkalmazandó résszéleseget. A gyakorlatban három, előre beállított felbontással lehet dolgozni: kis (R = 300), közepes (R = 4000) és nagy (R = 10000). A felbontás növelése csökkenti az iontranszmissziót. Azonban e rendszernél a kedvező jel/zaj viszonyok nagyon kis kimutatási határokkal érhetők el. Az adatgyűjtéshez a legjobb, ha mind a mágneses teret, mind a gyorsító feszültséget egyaránt változtatjuk. A mágneses teret nem lehet olyan gyorsan változtatni, mint az elektromos erőteret, a műszer érzékenysége is függvénye a feszültségnek. Ez azt eredményezzi, hogy a kvadrupol készülékek gyorsaságát nem lehet elérni [22].

3.2.1.3.2 Zavaró hatások az ICP-MS-ben

Az ICP-MS-ben előforduló zavaró hatások alapvetően két csoportra oszthatók: nemspektrális (mátrixhatások) és spektrális zavarások.

A mátrixindukált zavarások közé tartoznak a jelcsökkentéssel járó mintatranszportthatások. Ennek oka, hogy valamely mátrixalkotó befolyásolja a porlasztóban az aeroszolcseppek képződését, illetve a ködkamrában az aeroszol-részecsék méret szerinti kiválasztódását. A nagy savkoncentráció, a szerves oldóser a mintaoldat viszkozitását megváltoztatja, ami hatással van a porlasztásra és a transzportfolyamatra. A 0,1 – 0,2 %-nál nagyobb oldott sókoncentráció is jelcsökkentést okoz, mivel eltömíti a mintázó kónuszok nyílását. A nemspektrális zavarások csökkenthetők a porlasztógáz sebességének csökkenésével vagy a minta hígításával. Megjegyzendő, hogy a belső standard alkalmazása a hatást nem csökkenti, csak könnyen kezelhetővé teszi. Megszünteti a problémát, ha a
vizegálandó elemet kémiai úton (pl. együttes lecsapás, kelátképzés), kromatográfia vagy elektroanalitikai módszerekkel el lehet választani a zavaró mátrixelemtől.

Spektrális zavarást okoz bármely olyan egy vagy több atomból álló ion, melynek m/z hányadosa megegyezik a meghatározandó izotóp m/z értékével, s így a tömegspektrumban átfedést okoz, megnövelve a mérendő csúcspont intenzitását.

A spektrális zavarások külön csoportját alkotják az izobár interferenciák. Az izobár zavarást a szomszédos elemek tömegszámuk szerint egybeeső, természetesen előforduló stabil izotópjai okozzák. Huszonyeg olyan elem van a periódusos rendszerben, amely csak egyetlen természetes stabil izotóppal rendelkezik. Közéjük tartozik az As is, de ebben az esetben nincs ilyen zavarás.

Mint az egyéb elemeknél az As-nál is a legkomolyabb zavarást a plazmában képződő többatomos ionok okozzák. Ezek az ionok a plazmagázból, az oldószerből, a mintaelőkészítési és pH-beállításhoz használt savakból, valamint a mintamátrixból származó atomok és ionok több nagyságrenddel nagyobb populációt képviselnek, mint a meghatározandó nyomelemek. Noha ezek a speciesek kismértékben reagálnak egymással, szignifikáns mennyiségben tudnak képződni.

A spektrális zavaróhatások kiküszöbölésére ritkábban a mintabeviteli módszert módosítják (pl. elektrotermikus vagy lézerrel végzett elpárologtatással), a mintát módosítják (pl. hidridfejlesztéssel, kromatográfia módszerrel) vagy a plazma, illetve plazma működési körülményeit módosítják (pl. He-plazma alkalmazásával). Gyakrabban alkalmaznak azonban matematikai korrekció egyenleteket, nagy felbontású tömeganalizátort vagy ütközési cellákat.

Az ICP-MS-technikánál a mátrixban előforduló kloridion nagy koncentrációja okozhat spektrális zavarást As meghatározásakor, mert a Cl− az Ar-nal 40Ar35Cl+ többatomos iont képez a plazmában, aminek a tömegszáma az 75As+-nal megegyezik [114]. Mennyiségi meghatározáskor, az 40Ar35Cl+ zavarását az 75As+ jelének például az alábbi, általában az ICP-MS adatkiértékelő szoftverbe beépített, matematikai korrekció alkalmazásával lehet kiküszöbölni:
1. \(^{75}\text{As}^+ = ^{75}\text{M} - (3,12 \times \text{ArCl}^{77}) \)

2. \(\text{ArCl}^{77} = ^{77}\text{M} - (0,8260 \times \text{Se}^{82}) \)

3. \(^{82}\text{Se} = ^{82}\text{M} - (1,001 \times \text{Kr}^{83}) \)

Eredő: \(^{75}\text{As} = 75\text{M} - (3,13220 \times \text{ArCl}^{77}) \),

ahol M az adott tömegszámnál mérhető jelek összessége.

Az ütközési cella az ICP-MS készülékbe épített rádiófrekvenciás kvadrupol (DRC-ICP-MS), amelybe gázt vezetnek be (pl. H\(_2\) vagy He). A cellában a He- vagy H\(_2\)-gázzal való ütközések révén a zavaró többatomos ionok diszociálódnak, így csökkentik a spektrális zavarások mértékét. A dinamikus reakciócella olyan kvadrupol cella, amelynek használatkor az adott feladathoz illeszkedően éppen átengedhető tömegszám-tartomány egyszerűen beállítható és gyorsan változtatható: hatékonyan átengedi a meghatározandó iont, amelyet a tömeganalizátor éppen mért méreti fog, megengedi a plazmából származó zavaró ionok hatékony reakciójának lezajlódását és egyidejűleg visszaszorítja az újabb zavarások képződését a reakciócellában.

3.2.1.4 Atomfluoreszcens spektrometria

Az As atomfluoreszcens spektrometriával (AFS) is meghatározható. Az atomfluoreszcens készülék felépítése hasonló az AAS-hez, azzal a fluoreszcens méréstechnikákra jellemző különbséggel, hogy a gyengébb intenzitású fluoreszcens jelek detektálására a fényforrás és a detektor 90 °C-os szöget zár be egymással. A fényforrás folyamatos (pl. Xe-lámpa) vagy vonalas (üregkatódos vagy elektród nélküli lámpa). Az atomizálást lángban, elektrotermikus atomizálóból, plazmában stb. lehet végezni, noha a legelterjedtebb az Ar-H\(_2\)-láng. Sok esetben nemdiszperzív AFS-rendszert alkalmaznak, azaz monokromát vagy interferenciaszűrő nélküli egyszerű felépítése és előnyös költsége miatt. Az AFS-technika egyesíti az atomemissziós technikák nagy lineáris dinamikus koncentráció-tartományát az AAS nagy szelektivitásával.

3.2.2 Csatolt méréstechnikák arzénspecieszek meghatározására

Sokáig az elemspeciáció fejlődését a vizsgálandó mintákban előforduló specieszek kis koncentrációja gátolta. Így az 1980-as évek végén jelentek meg azok a kombinált eljárások, amelyekkel a vizsgált elemek specieszeinek meghatározásához megfelelő elválasztástechnikai módszereket kapcsolnak, nagy kimutatási képességű elemszelektív detektálási technikával
(mint pl. FAAS, ICP-AES, ICP-MS, AFS). A kapcsolt eljárás rendszerint egy a specieszek elválasztására alkalmas kromatográfiás technikából és egy elemespecifikus detektorként működő atomspektroszkópiai technikából áll. A kombinált eljárás minőségi és mennyiségi meghatározást tesz egyszerre lehetővé [115]. Arzénspecieszeket többféleképpen lehet meghatároznia: i) előzetes kromatográfiás elválasztással vagy enélkül (pl. hidridfejlesztéses-FAAS); ii) folyamatosan (on-line) vagy szakaszos (off-line) üzemmódban; iii) a mintavétel helyszínén (in situ) vagy a laboratóriumban történő mintaelőkészítéssel. Noha speciációs elemzéssel pontosabb képet lehet alkotni a vizsgálandó minták specieszeiről és azok toxicitásáról, e technika fő hátrányaként kell megemlíteni a nagy költségigényét. További hátránya jelent, hogy a specieszeknek pH-változás, levegő oxigénje vagy UV-fény által előidézett egymásba való átalakulásának lehetősége miatt, nem lehet egységes mintaelőkészítési módszereket javasolni, és ennek következtében a kidolgozott speciációs módszerek validálását célzó hiteles anyagminta száma is jelenleg még csekély.

3.2.2.1 As-speciáció kromatográfiás elválasztás nélkül

A HG-AAS-technika csak tájékoztatást ad a mintában lévő As(III) és As(V) eloszlásáról. Ha a különböző oxidációs állapoton túlmenően további cél a szerves As-speciácek meghatározása, akkor célszerű a HG-FAAS-t valamilyen kromatográfiás technikával (pl. HPLC), majd az elválasztást követően az elválasztott specieszeket UV-fénnyel való roncsolással összekapcsolni. Ilyen megoldás alkalmazható, ha az elemespecifikus detektor az AFS.

3.2.2.2 On-line As-speciációs módszerek

Az As-speciácek elválasztására szolgáló kromatográfiás technikák közül a legelterjedtebb a HPLC. Ennek oka nemcsak abban rejlik, hogy az As-speciácek sok esetben nem illékony, töltéssel rendelkező vegyületek, hanem mert az interfész kialakítása nagyon egyszerű. Amennyiben a HPLC-ICP-AES/MS-csatolást vesszük példaként, akkor a HPLC oszlopról eluálódó minta kapillárisa közvetlenül csatlakoztatható az ICP-rendszer porlasztójához, mivel a HPLC-s elválasztásnál alkalmazott áramlási sebesség (1 – 1,5 ml/perc) közel megegyezik az ICP-be való porlasztás áramlási sebességével. A HPLC-s elválasztást alkalmazó csatolás alkalmazásakor, a már elválasztott As-speciácek meghatározásakor ArCl⁺-interferenciáival nem kell számolni, mert az anioncserélő elválasztja az összes részleges negatív töltéssel rendelkező As-speciács a Cl⁻-től, így a kvadrupol

Az As savi tulajdonsággal rendelkező specieszek HPLC-s elválasztására a legmegfelelőbb a szulfonsavszármazék töltetű anioncserélő oszlopot alkalmazó ioncserés-kromatográfia, míg az AB és AC elválasztására kvaterner ammónium-só töltetű kationcserélő kromatográfias oszlopot célserű használni, noha sok esetben fiziológiás pH-n az AB ikerionos szerkezete miatt semleges. A biológiai mintákban leggyakrabban előforduló savi tulajdonsággal rendelkező As-specieszek elüció sorrendje fiziológiás pH-értéken (pH = 6) első savi disszociációs erősségüket figyelembe véve: As(III), MMA(V), DMA(V) és As(V). Kevésbé költségigényes, ha ioncserélő kromatográfias oszlopot helyett ionpárképző reagenst adagolnak fordított fázisú (pl. C18) oszlophoz alkalmaz áramló fázishoz. A fent említett savi jelleggel bíró specieszek esetén a legáltalánosabban tetrabutil-ammónium-sót használnak. A GC esetén a specieszek ionos volta miatt származékképzésre van szükség, míg a kapillárelektroforézis esetén jelentős mátrixhatással kell számolni.

Arzenoszhénhidrátok, illetve arzenolipidek meghatározására folyadékkromatográfiaval kapcsolt tömegspektrometriás (LC-MS) módszereket fejlesztettek ki. Ilyenkor az MS-be való mintabevitel electrospray ionizációs üzemmódban történik. Ha a fent említett As-specieszek pontos szerkezete nem ismert, több jellemző átmeneteket monitorozó, többszörös reakciókövetési, ún. MRM-üzemmódban működtetett tandem-MS-rendszereket célserű alkalmazni.

3.2.2.3 Szakaszos As-speciációs módszerek

Szakaszosan megvalósított As-speciációjánál, kromatográfias módszerként szóba jöhet még a poliéter-imid-(PEI)-cellulóz bevonatú lapot alkalmazó vékonyréteg kromatográfia

46
(VRK) [116-118] és a Tyihák professzor és mtsai által kidolgozott jó reprodukálhatóságot lehetővé tévő túlnyomásos vékonyréteg-kromatográfiia (OPLC), valamint detektorként a totálreflexiós röntgenfluoreszcens spektrometria (TXRF) As-nal szennyezett uborkanövények gyökéreextraktumának vizsgálatára [119]. A TXRF-technika olyan előnyökkel rendelkezik, mint például a kis mintatérfogat-igény, az elhanyagolható mátrixhatás és a kis kimutatási határ híg oldatok esetén. OPLC-készüléket alkalmazva, a VRK-hoz képest még jobb kromatográfiás elválasztás érhető el, mert az OPLC-s elválasztás kompaktabb kromatográfiás foltokat eredményez. Az As(V) jelenléte a minta As(III)-tartalmának az elemzés során bekövetkezett részleges oxidációja miatt is lehetséges [120]. Ebben közrejátszott a minta kis As-koncentrációja, a mintában sokszor mM-os koncentrációban lévő egyéb ionok által gyakorolt mátrixhatás. További hátrányt jelentett a viszonylag hosszadalmas feltárási eljárás is. Ezért egy következő lépésben készült VRK/lemezre kifejlesztettek VRK/OPLC-TXRF As-speciációs eljárást [119]. Az egyenletes párologtatás ellenőrzésére Resano és mtsai a PEI-cellulózból származó 13C és a metakrilát mintatartóból származó 121Sb$^+$-ionnal monitoroztak. A minta elpárologtatásánál viszonylag nagy volt az 40Ar35Cl$^+$ zavaró molekulaion beütésszáma, ami a VRK-lemez és a mintatartó anyagi minőségére volt visszavezethető. A zavaró hatás kiküszöbölésére H$_2$-gázzal működő DRC-ICP-MS készüléket alkalmaztak. A kifejlesztett LA-DRC-ICP-MS-módszer gyorsabb és jobb kimutatási határral rendelkezett, mint a kiindulási alapot szolgáltató OPLC-TXRF-technika, de ez a speciációs analitikai technika is szakaszos, illetve csak minőségi meghatározásra ad lehetőséget, mivel az elválasztott As-tartalmú foltok lézerrel történő teljes mértékű elpárologtatása szintén idő- és költségigényes [121].

3.2.2.4 As-speciáció in situ mintaelőkészítéssel

Az As speciáseket elválasztását in situ anioncserélő gyantával töltött oszlopon végzett szilárd fázisú extrakcióval (SPE) sikeresen kivitelezhető vízben [68, 122 –127]. Így a különböző As-speciáseket egymásba való átalakulása a Le és mtsai [122] által kidolgozott ioncserés szilárdfázisú extrakciós (SPE) módszer alkalmazásával könnyedén megakadályozható. Ebben az esetben a (hidrogén)arzenátion fiziológia pH-n visszamarad az oszlopon, míg az H$_3$AsO$_3$ áthalad rajta. A vízmintákat a laboratóriumban sósavval kondicionált patronokba töltött anioncserélőn kell átengedni a mintavétel helyszínének. A
(hidrogén)arzenátion savval való leoldása a laboratóriumban utólag kényelmesen elvégezhető, a mintavétel helyszínén csak az H₃AsO₃-at tartalmazó frakciót kell tartósítani savval. Két töltött oszlopot sorba kötve, az As(III)-t As(V) formára lehet oxidálni KMnO₄-tal és ezt vissza lehet tartani a második oszlopon [128]. Erős anion- és kationcserélő gyantával töltött oszlopot sorba kötve az As-speciációs vizsgálat még megbízható volt, nagy koncentrációjú mátrix-komponensek mellett, 30 ml 10 mg/l koncentrációjú As esetén is [122, 127].

Alternatív megoldásként, alumínium-oxidtól töltött oszlop is megfelelő lehet [129], de ebben az esetben a vízmintákban a visszatartott As(V) az Al-szilikát köthelyekért versengő ionok szivárgása volt megfigyelhető [130]. Egy másik lényeges probléma az eredeti As(V)/As(III) módosulat koncentrációarányának megőrzése abban az esetben, ha a minták nem kerülnek azonnal meghatározásra. Például, az etilén-diamin-tetracetsavval (EDTA) és ecetsavval tartósított speciációs vizsgálatra szánt minták stabil voltak akár 85 nappal a mintavétel után [131]. Azonban egy másik vizsgálat szerint, ha a talajvíz nagy koncentrációban tartalmaz Ca-ot, akkor a tárolás során az EDTA az As(III) oxidációját eredményezte [132].
4 Célkitűzések

4.1 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának meghatározása

A Nemzeti Élelmiszerlánc-biztonsági Hivatal (NÉBIH) jogelődjének, a Mezőgazdasági Szakigazgatási Hivatal Központ (MGSZHK) munkatársaként egyik fő célkitűzésem az volt, hogy meghatározzam az élelmiszerek és azok feldolgozásához használt víz As-tartalma közötti összefüggést, kontrollált körülmények között vett mintavételt alkalmazva, különösen azokon a magyarországi területeken, ahol az As-szennyezés problémát jelent. Így a hatósági vizsgálat keretében történő mintavétel kifejezetten az élelmiszer-előállításhoz, vendéglátáshoz, (köz)étkeztetéshez kapcsolódó kis- és középvállalkozásoknál (KKV) történt. Célom volt továbbá azt is meghatározni, hogy mennyire van kitéve az érintett területeken élő lakosság a természetű As-szennyezésnek étkezés és ivóvíz fogyasztás által. A napi As-bevitel becsütéséhez a vizsgált élelmiszereket úgy csoportosítottam, hogy az jellemző legyen a magyar lakosság étrendjére.

4.2 Az összes As valamint As(III) és As(V) koncentrációjának meghatározása közkutak ivóvízében

Az ELTE Kémiai Intézetében működő KBL munkájába bekapcsolódva, másik fő célkitűzésem az volt, hogy meghatározzam közkutakból vett vízminták összes As-konzentrációját, valamint az As(III) és As(V) konzentráció-arányát, egyszerű, a specieszek egymásba való átalakulását megakadályozó terepi mintavételi stratégiát alkalmazva. Legfőbb szempont az volt, hogy minden napi használatban lévő kutak vonatkozásában az As-specieszek in situ elválasztásával megbízható eredmény szülessen, és hogy választ kapjunk arra a kérdésre, hogy a vizsgált vizek használhatók-e ivóvízként, öntözésre vagy egyéb háztartási tevékenységre.

Kiindulva abból a rétegvizekre vonatkozó geokémiai megfigyelésből, miszerint oxoanion-képző elemek e vizekben való jelenlété támpontot nyújt iAs-specieszek előfordulására is, további célul tűztem ki néhány oxoanion-képző elem- (Mo, U, V és W) és az As(V) koncentrációja közötti korreláció vizsgálatát közkutakból vett ivóvízekre, figyelembe véve a vízművekben fertőtlenítési célra alkalmazott klórozást (max. 0,5 mg/kg) is.
5 Anyagok és módszerek

5.1 Mintavétel

5.1.1 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának meghatározása

A természetes eredetű As-nal szennyezett településeken számos élelmiszer-alapanyagfeldolgozó, élelmiszergyártó és a közértkeztetésben szerepet vállaló cég működik. 2010 februárjában és márciusában az MGSZHK munkatársai, hatósági vizsgálat keretében élelmiszer- és a feldolgozásukhoz használt vízmintákat gyűjtöttek Magyarországon a nagy As-konzentráció által sújtott területeken működő élelmiszer- és vendéglátóipari KKV-któl, illetve nagyvállalatoktól (NV). A mintavétel kiterjedt a készételekre, a feldolgozott élelmiszerekre (pékáru, felvágott, sajt stb.), néhány nyers élelmiszerre (tej, tojás, hús) és az állattartáshoz felhasznált itatóvízre is.

A mintavételt a mintavételre feljogosított, az állategészségügyi hatóság által megbízott munkatársak végezték, az AAS-elemanalitikai vizsgálatokat és az azt megelőző mintaelőkészítési munkákat az MGSZHK Toxikológiai Osztály Fém Munkacsoportjával közösen végeztük. Az ICP-MS-vizsgálatokat a mikrohullámmal (MW) támogatott roncsolással együtt önállóan végezték.

2010. február és március között élelmiszer-előállítással vagy vendéglátással foglalkozó 43 KKV-tól és 14 nagyvállalattól származó, összesen 49 magyarországi természetes eredetű As-szennyezéssel érintett településről érkeztek minták a laboratóriumba (9. ábra), (11.2 Melléklet).

Tizenkét megyéből összesen 67 élelmiszer- (kenyér, péksütemény, felvágott, füstölt karaj, sonka, virsli, tojás, maláta, savanyúság, leves, paradicsomos káposzta, tej és tejtermékek, bébiétel, kompót), üdítő és sörminta (6. táblázat) került vizsgálatra.
Jelmagyarázat:
- Mikrovállalkozás (MV)
- Kis- és középvállalkozás (KKV)
- Nagyvállalat (NV)
- NV + KKV
- KKV+MV

9. ábra: A vizsgált élelmiszerminták és a hozzájuk tartozó vízminták mintavételének helyszínei

6. táblázat: A vizsgált élelmiszerfajták származási helyük szerint

<table>
<thead>
<tr>
<th>Minta</th>
<th>Megye</th>
<th>Baranya</th>
<th>Bács-Kiskun</th>
<th>Békés</th>
<th>Borsod-Abaúj-Zemplén</th>
<th>Csongrád</th>
<th>Fejér</th>
<th>Fővám-Veszprém</th>
<th>Hajdú-Bihar</th>
<th>Heves</th>
<th>Jász-Nagykun-Szolnok</th>
<th>Szabolcs-Szatmár-Bereg</th>
<th>Vás</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Húskészítmény</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sör</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Szikvíz</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Üdítőital</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sütőipari termék</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tej/tejtermék</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Tojás</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Készétel</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Tartósítóipari termék</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bébiétel</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Összesen:</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>
A felmérésben részt vevő KKV-k közül 17 mikrovállalkozás (MV) volt. A vállalkozások KKV és MV szerinti besorolását a 2003/361 EU ajánlása szerint végezték [133]. A MV-k kevesebb mint tíz alkalmazottal, a KKV-k pedig 10–250 alkalmazottal működnek. A minták 75 %-a KKV-kból származott, és ezek 40 %-a MV volt.

Minden mintavételi helyen egyszerre történt élelmiszer és az ahhoz felhasznált víz mintavétele. Azonban egyes esetekben a vízmintavétel nem sikerült, illetve volt olyan élelmiszer-ipari vállalkozás is, amely ugyanazzal a vízzel többféle terméket állít elő. A vízminták közel 90%-a vezetékes hálózatból származott, a többi fürt kútóból vett kútvíz volt. A készítékek a vendéglátó-vállalkozásoktól származtak, négy közülük óvodai és iskolai ételekbe, négy pedig ővodai és iskolai ételekre szántak (11.2 Melléklet). A felmérést az MGSZHK, Élelmiszer- és Takarmány-biztonsági Igazgatóság szervezte. A vízmintát központilag előzetesen erre a célra kiosztott 500 ml-es műanyag csavaros kupakú polietilén (PE) edénybe vettek. A mintavétel előtt a vizet három percig folyatták és az edények nem érhettek hozzá a csaphoz. Egyéb folyékony minták esetében a mintatartó edényt és a hozzá tartozó kupakot is a fent ismertetett módon öblítették.

Szilárd mintáknál az egész tétele bevizsgálásra került, de a mintákat a mintavétel során véletlenszerűen választották ki. A minták tömege közel 500 g volt, azonban tojás esetén tíz darab alkaltnak volt egy mintát. A feldolgozott élelmiszerek vizsgálatáig az eredeti csomagolásukban tároltak. A vendéglátóhelyeken vett élelmiszerek mintavétele a magyar jogszabályokban előírt PE-dobozokba történt.

5.1.2 Arzénspeciáció ivóvízben

Magyarországon, Bács-Kiskun, Békés, Csongrád megye területén lévő, illetve Budapest vonzáskörzetébe tartozó néhány közkútóból gyűjtöttém vízmintákat a bennük lévő As(III) és As(V) speciesek koncentráció-arányának meghatározására (11.3 Melléklet). A speciesek egymásba való átalakulásának megelőzésére, a helyszíni mintavétel során szilárd fázisú DOWEX® 1-X8 anioncserélő gyantával (Merck Hungary Kft., Budapest, Magyarország) töltött oszlopokat használtam. Ezt követően az így keletkezett mintákat hűtve szállítottam a laboratóriumba, ahol HR-ICP-MS-technikával elemeztem meg. Az As(V)/As(III) arány meghatározásán túlmenően a minták geokémiai környezetére is kaptam információt az oxoanion-képző elemek (Mo, Se, U, V és W) egyidejű HR-ICP-MS-technikával történő meghatározásával.

52
A vízmintákat a mintavétel helyszínén a laboratóriumban előzetesen kondicionált anioncserélő gyantával tölttött oszlopon kell átengedni. A kis oszlop megköti az As(V)-ot, az As(III)-et pedig átengedi. Az As(V) savval való leoldása a laboratóriumban utólag kényelmesen elvégezhető, a mintavétel helyszínén csak az As(III)-et tartalmazó frakciót kell tartósítani saléromsavval. Magyarországon az említett EU-direktíva által megengedettnél nagyobb As-koncentrációjú ivóvízrel rendelkező településeken jegyzéke a Magyar Földtani és Geofizikai Intézetben megtalálható. Budapest vonzáskörzetébe tartozó, illetve három magyarországi megyét (Bács-Kiskun, Békés, Csongrád) érintő, összesen 23 település közútjaiból vettem ivóvízmintát a Le és mtsai által As-speciációs analízisre kidolgozott módszerrel [122]. Kutatásaim a vizsgált településeken élő lakosság ivóvízen keresztüli As-expozíciójának feltárását célozták. A vízmintákat láthatóan gyakran használt közkutakból vettem.

5.2 Reagensek

5.2.1 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának vizsgálata

A vizsgálat során nagy tisztaságú, átlagosan 17 MΩ × cm ellenállású, a Thermo Fischer Scientific által forgalmazott TKA-LAB (TIP HP6 UV/UF) ioncserélőn tisztított vizet használtam. A tömény (65 m/m %), nagy tisztaságú saléromsav a Merck Hungary Kft.-től (Budapest, Magyarország), míg az analitikai tisztaságú, 30 m/m %-os H₂O₂ a Reanal Kft.-től (Budapest, Magyarország) származott. A 2 v/v %-ban HNO₃-at tartalmazó As és Ge standardoldatok (High purity Standards, Charleston, SC, US) 10 mg/l töménységűek voltak.

5.2.2 Arzénspeciáció ivóvízben

A vizsgálat során 17 MΩ × cm ellenállású ioncserélt vizet (Pur1te, Egyesült Királyság) használtam. A 65 m/m %-os saléromsav és a 30 m/m %-os sósav Suprapur® minőségű volt. A HR-ICP-MS-készülék hangolása és tömegkalibrációja savas (5 v/v %-os HNO₃) 1 μg/l-es koncentrációjú töbelemes standardoldattal történt. A külső kalibrációhoz az adott elemre nézve 1 g/l-es savas (5 v/v %-os HNO₃) törzsoldatot használtam. A törzsoldatból minden oldatot ioncserélt vízzel megfelelő hígításban naponta készítettünk Falcon® márkanevű polipropilén (PP) centrifugacsőbe. Az oldatok végző HNO₃ koncentrációja 5 v/v % volt. Felhasználás előtt a centrifugacsöveket 20 v/v %-os HNO₃-oldatban tároltam néhány napig, majd négyszer ioncserélt vízzel öblítettem. Az említett vegyszereket és
reagenseket a Merck Hungary Kft.-től (Budapest, Magyarország) szereztkük be. Az ioncserélő gyantával töltött oszlopon történő elválasztás során a laboratóriumban vizsgált As-specieszek visszanyeréséhez As-ra nézve 50 μg/l koncentrációjú oldatokat készítettünk a Sigma Aldrich Kft.-től (Budapest, Magyarország) vásárolt Na₃AsO₄-ból, illetve As₂O₃-ból lúgban való oldását és pH-beállítást követően.

5.3 Mintaelőkészítés

5.3.1 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának vizsgálata

5.3.1.1 Élelmiszerminták hamvasztása és előkészítése HG-AAS-vizsgálathoz

A szilárd halmazállapotú, előzetesen homogenizált élelmiszerminták (kenyér, kifli, felvágott, füstölt karaj, sonka, tyúktojás, pizzasonka, maláta, savanyú cékla/káposzta/uborka, pörkölt és virsli) feltárása három párhuzamos beméréssel (0,5 – 2,0 g) az MSZ EN 14546: 2005 magyar szabvány szerint, száraz hamvasztással történt [134]. A minták homogenizálására 800 W teljesítményű Moulinex Moulinette daráló szolgált. A homogenizálás után következett a minták kvantitágvizesen való bemérése. 0,25 g tömegű mintához 2,5 ml 20 m/v % Mg(NO₃)₂-ot és 2 m/v % MgO-ot adva a mintákat 105 °C-ra beállított szárítószekrényben 10 órán keresztül tartottuk, majd a minták 5 ml 6 M-os HNO₃ oldattal lettek megmedvesítve és így kerültek a kemencébe. A kemence hőmérséklete fokozatosan 150 °C-ról 450 °C-ra óránként 50 °C-kal emelkedetet. Ilyen körülmények között a minták hamvasztása 12 órán keresztül tartott. A hamvasztást addig kellett ismételni 0,25 g mintához 5 ml HNO₃-oldat hozzáadásával, amíg a hamu ki nem fehéredezett. Egy ml nagy tisztságú vízzel megmedvesített hamu 5 ml 6 M-os HCl-oldatban lett feloldva.

A hidridfejlesztést megelőzően a hamvasztott minták redukciója 5 ml 5 m/v % aszkorbinsavat tartalmazó 5 m/v % KI-oldat hozzáadásával történt. Az As(V) az As(III)-má történő kvantitatív redukciójához a mintákat 30 percig állni kellett hagyni. Ezt követően a minták 25 ml-es végtérfoatra lettek felhígítva. A NaBH₄-oldat, valamint a sósav perisztaltikus pumpa segítségével 5,0 ml/perc, illetve 10,0 ml/perc áramlási sebességgel külön-külön lett bevezetve egy, a keveredést biztosító reakciócellába. A fejlődő hidridet gázfolyadék szeparátoron keresztül 200 ml/perc áramlási sebességű argonáram juttatta az AAS-rendszerbe.
5.3.1.2 Nagy víztartalmú élelmiszerek előkészítése ICP-MS-vizsgálatohoz

100 ml 0,5 ml 65 m/m %-os HNO₃-val tartósított folyadék halmazállapotú homogenizált mintákat (sör, szóda, üdítő, vezetékes és kút víz, valamint az állatok itatóvíz) roncsolás nélkül vizsgáltam. Ezek a minták tízszeres hígításban kerültek vizsgálatra, további előkészítés nélkül.

A MW-mal támogatott roncsoláshoz tíz férőhelyes, egyenként 100 ml-es teflonbombával felszerelt nagynyomású rotor szegmenssel (HPR-1000/10S modell) ellátott Milestone Ethos Plus készüléket (Milestone S.r.l., Sorisole, Olaszország) használtam. Az MLS-easyWave szoftver (3.3.0.0. verzió) által ajánlott roncsolóprogramot állítottam be 10 db teflonból készített feltáróedényt használva négy lépésben a 7. táblázatban szereplő paramétereket alkalmazva.

7. táblázat: A MW-mal támogatott savas feltárás programja 10 teflonból készített feltáróedény egyidejű alkalmazásával

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0 – 5</td>
<td>500</td>
<td>25 – 50</td>
</tr>
<tr>
<td>2.</td>
<td>5 – 10</td>
<td>600</td>
<td>50 – 12</td>
</tr>
<tr>
<td>3.</td>
<td>10 – 25</td>
<td>800</td>
<td>12 – 180</td>
</tr>
<tr>
<td>4.</td>
<td>25 – 35</td>
<td>800</td>
<td>180</td>
</tr>
<tr>
<td>5.</td>
<td>35 –</td>
<td>0</td>
<td>szobahőmérséklet</td>
</tr>
</tbody>
</table>
A nagy víztartalmú élelmiszerminták összes As visszanyerését vizsgáló kísérleteknél 1 ml 200 μg/l-es As standardot adtam a MW-mal támogatott savas feltárás előtt a mintához, azért, hogy a minta As-konzentrációját 20 μg/l-rel megnöveljem.

5.3.2 Arzénspeciáció ívóvízben

![10. ábra: A vizsgált vízminták származási helye](image)

Jelmagyarázat: ◦: település; ○: mintavétel helye
A nyers vízmintákat 15 vagy 50 ml-es PP-ből készült Falcon® műanyag centrifugacsövekbe vettük a kanna alján található csaptelepből a minta levegővel való érintkezésének minimalizálása végéért. Az elemek összkonzentrációjának a meghatározásához a mintákat 100 μl 65 m/m % HNO₃ / 100 ml minta arányban savanyítottam meg. Az HR-ICP-MS-vizsgálat előtt az 500 mS/cm-nél nagyobb vezetőképességű vízmintákat ötszörössére hígítottam meg, míg az 500 mS/cm-nél kisebb vezetőképességűeket csak a kétszeresére. Az As-speciációt a Le és mitsai által közölt eljárás alkalmazásával végeztük [122]. Röviden ismertetve, körülbelül 0,62 g DOWEX® 1-X8 anioncserélő gyantát mértünk be két szilárd fázisú diszperziós Isolute márkanevű mátrix fritt közé (11.4 Melléklet). Az így elkészített SPE-oszlopotokat 40 ml 0,5 M sósavval kondicionáltam, az elfolyó oldat pH-ját körülbelül 5-re állítottam be ioncserélt vízzel. Húsz ml frissen vett mintát, rögtön a mintavételt követően, in situ engedtem át az előzetesen kondicionált oszloponk 1-2 ml/perc áramlási sebességgel. Az elfolyó frakciót a helyszínen 50 ml-es PP Falcon® csövekbe gyűjtöttem. Az As(III)-tartalmú elfolyó fázist 65 m/m %-os HNO₃-mal tartósítottam, hogy a sav végkonzentrációja 5 v/v % legyen. Minden vízmintához három párhuzamos SPE-oszlopot használtam. A lezárta mintákat műanyag hűtötáskában szállítottam a laboratóriumba. Az As(V)-ot 20 ml 0,5 M-os HNO₃-oldattal oldottam le az oszlopról. Az As(V)-ot és az As(III)-et tartalmazó frakciókat a mintavételt követően további mintaelőkészítés nélkül egy héten belül megvizsgáltam.

Az As-specieszek helyszíni elválasztása során meghatározta a hőmérsékletet, a pH-t, a vezetőképességet és a redoxpotenciált is egy hordozható WTW Multi 350i (WTW GmbH, Weilheim, Németország) típusú vízanalizáló készülékkel (11.4 Melléklet). A közkutakból a 11. ábrán szemléltetett folyamatábra szerint hajtottam végre a vízmintavételt.
11. ábra: A közkutakból vett vízminták vizsgálatának sematikus ábrája

(az ábrán az R a HR-ICP-MS méréseknél alkalmazott felbontást jelöli)

5.4 Módszerek

5.4.1 HG-AAS

5.4.1.1 Szilárd élelmiszerek As-tartalmának meghatározása

5.4.2 Q-ICP-MS

5.4.2.1 Nagy víztartalmú élelmiszerek As-tartalmának meghatározása

A víz- és vizes alapú minták vizsgálatához CETAC ASX-510 automata mintaváltóval (CEAC Technologies, Omaha, NE, US) felszerelt Thermo Element X-series (Thermo Fischer Scientific, Bremen, Németország) Q-ICP-MS készüléket használtam. A Q-ICP-MS működési paramétereit a 8. táblázat tartalmazza.

<table>
<thead>
<tr>
<th>RF teljesítmény</th>
<th>1300 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>vivő gáz (Ar) áramlási sebessége</td>
<td>13 l/perc</td>
</tr>
<tr>
<td>külső gáz (Ar) áramlási sebessége</td>
<td>0,7 l/perc</td>
</tr>
<tr>
<td>porlasztó (Ar) áramlási sebessége</td>
<td>0,87 l/perc</td>
</tr>
<tr>
<td>porlasztó koncentrikus (Meinhard)</td>
<td></td>
</tr>
<tr>
<td>Ni mintázó kónusz nyílás átmérője</td>
<td>1,0 mm</td>
</tr>
<tr>
<td>Ni merítő kónusz nyílás átmérője</td>
<td>0,7 mm</td>
</tr>
<tr>
<td>Detektor fotoelektronsoksorozó</td>
<td></td>
</tr>
</tbody>
</table>

Naponta végeztem külső kalibrálást ($r^2 > 0,995$) frissen készített standardokkal a 1 – 200 μg/l koncentráció-tartományban és belső standardként minden oldatban Ge-ot használtam 10 μg/l-es koncentrációban. A kalibrálódatalkat teflonból készített mérőlombikban a törzsoldat hígításával készítettem. Mennyiségi meghatározáskor az $^{40}\text{Ar}^{35}\text{Cl}$ zavarását a PlasmaLab szoftverbe épített matematikai korrekció alkalmazásával korrigáltam (a 10. egyenlet szerint).

5.4.3 HR-ICP-MS

5.4.3.1 As-speciáció ívővízben

A közkutakból vett vízminták elemzését az ELTE KBL által üzemeltetett Element 2 HR-ICP-MS készüléken (Thermo Finnigan, Németország) végeztük, amelynek működési paraméterei a 9. táblázat tartalmazza.
A következő izotópokat monitoroztam: \(^{51}\)V, \(^{75}\)As, \(^{82}\)Se, \(^{98}\)Mo, \(^{115}\)In, \(^{184}\)W és \(^{238}\)U. Az elemek összkonzentrációját a HR-ICP-MS-mérésekkel határoztam meg közepes felbontású üzemmódban (R = 4000).

9. táblázat: Az Element 2 HR-ICP-MS-készülék működési paraméterei

<table>
<thead>
<tr>
<th>Acsetvég lámpa teljesítmény</th>
<th>1200 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivő gáz (Ar) áramlás sebessége</td>
<td>16 l/perc</td>
</tr>
<tr>
<td>Külső gáz (Ar) áramlás sebessége</td>
<td>0,8 l/perc</td>
</tr>
<tr>
<td>Porlasztó (Ar) áramlás sebessége</td>
<td>1,1 l/perc</td>
</tr>
<tr>
<td>Porlasztó koncentrikus (Meinhard)</td>
<td></td>
</tr>
<tr>
<td>Ni mintázó kónusz nyílás átmérője</td>
<td>1,0 mm</td>
</tr>
<tr>
<td>Ni merítő kónusz nyílás átmérője</td>
<td>0,8 mm</td>
</tr>
<tr>
<td>Detektor fotoelektroszorozó</td>
<td></td>
</tr>
</tbody>
</table>

Az As speciációs vizsgálatát nagy felbontású (R = 10000) üzemmódban végeztetem, mivel az ioncserés SPE-oszlopot előzetesen sósavval kondicionáltam. Az összes As meghatározásnál a közepes felbontás (R = 4000) elegendő bizonyult, mert nem volt számottevő különbség a nagy és a közepes felbontással kapott eredmények között. Az eredményeket a csúcs alatti terület integrálásával számítottam. Minden elem esetében egy csúcsnál 20 spektrumot vettem fel, az ún. peak jumping üzemmódban. Belső standardként 100 ng/l koncentrációjú In-ot használtam. A kalibráció során az egyes elemek koncentrációja a 0,5 – 50 μg/l tartományt fedte le.
6 Eredmények

6.1 Az alkalmazott módszerek teljesítményjellemzői

6.1.1 HG-AAS- és Q-ICP-MS-vizsgálatok

Bár a különböző hamvasztott élelmiszer-mátrixok HG-AAS-technikával végzett vizsgálata során az As-ra megállapított meghatározási határ (LOQ) értéke eltértek egymástól, nem haladtak meg az 1 µg/l koncentrációt. A Q-ICP-MS-technikával vizsgált nagy víztartalmú mintákra vonatkozó LOQ 0,4 µg/l volt. A tej esetében azonban az LOQ értéke 1,8 µg/l volt.

A hamvasztott minták As-koncentrációnak kétszeres növelését célzó visszanyerési vizsgálatokhoz a kiindulási minták addicciója 500 µg/l-es As-oldattal történt. Az ilyen körülmények között keletkezett minták visszanyerése 96 % és 116 % között változott. Mivel az összes élelmiszerfajtánál az addíció növelése túlságosan idő- és költségigényes lett volna, a visszanyerési vizsgálatot minden élelmiszertípus egy-egy mintájával végeztük.

Az analitikai vizsgálatok egyik sarkalatos pontja az eredmények pontosságának ellenőrzése. Erre a célra széles körben elterjedt a mintával megegyező vagy ahhoz nagyon hasonló kémiai összetételű hitelés anyagminta használata. A szilárd mintákból származó eredmények igazolására a 172 ± 18 µg/kg As-tartalmú IMEP 107-es jelzésű rízsmentát használtunk, amelyet a JRC - Institute of Reference Materials (Geel, Belgium) bocsátott az MGSZHK Élelmiszer- és Takarmánybiztonsági Igazgatóság Fém munkacsoportjának, mint akkreditált referencialaboratóriumnak a rendelkezésére 2009-ben körvizsgálat céljából HG-AAS- és ICP-MS-vizsgálatokhoz (11.5 Melléklet). A referencia mintát a teljes mintaelőkészítési folyamatnak alávetettük, a MW-mal támogatott savas feltárástól a Q-ICP-MS-, illetve a szárazhamvasztástól a minták HG-AAS-vizsgálatáig. Az IMEP 107 rízsinta vizsgálata mind a HG-AAS- és mind a Q-ICP-MS-technikával megfelelő visszanyerést eredményezett, mivel az eltérés mértéke az összefoglaló körvizsgálat jegyzőkönyvében megadott átlag koncentrációértéktől 8 % és 18 % volt. A visszanyerés pedig 85 % és 103 % között volt. A csapvíz kezdeti As-koncentrációnak kétszeres növelését célzó legnagyobb koncentrációjú kalibráló oldattal végzett addicció (2,4 ± 0,2 µg/l) 113 %-os visszanyerést eredményezett.
6.1.2 HR-ICP-MS-vizsgálatok

A HR-ICP-MS-mérések esetén az LOQ 0,1 μg/l. Az eredményeket As-ra 26,71 μg/l, Mo-re 46,80 μg/l, Se-re 21,99 μg/l és V-ra 13,00 μg/l koncentrációjú NIST 1640 referencia vízminta vizsgálatával validáltam.

Az ioncserélő gyantával töltött SPE-oszlopon történő elválasztás során a laboratóriumban vizsgált As-specieszek visszanyeréséhez Na₃AsO₄-ból, illetve As₂O₃-ból lúgos oldódással és pH-beállítással keletkező H₃AsO₃-ból As-ra nézve készített 50 μg/l-es standordot használtam. A visszanyerés az összes As-koncentrációra 98 % volt. Az As(V) és az As(III) visszanyerése 90 % és 99 % volt. A mintaelőkészítés során az ioncserés SPE-oszlopról leoldott összes As visszanyerése, a HR-ICP-MS-technikával közvetlenül meghatározott összes As-koncentrációhoz képest, 83 % és 103 % között volt. A Mo, Se, U, V és W elemekre számolt LOQ értékek a következő voltak: Mo-re 0,2 μg/l, Se-re 1,67 μg/l, U-ra 0,17 μg/l, V-ra 0,02 μg/l és W-ra 0,07 μg/l. A visszanyerés a NIST 1640 referencia vízminta elemzésével Mo, Se és V esetében 97 % és 104 % között változott.

6.2 Hazai élelmiszerek és az előállításukhoz felhasznált víz As-tartalmának vizsgálata

Az élelmiszeripari KKV-kból és NV-kból begyűjtött vízminták 74 %-ának As-koncentrációja meghaladta az Európai Unió által ivóvízre előírt 10 μg/l egészségügyi határértéket. Azokban az ivóvízmintákban, amelyekben az As koncentrációja nagyobb volt, mint 10 μg/l, az As-koncentráció a 11,0 és 97,8 μg/l tartományon belül változott. A vízminták átlagos As-koncentrációja 17,4 μg/l, a medián értéke pedig 13,7 μg/l volt. Nem volt számottevő különbség a fűrtkutak és a vezetékes vízminták As-koncentrációja között, de az egyik vezetékes vízminta As-koncentrációja 88,8 μg/l volt.

Az élelmiszermintákat i) pékáruk; ii) tojás és húskészítmények; iii) tej és tejtermékek iv) készletek; v) tartósított termékek; vi) italok, valamint vii) egyéb kategóriák szerint csoportosítottam (10 – 16. táblázat).

Az As az élelmiszerminták 95 %-ban kimutatható volt. Az élelmiszerminták As-tartalma 1,2 – 31 μg/kg koncentrációtartományban változott. A bébiételek esetében az As-koncentráció annak ellenére esett a kimutatható tartományba, hogy az előállításukhoz használt víz As-koncentrációja LOQ alatti érték volt.

A kenyér As-koncentrációja 7 – 24 μg/kg, a tejé < 1,8 – 30 μg/kg, a sajté 9 – 31 μg/kg, a tojásé 1,2 – 20 μg/kg és a felvágotté 2 – 12 μg/kg közötti tartományokba esett. Az átlagos
As-konzentrációt alapul véve, a tejnek és a felvágottnak volt a legkisebb az As-konzentrációja (7,0 μg/l és 7,6 μg/kg), míg a pékáruban és a sajtmintákban volt a legnagyobb (15,5 μg/kg és 17,0 μg/kg).

Azokban az élelmiszerekben, amelyek As-tartalmát a 17/1999 EüM rendelete szabályozza, az As koncentrációja minden esetben kisebb volt, mint az egészségügyi határérték (11,8 Melléklet) [102].

10. táblázat: Sütőipari termékek és a feldolgozásukhoz felhasznált víz As-konzentrációja

<table>
<thead>
<tr>
<th>Minta</th>
<th>As koncentráció ± SDb</th>
<th>Megye</th>
<th>Vállalkozás típusa¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>félbarna kenyér</td>
<td>6,9 ± 0,3</td>
<td>10,0 ± 1,0</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>fehér kenyér</td>
<td>16,2 ± 0,4</td>
<td>24,0 ± 1,4</td>
<td>Békés</td>
</tr>
<tr>
<td>fehér kenyér</td>
<td>24,4 ± 0,3</td>
<td>11,0 ± 1,0</td>
<td>Borsod-Abáuj-Zemplén</td>
</tr>
<tr>
<td>fehér kenyér</td>
<td>46,7 ± 0,8</td>
<td>17,0 ± 1,3</td>
<td>Csongrád</td>
</tr>
<tr>
<td>házi jellegű kenyér</td>
<td>20,0 ± 0,1</td>
<td>20,2 ± 1,4</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>fehér kenyér</td>
<td>1,5 ± 0,1</td>
<td>21,0 ± 1,4</td>
<td>Heves</td>
</tr>
<tr>
<td>házi jellegű kenyér</td>
<td>10,0 ± 0,4</td>
<td>9,0 ± 0,1</td>
<td>Jász-Nagykun-Szolnok</td>
</tr>
<tr>
<td>fehér kenyér</td>
<td>8,1 ± 0,5</td>
<td>12,0 ± 1,1</td>
<td>Pest</td>
</tr>
<tr>
<td>fehér kenyér</td>
<td>12,4 ± 0,3</td>
<td>7,0 ± 0,1</td>
<td>Pest</td>
</tr>
<tr>
<td>fehér kenyér</td>
<td>31,3 ± 0,1</td>
<td>20,0 ± 1,1</td>
<td>Pest</td>
</tr>
<tr>
<td>kifli</td>
<td>8,1 ± 0,5</td>
<td>17,0 ± 1,4</td>
<td>Pest</td>
</tr>
<tr>
<td>zsömle</td>
<td>12,4 ± 0,3</td>
<td>18,0 ± 1,4</td>
<td>Pest</td>
</tr>
</tbody>
</table>

¹ Az élelmiszer előállításához felhasznált víz; b SD: szórás; ¹ NV: Nagyvállalat; KKV: kis- és középvállalkozás, MV: mikrovállalkozás; Az élelmiszerek feldolgozásakor minden esetben vezetékes vizet használtak. A sütőipari termékek As-tartalmára vonatkozóan jelenleg nincs előírt határérték.

63
11. táblázat: Tojás és húskészítmények, valamint a feldolgozásukhoz felhasznált víz

<table>
<thead>
<tr>
<th>Minta</th>
<th>As-konzentráció (ppb) ± SD b</th>
<th>Megye</th>
<th>Vállalkozás típusa a</th>
<th>Felhasznált víz</th>
<th>Határérték (μg/kg) d</th>
</tr>
</thead>
<tbody>
<tr>
<td>tyúkojás</td>
<td>88,8 ± 2,2</td>
<td>17,0 ± 0,9</td>
<td>Bács-Kiskun</td>
<td>KKV</td>
<td>itatóvíz</td>
</tr>
<tr>
<td>tyúkojás</td>
<td>51,9 ± 1,4</td>
<td>3,0 ± 0,8</td>
<td>Csongrád</td>
<td>MV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>tyúkojás</td>
<td>44,0 ± 1,5</td>
<td>20 ± 1</td>
<td>Hajdú-Bihar</td>
<td>KKV</td>
<td>kútvíz</td>
</tr>
<tr>
<td>tyúkojás</td>
<td>18,0 ± 0,7</td>
<td>2,0 ± 0,2</td>
<td>Jász-Nagykun-Szolnok</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>tyúkojás</td>
<td>8,8 ± 0,3</td>
<td>1,2 ± 0,1</td>
<td>Szabolcs-Szatmár-Bereg</td>
<td>MV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>pizza sonka</td>
<td>13,6 ± 0,5</td>
<td>12,0 ± 0,5</td>
<td>Békés</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>juhbélés virsli</td>
<td>17,2 ± 0,5</td>
<td>11,0 ± 0,5</td>
<td>Borsod-Abajú-Zemplén</td>
<td>NV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>päcolt karaj</td>
<td>97,8 ± 2,8</td>
<td>3,0 ± 0,2</td>
<td>Csongrád</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>sertés párizi</td>
<td>20,7 ± 0,8</td>
<td>10,0 ± 0,6</td>
<td>Jász-Nagykun-Szolnok</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>füstölt comb</td>
<td>5,5 ± 0,2</td>
<td>2,0 ± 0,1</td>
<td>Vas</td>
<td>NV</td>
<td>vezetékes</td>
</tr>
</tbody>
</table>

a Az élelmiszer előállításához felhasznált víz; b SD: szórás; c NV: Nagyvállalat; KKV: kis- és középvállalkozás, MV: mikrovállalkozás; d 17/1999 (VI.16.) EüM rendelete alapján; Az élelmiszerek feldolgozásakor minden esetben vezetékes vizet használtak

12. táblázat: Tej és tejtermékek, valamint a feldolgozásukhoz felhasznált víz As-konzentrációja

<table>
<thead>
<tr>
<th>Minta</th>
<th>As-konzentráció (ppb) ± SD b</th>
<th>Megye</th>
<th>Vállalkozás típusa c</th>
<th>Határérték (μg/kg) d</th>
</tr>
</thead>
<tbody>
<tr>
<td>félszirós tehéntúró</td>
<td>15,8 ± 0,1</td>
<td>31,0 ± 1,2</td>
<td>Bács-Kiskun</td>
<td>NV</td>
</tr>
<tr>
<td>mozzarella sajt</td>
<td>13,0 ± 1,0</td>
<td>8,0 ± 0,1</td>
<td>Békés</td>
<td>NV</td>
</tr>
<tr>
<td>félszirós tehéntúró</td>
<td>20,0 ± 0,1</td>
<td>20,0 ± 0,1</td>
<td>Hajdú-Bihar</td>
<td>MV</td>
</tr>
<tr>
<td>körösi krém sós leben</td>
<td>14,0 ± 0,2</td>
<td>9,0 ± 0,8</td>
<td>Pest</td>
<td>NV</td>
</tr>
<tr>
<td>tejföl</td>
<td>6,9 ± 0,1</td>
<td>3,0 ± 1,0</td>
<td>Szabolcs-Szatmár-Bereg</td>
<td>NV</td>
</tr>
<tr>
<td>nyers tej</td>
<td>8,2 ± 0,2</td>
<td><1,8</td>
<td>Csongrád</td>
<td>NV</td>
</tr>
<tr>
<td>nyers tej</td>
<td>25,3 ± 0,2</td>
<td>8,0 ± 0,6</td>
<td>Csongrád</td>
<td>KKV</td>
</tr>
<tr>
<td>nyers tej</td>
<td>19,0 ± 0,1</td>
<td>30,0 ± 2,0</td>
<td>Hajdú-Bihar</td>
<td>MV</td>
</tr>
<tr>
<td>nyers tej</td>
<td>30,0 ± 1,0</td>
<td>2,0 ± 0,1</td>
<td>Heves</td>
<td>KKV</td>
</tr>
<tr>
<td>pasztóiözött tej</td>
<td>8,9 ± 0,3</td>
<td>5,0 ± 0,3</td>
<td>Jász-Nagykun-Szolnok</td>
<td>NV</td>
</tr>
<tr>
<td>pasztóiözött tej</td>
<td>14,0 ± 0,2</td>
<td>3,0 ± 0,2</td>
<td>Pest</td>
<td>NV</td>
</tr>
<tr>
<td>nyers tej</td>
<td>5,4 ± 0,2</td>
<td>4,0 ± 0,1</td>
<td>Vas</td>
<td>MV</td>
</tr>
<tr>
<td>reggeli tejital</td>
<td>6,9 ± 0,1</td>
<td><1,8</td>
<td>Szabolcs-Szatmár-Bereg</td>
<td>NV</td>
</tr>
</tbody>
</table>

a Az élelmiszer előállításához felhasznált víz; b SD: szórás; c NV: Nagyvállalat; KKV: kis- és középvállalkozás, MV: mikrovállalkozás; d 17/1999 (VI.16.) EüM rendelete alapján; e n.a.: nincs adat.
Az élelmiszerek feldolgozásakor minden esetben vezetékes vízet használtak

64
13. táblázat: Készételek és a feldolgozásukhoz felhasznált víz As-konzentrációja

<table>
<thead>
<tr>
<th>Minta</th>
<th>As-konzentráció (ppb) ± SD<sup>b</sup></th>
<th>Megye</th>
<th>Vállalkozás típusa <sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Víz <sup>a</sup> (μg/l)</td>
<td>Minta (μg/kg)</td>
<td></td>
</tr>
<tr>
<td>zöldborsó pörkölt</td>
<td>8,3 ± 0,3</td>
<td>22,0 ± 1,3</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>zöldsegleves</td>
<td>13,4 ± 1,1</td>
<td>18,0 ±1,2</td>
<td>Baranya</td>
</tr>
<tr>
<td>húsleves</td>
<td>12,6 ± 1,0</td>
<td>12,0 ±1,0</td>
<td>Békés</td>
</tr>
<tr>
<td>karfiolleves</td>
<td>17,4 ± 1,3</td>
<td>15,0 ± 1,2</td>
<td>Borsod-Abaúj-Zemplén</td>
</tr>
<tr>
<td>piritott tészta leves</td>
<td>3,2 ± 0,1</td>
<td>5,0 ± 0,3</td>
<td>Csongrád</td>
</tr>
<tr>
<td>zöldbableves</td>
<td>13,6 ± 0,3</td>
<td>9,6 ± 0,5</td>
<td>Fejér</td>
</tr>
<tr>
<td>meggyiles</td>
<td>5,0 ± 0,2</td>
<td>7,0 ± 0,2</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>paradicsomos káposzta</td>
<td>20,7 ± 1,6</td>
<td>20,0 ± 1,2</td>
<td>Pest</td>
</tr>
<tr>
<td>karalábéleves</td>
<td>20,7 ± 1,4</td>
<td>18,0 ± 1,1</td>
<td>Pest</td>
</tr>
<tr>
<td>baveles</td>
<td><0,4</td>
<td>2,0 ± 0,03</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>karfiolleves</td>
<td>8,8 ± 0,7</td>
<td>11,0 ± 0,8</td>
<td>Vas</td>
</tr>
</tbody>
</table>

^a Az élelmiszer előállításához felhasznált víz; ^b SD: szórás; ^c NV: Nagyvállalat; KKV: kis- és középvállalkozás, MV: mikrovállalkozás; Az élelmiszerek feldolgozásakor minden esetben vezetékes vizet használtak. A készételek As-tartalmára vonatkozóan jelenleg nincs előírt határérték.

14. táblázat: Befőttek és savanyúságok és a feldolgozásukhoz felhasznált víz As-konzentrációja

<table>
<thead>
<tr>
<th>Minta</th>
<th>As-konzentráció (ppb) ± SD<sup>b</sup></th>
<th>Megye</th>
<th>Vállalkozás típusa <sup>c</sup></th>
<th>Felhasznált víz</th>
<th>Hatáérték</th>
<th>Hatáérték</th>
<th>Hatáérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Víz <sup>a</sup> (μg/l)</td>
<td>Minta (μg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apró csemegeuborka</td>
<td>11,0 ± 0,6</td>
<td>10,0 ± 1,0</td>
<td>Bács-Kiskun</td>
<td>MV</td>
<td>vezetékes</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>ecetes cékla</td>
<td>14,4 ± 0,8</td>
<td>8,0 ± 0,9</td>
<td>Békés</td>
<td>MV</td>
<td>vezetékes</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>magozatlan meggybefőtt</td>
<td>29,3 ± 1,7</td>
<td>12,0 ± 1,1</td>
<td>Csongrád</td>
<td>MV</td>
<td>vezetékes</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>csemegeuborka</td>
<td>24,0 ± 1,8</td>
<td>30,0 ± 2,0</td>
<td>Hajdú-Bihar</td>
<td>KKV</td>
<td>kútvíz</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>meggybefőtt</td>
<td>0,5 ± 0,1</td>
<td>2,0 ± 0,3</td>
<td>Heves</td>
<td>NV</td>
<td>vezetékes</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>savanyú káposzta</td>
<td>10,4 ± 0,3</td>
<td>4,0 ± 0,3</td>
<td>Jász-Nagykun-Szolnok</td>
<td>KKV</td>
<td>vezetékes</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>magozott meggybefőtt</td>
<td>13,7 ± 0,5</td>
<td>9,0 ± 0,6</td>
<td>Szabolcs-Szatmár-Bereg</td>
<td>KKV</td>
<td>vezetékes</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>cseresnyebefőtt</td>
<td>18,0 ± 0,6</td>
<td>14,0 ± 1,2</td>
<td>Szabolcs-Szatmár-Bereg</td>
<td>KKV</td>
<td>vezetékes</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

^a Az élelmiszer előállításához felhasznált víz; ^b SD: szórás; ^c NV: Nagyvállalat; KKV: kis- és középvállalkozás, MV: mikrovállalkozás; d 17/1999 (VI.16.) EüM rendelete alapján; n.a.: nincs adat.
15. táblázat: Alkoholos és alkoholmentes italok, valamint a feldolgozásukhoz felhasznált víz

As-koncentrációja

<table>
<thead>
<tr>
<th>Minta</th>
<th>As-koncentráció (ppb) ± SD<sup>b</sup></th>
<th>Megye</th>
<th>Vállalkozás típusa<sup>c</sup></th>
<th>Felhasznált víz</th>
<th>Határérték (μg/kg)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>pilsen típusú világos sör</td>
<td>29,7 ± 1,6</td>
<td>22,0 ± 1,6</td>
<td>Bács-Kiskun</td>
<td>KKV</td>
<td>kút víz</td>
</tr>
<tr>
<td>vilmoskőrte ízű szénsavas üdítő</td>
<td>14,3 ± 1,1</td>
<td>15,0 ± 1,2</td>
<td>Bács-Kiskun</td>
<td>MV</td>
<td>kút víz</td>
</tr>
<tr>
<td>világos sör</td>
<td>9,0 ± 0,8</td>
<td>8,3 ± 0,9</td>
<td>Békés</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>szikvíz</td>
<td>n.a.</td>
<td>15,9</td>
<td>Bács-Kiskun</td>
<td>MV</td>
<td>n.a.<sup>e</sup></td>
</tr>
<tr>
<td>szikvíz</td>
<td>28,4 ± 1,5</td>
<td>28,8 ± 1,7</td>
<td>Békés</td>
<td>MV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>szikvíz</td>
<td>7,2 ± 0,6</td>
<td>6,4 ± 0,4</td>
<td>Borsod-Abaúj-Zemplén</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>szikvíz</td>
<td>34 ± 2,5</td>
<td>n.a.</td>
<td>Csongrád</td>
<td>KKV</td>
<td>kút víz</td>
</tr>
<tr>
<td>narancs ízű szénsavas üdítő</td>
<td>13,0 ± 1,1</td>
<td>13,0 ± 1,3</td>
<td>Hajdú-Bihar</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>világos sör</td>
<td>9,0 ± 0,3</td>
<td>8,3 ± 0,4</td>
<td>Jász-Nagykun-Szolnok</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>kóla ízű szénsavas üdítő</td>
<td>9,9 ± 0,4</td>
<td>8,8 ± 0,6</td>
<td>Szabolcs-Szatmár-Bereg</td>
<td>KKV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>szikvíz</td>
<td>n.a.</td>
<td>18,8 ± 1,1</td>
<td>Szabolcs-Szatmár-Bereg</td>
<td>KKV</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

^a Az élelmiszer előállításához felhasznált víz; ^b SD: szórás; ^c KKV: kis- és középvállalkozás; ^d mikrovállalkozás; ^e 17/1999 (VI.16.) EüM rendelete alapján;^f n.a.: nincs adat.

16. táblázat: Egyéb élelmiszerek és a feldolgozásukhoz felhasznált víz As-koncentrációja

<table>
<thead>
<tr>
<th>Minta</th>
<th>As-koncentráció (ppb) ± SD<sup>b</sup></th>
<th>Megye</th>
<th>Vállalkozás típusa<sup>c</sup></th>
<th>Felhasznált víz</th>
<th>Határérték (μg/kg)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>maláta</td>
<td>29,7 ± 2,0</td>
<td><125</td>
<td>Bács-Kiskun</td>
<td>KKV</td>
<td>kút víz</td>
</tr>
<tr>
<td>zöldborsófőzelék csirkéhússal<sup>f</sup></td>
<td><0,4</td>
<td>25,2 ± 1,2</td>
<td>Bács-Kiskun</td>
<td>NV</td>
<td>vezetékes</td>
</tr>
<tr>
<td>sárgacukor csirkéhússal<sup>f</sup></td>
<td><0,4</td>
<td>28,1 ± 1,1</td>
<td>Bács-Kiskun</td>
<td>NV</td>
<td>vezetékes</td>
</tr>
</tbody>
</table>

^a Az élelmiszer előállításához felhasznált víz; ^b SD: szórás; ^c NV: Nagyvállalat; KKV: kis- és középvállalkozás; ^d 17/1999 (VI.16.) EüM rendelete alapján; ^e n.a.: nincs adat; ^f bébiételelminta.
Az élelmiszer-készítés során használt vízminták átlagos As-tartalma megyék szerint a datok minimális és maximális értékeinek, valamint zárójelben a mintaszámok feltüntetésével a 12. ábrán ábrázoltam. Az ábrákhoz tartozó adatok a 11.6 Mellékletben találhatóak.

A különböző vizsgált kenyérfelék 40 %-ában az As koncentrációja 1,5 – 14-szer több volt, mint a felhasznált vízé (10. táblázat). Az As koncentrációja az összes tojásmintában 55 – 94 %-kal kevesebb volt, mint az tenyésztés során használt itatóvízben (11. táblázat). A felvágott esetében a felhasznált víz As koncentrációjának 40 – 64 %-a volt megfigyelhető a termékben (11. táblázat). A tej és tejtermékek és a felhasznált víz As-koncentrációjának aránya csak egyetlen tej- és egyetlen sajtmintában haladta meg az 1,58-as és az 1,96-os faktort (12. táblázat).

A vizsgált élelmiszer-készítés során használt vízminták átlagos As-tartalmát megyék, valamint élelmiszertípusok szerint, az adatok minimális és maximális értékeinek feltüntetésével a 12 – 13. ábrán ábrázoltam. Az ábrákhoz tartozó adatok a 11.6 Mellékletben találhatóak.
13. ábra: Az élelmiszert előállító üzemekből származó ivóvízhez tartozó élelmiszerminták átlagos As-tartalma a mintaszámok (n) és az adatok minimális és maximális értékeinek feltüntetésével.

A vizsgált élelmiszerek és az előállításukhoz felhasznált víz As-konzentrációjának ábrázolásával azt tapasztaltam, hogy a 40 %-nál nagyobb víztartalmú élelmiszerek (levesek, magozott meggy- és cseresznyebefőtt, üdítőitalok, szódavíz, sör, 5 cm-nél rövidebb csemegeuborka, ecetes cékla, savanyú káposzta, paradicsomos káposzta főzelék) As-konzentráció értékei és az előállításukhoz felhasznált víz As-konzentrációjának értékei jó közelítéssel egy egyenes mentén helyezhetők el (14. ábra).

14. ábra: Magyarország dél-keleti régiójából származó élelmiszerek és az előállításukhoz felhasznált víz As-konzentrációjának adatpárjai.
Így a levesek, magozott meggy- és cseresznye befőtték, üdítőitalok, szódavíz, sör, 5 cm-nél kisebb csemegeborka, ecetes cékla, savanyú káposzta, paradicsomos káposzta főzelék As-koncentrációját a felhasznált víz As-koncentrációjának függvényében külön is ábrázoltam (15a. ábra), illetve egyenest illesztettem az adatpárokrá.

15a. ábra: A 40 %-nál nagyobb víztartalmú élelmiszerek As-koncentrációja és az előállításuk-hoz felhasznált víz arzénkoncentrációjának adatpárokrá végzett egyenes illesztése (a kiugró adatok vastag és dőlt betűvel kiemelve)

A nagy víztartalmú minták As-koncentrációja jól korrelált a felhasznált víz As-koncentrációjával. Az összes adatpárra illesztett egyenes lineáris korrelációs együttható értéke 0,690 (Pearson-féle korrelációs együttható 0,830). A kiugró adatok elhagyásával, lineáris egyenes illesztést alkalmazva az $r^2 = 0,852$, Pearson-féle lineáris korrelációs együttható értéke 0,923. Így a készételek (levesek és a paradicsomos káposzta főzelék) Pearson-féle korrelációs együtthatója 0,927 (15b. ábra), a sör és az üdítőitaloké 0,936 (15c. ábra), valamint a tartósítóipari termékeké (befőtték és savanyúságok) 0,921 volt.
15b. ábra: A levesek és a paradicsomos káposztafőzelék, valamint az előállításukhoz felhasznált víz As-konzentrációjának adatpároka végzett Pearson-féle korrelációja (a mintaszám n-nel jelölve)

15c. ábra: A vizsgált sörök és üdítőitalok, valamint az előállításukhoz felhasznált víz As-konzentrációjának adatpároka végzett Pearson-féle korrelációja (a mintaszám n-nel jelölve)
A tartósítóipari termékek esetén ugyan a Pearson-féle korrelációs együtttható kielégítő értéket mutat, de a kevés mintaszám miatt külön nem ábrázoltam. A többi élelmiszer esetén a Pearson-féle korrelációs együtttható sütőipari termékekre 0,189, téjre 0,273, sajtra 0,521, tojásra 0,667, és felvágottakra -0,438 volt, ami nem mutat lineáris korrelációt. Ez azzal magyarázható, hogy Az az állati szervezetekben főleg a szaruképletekben akkumulálódik. A szaporodásban fontos szerepet betöltő tojás vagy tej genetikailag még inkább védettek az As-nal szemben.

Mindent esetben megállapítható volt, hogy a vizsgált élelmiszerek As-konzentrációja kisebb volt, mint a hatályos magyar jogszabályban foglalt határértékek (11.8 Melléklet). A többi vizsgált élelmiszerre (kenyér és egyéb pékárura) nincs határérték megállapítva. Megállapítottam, hogy a mikro-, a kis- és a középvállalatoktól származó élelmiszerek és italok As-konzentrációja a legnagyobb.

Figyelembe véve a 10—16. táblázatban összefoglalt ételek és italok As koncentrációját, megállapítható, hogy a nagy víztartalmú élelmiszerek (levesek, kompót, paradicsomos káposzta) és italok járulnak hozzá a legnagyobb mértékben, kb. 1,9 — 7,5 μg/l, a napi As-bevitelhez. Ezenfelül a pékáruk jelentenek még jelentős As-bevitelt, figyelembe véve, hogy az egyszeri elfogyasztott mennyiség 2,1 — 2,5 μg körüli értékre becsülhető.

Bár az adott élelmiszer és a felhasznált víz As-konzentráció adatpárokat a bebőกก és a savanyúságok esetében jól korreláltak, egyértelmű következtetést nem lehet levoanni, mivel kevés volt az ilyen jellegű vizsgálati minta. A részelt savanyú káposzta és az 5—8 cm-es csemegeuborka esetében a kapott eredményeket hihyetam a vizsgálatból, mert a mintákat a levük nélkül szállították a laboratóriumba, így a gyártó által készített eredeti folyadék összetételét nem lehetett ellenőrizni.

Egy magozatlan meggybefőttminta szintén nincs feltüntette a diagramon, mert a homogenizálás előtt a magokat el kellett távolítani. Így az adatok helyes értelmezéséhez, a magok tömegét figyelembe kellett volna venni. Mivel a vonatkozó hatályos magyar jogszabály előírja, hogy az élelmiszermintáknak csak az ehető részét kell vizsgálni, ezért a fent említett számítási algoritmust nem alkalmaztam. A hagyományos magyar receptek szerint készített levesek víztartalma 58—78 %, amit főzés előtt adnak hozzá. A pörköltet ebben a vizsgálatban nem vettem figyelembe, mert viszonylag kicsi a víztartalma (kb. 20 %). A zöldség alapú főzelékek a fent említett két élelmiszertípus között vannak és a csomagoláson feltüntetett információk alapján körülbelül 40 % a hozzáadott víz mennyisége.
A levesek és a paradicsomos káposzta esetén a vizsgált minták felében az As koncentrációja 25–100 %-kal meghaladta a felhasznált vízben meghatározott As-koncentrációt. Azonkívül, hogy a földolgozás során néhány összetevő As-koncentrációja is hozzájárul az összes As-tartalomhoz, meg kell jegyezni azt is, hogy az élelmiszernek nemcsak a felhasznált víz mennyiségétől, hanem a mátrix tulajdonságaitól is függ az As-tartalma, amely befolyásolja az As visszatartását is.

Del Razo és mtsai (2002) kimutatták, hogy azokban az élelmiszerekben (tarka bab és a tészta leves), amelyek nagyobb mennyiségű vizet vesznek fel, nagyobb az As-koncentráció, míg a kisebb víztartalmú élelmiszereknek (pl. tortilla) kisebb volt az As koncentrációja. Ez arra utal, hogy az élelmiszerek As-tartalmát befolyásolja a felhasznált víz mennyisége és a főzési idő is [109]. Azt a korábbi megállapítást, miszerint a főrő italok (tea, kávé) As-koncentrációja nagyobb, mint az elkészítésük közé használt vízé, igazolja azt, hogy a vizsgált levesek As-tartalma is nagyobb, mint az elkészítéshez használt vízé [109]. Más vizsgálatokban, ahol édesvízi halak és szilárd élelmiszerek (úgy mint darált hús, baromf, tengeri hal és egyéb tengeri ételek) főzésének As-koncentrációira gyakorolt hatását vizsgálták, kimutatták, hogy az As koncentrációja a főtt élelmiszerekben nagyobb, valószínűleg azért, mert a víz mennyisége a párolgással csökken, ebből pedig az következik, hogy az As koncentrációja a főtt ételekben megemelkedik [135, 136]. Ezek a hatások nem tartoztak a vizsgálataink körébe, de az ebből adódó következtetéseket is figyelembe kell venni doktori értekezésem értelmezésekor.

Két vizsgált bébiételnek viszonylag nagy volt az As-koncentrációja (16. táblázat), de nem haladtak meg a Magyarországon előírt hatályos egészségügyi határértéket egységes uniószabályozás hiányában. A bébiéteteleket általában rizsliszssel sűrítik. A rizs a nagy As-tartalmú élelmiszerek közé tartozik, ez magyarázatot ad a jelenségre. Az egyik bébiételminta csomagolásán például a következő összetevőket tüntették fel: víz, sárgarépa (40 %), csirkemell (10 %), rizsliszt, rizskeményítő, paszternák, növényi olaj. Ezzel szemben a sörminták esetében, a sörgyártáshoz felhasznált maláta As-koncentrációja az LOQ alatt volt. Három minta közül csak egy esetben haladta meg némileg (4 %-kal) a sör As-koncentrációja az előállításhoz felhasznált víz As-tartalmát.

Az eredmények összhangban vannak azzal az EFSA által közölt tanulmánnal, amely szerint az As átviteli ténylege gabonafélékben és vagóállat szervezetekben igen csekély. Ez azt jelenti, hogy a nagy As-koncentrációjú talajok ellenére a gabonafélék jellemzően kevés As-t tartalmaznak. Hasonlóképpen, nem figyeltek meg jelentős átviteli hatást az állati
szervezetekben sem [47], így a tej és a tejtermékek valamint a húskészítmények As-konzentrációja feltehetően elsősorban a természetes eredetű As-nal szennyezett víz használatából ered. Igazolták továbbá, hogy a pasztörtőzés nem befolyásolta a tejminták As-konzentrációját.

A kenyér minták esetében nem volt jelentős különbség a különböző kenyérféle As-konzentrációja között. A sütitipari termékek esetében meg kell jegyezni azt, hogy a liszt As-konzentrációjának határértéke Magyarországon 100 µg/kg. Mivel a sütitipari termékeknek a liszt a fő alkotóelemük, ezért a liszt As-konzentrációjára jelentős mértékben hozzájárul a termék As-tartalmához. Ezért, amint az várható volt, a nagy víztartalmú élelmiszerekhez hasonló összefüggés nem figyelhető meg a sütitipari termékek, a sajt, a tej, a tojás és a felvágott esetében. Bár az eredmények statisztikai kiértékelését a viszonylag kis mintaszám miatt nem tudtán elvégezni, az élelmiszertipari termékeket As-tartalmuk alapján sorrendben a következő négy, különböző kategóriába soroltam a megfelelő vízminta As-konzentrációjának normalizálásával: tyúktojás < felvágott < tej < kenyér.

A hasonló nyers és feldolgozott élelmiszerek As-konzentrációját nehéz összehasonlítaná a szakirodalmi adatokkal, mivel az jelentősen függ a felszín, illetve a felszín alatti vizek As-tartalmától [87].

Ha a háztartások vagy a regionális KKV-k az As-nal szennyezett csapvizet használják levesek, sör, szóda és más üdítőitalokat készítésére, akkor természetszerűleg ezeknek az élelmiszereknek az As-konzentrációja egyértelmű összefüggésben lesz a felhasznált víz As-konzentrációjával. Ez az eredmény azért fontos, mert ezek az élelmiszerek jelentős mértékben hozzájárulnak Magyarországon a napi étrendhez. Ezért a KKV-k tevékenységét, különös tekintettel a helyi élelmiszeripari vállalkozásokra és a vendéglátóhelyekre, rendszeresen ellenőrizni kell. Sőt, különös figyelmet kell fordítani az érintett területeken élő lakosságnak a feldolgozott élelmiszerekre és az As-nal szennyezett vízre vonatkozó kockázatelemzése során. 2013. január 1. óta palackozott ásványvizet osztanak az As-szennyezéssel érintett területen élő lakosság körében Magyarországon, és az élelmiszer-feldolgozó és a vendéglátó vállalkozások nem használhatnak fel olyan vizet, amelynek As-konzentrációja meghaladja az Európai Unió által az ivóvízre előírt egészségügyi határértéket, aminek következtében a kockázat jelentős csökkentése remélhető.
6.2.1 Az As-bevitel becslése

A WHO/FAO szerint egy 70 kg tömegű, átlagos fizikai aktivitású személynek naponta 2000 kcal energiatartalmú táplálékot ajánlott fogyasztania, az átlaglakosság sajátos nemi, életkori napi energiaigényének megfelelően [137]. Két, a hazai étkezési szokásoknak megfelelő, 2000 kcal energiatartalmú teljes napi étrendet állítottam össze a vizsgált élelmiszerekből és italokból. A két menü összeállításánál az egyes fogások zsírtartalmát is figyelembe vettem, mivel köztudott, hogy az ételek nagy zsírtartalma felelős a magyarországi lakosságot is sújtó gyakori szív- és érrendszeri megbetegedésekért. Minden tétel tápanyag-összetételének értéke (szénhidrát, zsír és fehérje) ugyanabbnál a tápanyagtáblázatból származik [138]. A tápertékt számításához hasonló módon számítottam az As-bevitelt. A legfőbb különbség a két menü között a fehérjetartalomban van. Ily módon az „A” menü nagyjából kétszer annyi fehérjét tartalmaz, mint a „B” menü. Abban az esetben, ha egy fajta mintából több eredmény is rendelkezésre állt (mint a tej, a kenyér, az üdítő stb.), akkor az étrendben minden esetben az átlagos értékkel számoltam.

Az általam vizsgált területekről származó élelmiszerekkel az összes As-bevitel, a zsírtartalomból függetlenül, az összeállított napi étrendből számolva a BMDL_{0.5} küszöbérték 40 %-ának megfelelő 20 – 30 μg/nap között mozgott. Ha ehhez hozzászámítom a 17,4 μg/l átlagos As-tartalmú ivóvíz napi 2,5 l-es fogyasztását, akkor a szervezetbe bevitt As mennyisége elérheti akár a napi 80 μg-ot is, amely 1,14 μg/testtömeg kg/nap értéknek felel meg. Számításaim szerint a vizsgált települések közül kettőben már a napi 2,5 l víz elfogyasztásával is el lehet érni a WHO által megállapított 3 μg/testtömeg kg/nap BMDL_{0.5} küszöbértékét. Ilyen esetben egy 70 kg testsúlyú személyre a napi összes As-bevitel elérheti a 3,5 μg/testtömeg kg értéket. További három, egymástól 55 km távolságra eső csongrádi településen becslések szerint napi 3,8 μg/testtömeg kg érték érhető el.

Az eredmények alapján, azokon a településeken, ahol az egészségügyi határértéket meghaladó As-koncentráció fordulhat elő az ivóvízben, szigorúban kell ellenőrizni különösen a MV-k és a KKV-k működését.
17. táblázat: Két különböző napi menü összeállítása a napi As-bevitel becslésére a jelen értekezésben vizsgált élelmiszerekből

A Menü

<table>
<thead>
<tr>
<th>Élelmiszer</th>
<th>Adag (g)</th>
<th>Energia a (kcal)</th>
<th>As b (μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reggeli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tej</td>
<td>300</td>
<td>186</td>
<td>2,6</td>
</tr>
<tr>
<td>Kifli (2db)</td>
<td>140</td>
<td>270</td>
<td>2,5</td>
</tr>
<tr>
<td>Párizsi</td>
<td>50</td>
<td>130</td>
<td>0,5</td>
</tr>
<tr>
<td>Sajt</td>
<td>50</td>
<td>150</td>
<td>0,5</td>
</tr>
<tr>
<td>Ebéd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zöldségleves</td>
<td>250</td>
<td>120</td>
<td>4,5</td>
</tr>
<tr>
<td>Pörkölt</td>
<td>150</td>
<td>200</td>
<td>3,3</td>
</tr>
<tr>
<td>Savanyúság</td>
<td>100</td>
<td>35</td>
<td>0,9</td>
</tr>
<tr>
<td>Vacsora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tojás (3db)</td>
<td>150</td>
<td>265</td>
<td>1,3</td>
</tr>
<tr>
<td>Kenyér</td>
<td>140</td>
<td>378</td>
<td>2,1</td>
</tr>
<tr>
<td>Üdítő</td>
<td>300</td>
<td>126</td>
<td>4,0</td>
</tr>
<tr>
<td>Összesen:</td>
<td></td>
<td>1860</td>
<td>22,2</td>
</tr>
</tbody>
</table>

B Menü

<table>
<thead>
<tr>
<th>Élelmiszer</th>
<th>Adag (g)</th>
<th>Energia a (kcal)</th>
<th>As b (μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reggeli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Túró</td>
<td>50</td>
<td>40</td>
<td>1,3</td>
</tr>
<tr>
<td>Kenyér</td>
<td>140</td>
<td>378</td>
<td>2,1</td>
</tr>
<tr>
<td>Üdítő</td>
<td>300</td>
<td>35</td>
<td>4,0</td>
</tr>
<tr>
<td>Kompót</td>
<td>200</td>
<td>180</td>
<td>1,9</td>
</tr>
<tr>
<td>Ebéd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Húsleves</td>
<td>250</td>
<td>190</td>
<td>3,0</td>
</tr>
<tr>
<td>Paradicsomos</td>
<td>250</td>
<td>140</td>
<td>5,0</td>
</tr>
<tr>
<td>Káposzta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karaj</td>
<td>250</td>
<td>235</td>
<td>0,8</td>
</tr>
<tr>
<td>Vacsora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virsli (1 pár)</td>
<td>100</td>
<td>200</td>
<td>1,1</td>
</tr>
<tr>
<td>Kenyér</td>
<td>140</td>
<td>378</td>
<td>2,1</td>
</tr>
<tr>
<td>Sör</td>
<td>500</td>
<td>220</td>
<td>7,5</td>
</tr>
<tr>
<td>Összesen:</td>
<td></td>
<td>1996</td>
<td>28,8</td>
</tr>
</tbody>
</table>

a Bíró Gy., Linder K. Tápanyagtáblázat c. könyvéből származó adatok [138]
b Általam vizsgált, a jelen dolgozatban meghatározott értékek.
6.2.2 A lakosság egészségügyi állapota és a becsült As-exponció kockázatának értékelése

Fontosnak tartom megjegyezni, hogy a jól ismert európai egészségügyi statisztikák azt mutatják, hogy Magyarország számos betegségben élen jár, úgymint a tüdőrák (11.9 Melléklet), valamint a szív- és érrendszeri megbetegedések tekintetében. Ezt az aggodalomra okot adó helyzetet elsősorban az egészségtelen táplálkozás, a túl sok szénhidrát- és zsírfogyasztás, valamint a dohányzás, alkoholfogyasztási szokások és a mozgásszegény életmód magyarázza.

Mint már az irodalmi áttekintésben említettem, a statisztikai adatok szerint a 20-64 év közötti magyar női lakosság 31%-a, a férfiak 41%-a rendszeresen dohányzik [139]. A dohányfüst szintén tartalmaz As-t és köztudott, hogy a dohányzás nagymértékben hozzájárul a tüdőrák kialakulásához. Magyarország az elhízás gyakoriságában is vezetett 2012-ben az európai unió országok között: a magyar nők 30,4 %-a, a férfiak 26,3 %-a volt túlsúlyos. Az elhízás pedig olyan betegségek kialakulásáért felelős, mint a szív- és érrendszeri megbetegedések vagy a cukorbetegség [140].

Ezen egészségügyi adatok ismeretében fontos, hogy a lakosság As-terhelése ellenőrzőtt legyen. Az ivóvizek As-menetezése mellett ügyelni kell az élelmiszerek helyes megválasztására, az egészséges életmódra is. Hangsúlyozom azonban, hogy a lakosságot érintő egészségügyi problémák és betegségek kialakulásához valószínűleg sokkal inkább hozzájárul az egészségtelen táplálkozás és életmód, mint az élelmiszerekkel és az ivóvízzel elfogyasztott As, amelynek esetleges hatását az előbbi következményei elfedhetik [141].

Megállapításomat megerősíti az Országos Onkológiai Intézet által működtetett és online hozzáférhető Nemzeti Rákregiszter statisztikai adatai is, amely szerint a Magyarországon előforduló tüdő- és egyéb rákos megbetegedések esetszámában annak ellenére nem tapasztalható határozott csökkenés, hogy 2001 óta folyamatos törekvés nyilvánul meg országos szinten a csapvíz As-konzentrációjának csökkentésére [142, 143].

Bellovits szerint [143] a tüdőrák előfordulásának valószínűsége 30 µg/l As-konzentrációtól kezdve határozott növekedést mutat. Békés megyében a tüdőrák előfordulása 15 – 20 %-kal gyakoribb az országos átlagnál az elmúlt tizenegy évben. Hajdú-Bihar, Csongrád illetve Békés megyén az állapot teljesen változatlan és csak Csongrád megyére igazolható, hogy az As-konzentráció függvényében a tüdőrákos esetek száma eltér a kontroll értékektől [143].
Mindazonáltal azokon a településeken, ahol az As-terhelés nem éri el a kockázatos szintet, indokolatlannak tűnik túlzottan nagy költségeket fordítani az As-mentesítésre. Ráadásul úgy, hogy az nemcsak a fogyasztásra és az élelmiszerek feldolgozására szánt víz tisztítását, hanem az egyéb célú (pl. mosás, WC-öblítés, locsolás stb.) vízhasználatot is érinti. Ezekben a településeken az ellenőrzött, határérték alatti As-koncentrációjú palackozott ásványvizek fogyasztása valószínűleg elegendő mértékben csökkenti az As-expozíció kockázatát. A költségeket olyan kutatásokra és egészségügyi programokra lehetne fordítani, amelyek érdemben javíthatnak a magyarországi lesújtó egészségügyi adatokon. Az indokolatlan és túlzott As-mentesítés során veszélyes hulladéknak minősülő As-ban dúsult iszap keletkezik, amelynek ártalmatlanítása és elhelyezése további problémákat vet fel.

6.3 Az összes As és az As-specieszek meghatározása kútvízben

A speciációs vizsgálatoknál is először az összes As-koncentrációt kellett a mintákban meghatározni. A specieszek egymásba való átalakulása vagy a minta speciesösszetételének változása fény vagy hő hatására gyakori hibaforrási lehetőség a specieszanalitikai elemzéseknél, aminek elkerülésére alternatív megoldást próbáltam ki. Nem volt elhanyagolható szempont az sem, hogy a módszer költséghatékony legyen. Az As(III)/As(V) specieszek eredeti koncentrációaránya megőrzésén az előfeltétele a terepi szűrés [144], a hűtés és a sötétben való tárolás. Munkám során nem alkalmaztam a Kumar és Riyazuddin [144] által javasolt 0,45 μm pórusátmerőjű szűrést, mert fő célom a lakosság által fogyasztott As-nal szennyezett ivóvíz vizsgálata volt. A kolloidális méretű részecskék eltávolításával feltételezhetően megváltozhat az As(III)/As(V) koncentrációarány, ami nem reprezentálja kellően a fogyasztásra kerülő ivóvíz minőségét. A 2012-ben vizsgált közkutakból vett ivóvízminták összes As-koncentrációja a vizsgált 23 mintából 22 esetben haladta meg az Európai Unió által előírt –2009-től kötelező – 10 μg/l egészségügyi határértéket. A minták összes As-koncentrációja 7,2 és 210,3 μg/l között változott (18. táblázat).

Az As-érintettségű települések száma az ANTSZ felmérése szerint 6 2011 óta egyenletesen csökken. A vezetékes ivóvízzel ellátott településeken 2011 és 2013 között egyaránt csökkent az ivóvíz As-koncentrációja a 20 μg/l feletti, valamint a 10 és 20 μg/l

6 Forrás:
https://www.antsz.hu/data/cms51270/derogacios_telepulesek_as_b_f_adatok_2013_i_felev.pdf?query=Derog%C3%A1ci%C3%B3s%20telep%C3%A9sek%20telep%C3%BCl%C3%A9sk%20mentesít%C3%AAsek%20utols%C3%B3%20hozzáférés%3A%202014.%20október
közötti [143] tartományban. Ennek ellenére az ANTSZ kimutatása szerint Magyarországon még 2013-ban is több mint 200000 lakos a határértéket meghaladó As-konzentrációjú vezetékes ivóvizet kapja. Ezekben a településeken a Magyar Honvédség lajos kocsikkal vagy palackozva biztosítja a megfelelő minőségű ivóvizet.

Szerves As-speciesz, mint MMA(V) és DMA(V), nem volt kimutatható a vizsgált mintákban. Az összes As meghatározását nem befolyásolta sem az 40Ar$^{35}Cl^+$ sem a 40Ca$^{35}Cl^+$ molekuláris interferencia közepes felbontású üzemmódban a minták kis klorid koncentrációja miatt. Mivel a speciációs meghatározáshoz az anioncserélőt tartalmazó SPE-oszlopokat sósavval kondicionáltam, nagy felbontású üzemmód alkalmazására volt szükség a HR-ICP-MS-méréseknél, különösen az oszlopról elfolyó As(III)-tartalmú frakció vizsgálatakor.

Az As(V) meghatározott koncentrációját elosztva a két speciesz koncentrációjának összegével és megszorozva százalal, azt kaptam, hogy a minták kétharmadában az As(V)/As(III) arány nagyobb volt mint 1,5. Ezenkívül az is megállapítható, hogy a vizsgált minták mintegy 40 %-ában az As(V)/As(III) speciesek aránya több, mint 7,3.

$$\text{As(V)[%]} = \frac{c_{\text{As(V)}}}{c_{\text{As(III)}}+c_{\text{As(V)}}} \times 100 \quad (11)$$
18. táblázat: Közkutakból vett vízminták (n=23) jellemzése különböző vizsgálati paraméterekkel, három független párhuzamos mérési eredményből számolva

<table>
<thead>
<tr>
<th>Minta azonosító</th>
<th>t (°C)</th>
<th>pH ± SD</th>
<th>η ± SD (μS/cm)</th>
<th>Össz As (pg/l)</th>
<th>c_{As(V)} ± SD (μg/l) (As(V) %)</th>
<th>c_{As(III)} ± SD (μg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bács-Kiskun megye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>21.9</td>
<td>7,5 ± 0,1</td>
<td>468 ± 7</td>
<td>7,2 ± 0,2</td>
<td>< 0,8 (<10)</td>
<td>7,4 ± 0,3</td>
</tr>
<tr>
<td>2</td>
<td>20,6</td>
<td>7,3 ± 0,2</td>
<td>486 ± 6</td>
<td>34,8 ± 1,8</td>
<td>32,7 ± 2,5 (97)</td>
<td>2,2 ± 0,3</td>
</tr>
<tr>
<td>Békés megye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15,2</td>
<td>7,7 ± 0,1</td>
<td>485 ± 7</td>
<td>53,8 ± 0,4</td>
<td>50,2 ± 3,2 (97)</td>
<td>1,4 ± 0,2</td>
</tr>
<tr>
<td>4</td>
<td>16,1</td>
<td>8,5 ± 0,1</td>
<td>480 ± 4</td>
<td>54,7 ± 2,5</td>
<td>51,7 ± 3,0 (95)</td>
<td>2,5 ± 0,2</td>
</tr>
<tr>
<td>5</td>
<td>14,7</td>
<td>7,9 ± 0,1</td>
<td>539 ± 4</td>
<td>51,4 ± 3,0</td>
<td>16,6 ± 0,5 (32)</td>
<td>34,7 ± 0,8</td>
</tr>
<tr>
<td>6</td>
<td>14,8</td>
<td>9,1 ± 0,2</td>
<td>444 ± 5</td>
<td>37,1 ± 1,7</td>
<td>27,0 ± 0,5 (88)</td>
<td>3,7 ± 0,3</td>
</tr>
<tr>
<td>7</td>
<td>19,6</td>
<td>7,8 ± 0,1</td>
<td>1532 ± 2</td>
<td>42,0 ± 2,0</td>
<td>37,5 ± 1,7 (98)</td>
<td>0,7 ± 0,1</td>
</tr>
<tr>
<td>8</td>
<td>26,5</td>
<td>8,2 ± 0,1</td>
<td>1482 ± 2</td>
<td>44,9 ± 1,7</td>
<td>5,5 ± 0,3 (13)</td>
<td>37,9 ± 1,1</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>7,9 ± 0,1</td>
<td>1401 ± 2</td>
<td>55,6 ± 1,5</td>
<td>47,6 ± 1,8 (94)</td>
<td>3,0 ± 0,3</td>
</tr>
<tr>
<td>10</td>
<td>15,4</td>
<td>7,9 ± 0,1</td>
<td>1040 ± 3</td>
<td>48,9 ± 0,7</td>
<td>43,5 ± 0,6 (97)</td>
<td>1,6 ± 0,2</td>
</tr>
<tr>
<td>11</td>
<td>15,8</td>
<td>7,7 ± 0,1</td>
<td>980 ± 3</td>
<td>40,2 ± 1,6</td>
<td>36,5 ± 0,4 (98)</td>
<td>0,9 ± 0,1</td>
</tr>
<tr>
<td>Csongrád megye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>21,2</td>
<td>8,1 ± 0,1</td>
<td>520 ± 4</td>
<td>40,9 ± 4,0</td>
<td>22,3 ± 0,2 (61)</td>
<td>14,4 ± 1,2</td>
</tr>
<tr>
<td>13</td>
<td>18,1</td>
<td>8,2 ± 0,1</td>
<td>562 ± 3</td>
<td>49,9 ± 1,2</td>
<td>14,0 ± 0,5 (32)</td>
<td>29,9 ± 0,7</td>
</tr>
<tr>
<td>14</td>
<td>20,9</td>
<td>8,2 ± 0,1</td>
<td>509 ± 5</td>
<td>40,1 ± 5,9</td>
<td>9,7 ± 0,5 (38)</td>
<td>26,4 ± 1,0</td>
</tr>
<tr>
<td>15</td>
<td>18,8</td>
<td>8,0 ± 0,1</td>
<td>515 ± 4</td>
<td>64,1 ± 2,2</td>
<td>19,8 ± 1,6 (45)</td>
<td>44,5 ± 4,9</td>
</tr>
<tr>
<td>16</td>
<td>17,2</td>
<td>7,9 ± 0,2</td>
<td>533 ± 3</td>
<td>62,0 ± 1,8</td>
<td>13,5 ± 0,1 (24)</td>
<td>43,7 ± 2,0</td>
</tr>
<tr>
<td>17</td>
<td>18,4</td>
<td>8,3 ± 0,1</td>
<td>553 ± 5</td>
<td>71,5 ± 1,5</td>
<td>40,8 ± 1,5 (60)</td>
<td>27,5 ± 1,0</td>
</tr>
<tr>
<td>18</td>
<td>24,3</td>
<td>8,3 ± 0,1</td>
<td>1161 ± 2</td>
<td>210,3 ± 4,9</td>
<td>163,3 ± 6,5 (82)</td>
<td>36,6 ± 1,4</td>
</tr>
<tr>
<td>19</td>
<td>19,2</td>
<td>8,2 ± 0,1</td>
<td>1151 ± 5</td>
<td>42,2 ± 1,4</td>
<td>13,5 ± 0,7 (33)</td>
<td>27,7 ± 1,4</td>
</tr>
<tr>
<td>20</td>
<td>24,5</td>
<td>8,3 ± 0,1</td>
<td>1252 ± 4</td>
<td>164,3 ± 3,8</td>
<td>124,8 ± 4,2 (77)</td>
<td>38,1 ± 1,6</td>
</tr>
<tr>
<td>Pest megye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>20,8</td>
<td>8,2 ± 0,1</td>
<td>608 ± 2</td>
<td>42,8 ± 0,8</td>
<td>40,3 ± 0,2 (>99,8)</td>
<td>< 0,1</td>
</tr>
<tr>
<td>22</td>
<td>22,5</td>
<td>8,1 ± 0,2</td>
<td>922 ± 4</td>
<td>15,2 ± 1,2</td>
<td>13,9 ± 0,8 (97)</td>
<td>0,4 ± 0,1</td>
</tr>
<tr>
<td>23</td>
<td>23,5</td>
<td>7,7 ± 0,2</td>
<td>1740 ± 30</td>
<td>48,7 ± 1,2</td>
<td>30,5 ± 2,7 (66)</td>
<td>15,9 ± 0,2</td>
</tr>
</tbody>
</table>

Rövidítések: κ = vezetőképesség; SD = szórás
Területi eloszlás szerint a Békés megyében gyűjtött minták mintegy 80 %-ában (n = 9) az As(V) az uralkodó speciessz. Csongrád megyében, ahol kilenc mintát gyűjtöttünk, csak a minták felében volt jellemző a nagy As(V)-koncentráció, ez geomorfológiai különbözőségre utalhat. A Pest megye üdülőövezetében vett mindhárom mintában túlnyomórészt As(V) volt jelen. Bács-Kiskun megye esetében a csekély mintaszám nem tette lehetővé bármilyen nemű következtetés levonását. Figyelembe véve azt, hogy az As(V) kevésbé toxikus, mint az As(III), ez azt is jelenti, hogy a lakosság As(III) expoziciójának a kockázata a vizsgált településeken, Csongrád megye kivételével, általában kisebb. Összefoglalva, a lakosság által használt ivóvízkutak természetes As-szennyezettségét vizsgálva azt tapasztaltam, hogy a minták többségében az As(V) a meghatározó speciessz és az olyan környezeti paraméterek, mint a pH, a vezetőképesség és a redoxpotenciál, nem adnak megbízható információt a specieszek megoszlására, ezért még mindig a speciáció elvégzése számít a legmegbízhatóbb eredménynek.

16. ábra: A vizsgált ivóvízminták As(V) és As(III) százalékos megoszlása Békés megyében (2012)
17. ábra: A vizsgált ivóvízminták As(V) és As(III) százalékos megoszlása Csongrád megyében (2012)

18. ábra: A vizsgált ivóvízminták As(V) és As(III) százalékos megoszlása Bács-Kiskun és Pest megyében (2012)
6.3.1 Oxoanion-képző elemek koncentrációjának alkalmazhatósága ivóvízminták redox környezeti mutatójaként

Az oxoanion-képző elemek közül a Mo, V és W volt a mérhatozható a mintákban. Így a Mo koncentrációja a vizsgált mintákban 0,51 – 49,0 μg/l, a V-é 0,024 – 1,92 μg/l és a W-é 0,12 – 4,21 μg/l koncentrációtartományban (19. táblázat) változott. A Pest megye területén gyűjtött minták kivételével, a Se és az U alig volt meghatározható néhány mintában. Általában a Mo, a V és a W koncentrációja is nagyobb volt azokban a mintákban, ahol az As(V) 66%-nál nagyobb koncentrációban fordult elő.

19. táblázat: Az oxoanion-képző elemek koncentrációjája a vizsgált vízmintákban, három független párhuzamos mérési eredményből számolva

<table>
<thead>
<tr>
<th>Minta azonosító</th>
<th>Mo</th>
<th>Se</th>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bács-Kiskun megye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,27 ± 0,01</td>
<td>< 1,67</td>
<td>n.d.</td>
<td>0,24 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,68 ± 0,02</td>
<td>< 1,67</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>Békés megye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,95 ± 0,03</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12,1 ± 0,11</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2,21 ± 0,13</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2,22 ± 0,12</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42,8 ± 1,9</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5,3 ± 1,0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>29,0 ± 0,9</td>
<td>< 1,67</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>49,0 ± 0,9</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>15,0 ± 0,1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,23 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>Csongrád megye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,51 ± 0,03</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,87 ± 0,05</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0,54 ± 0,02</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,59 ± 0,04</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0,57 ± 0,10</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1,01 ± 0,05</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3,90 ± 0,16</td>
<td>< 1,67</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1,94 ± 0,10</td>
<td>< 1,67</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7,90 ± 0,40</td>
<td>< 1,67</td>
<td>n.d.</td>
<td>0,1 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>Pest megye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4,90 ± 0,20</td>
<td>n.d.</td>
<td>0,63 ± 0,02</td>
<td>0,35 ± 0,03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4,34 ± 0,12</td>
<td>< 1,67</td>
<td>1,94 ± 0,06</td>
<td>0,17 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>15,3 ± 0,1</td>
<td>21,1±0,1</td>
<td>0,71 ± 0,01</td>
<td>0,53 ± 0,01</td>
<td></td>
</tr>
</tbody>
</table>

Rövidítések: SD = szórás; n.d. = nem kimutatható

82
Elfogadható lineáris összefüggést mutatott a magyarországi közkutakból vett vízminták V és As(V) koncentráció adatpárokrá végzett egyenes illesztése (19. ábra). A Pearson-féle lineáris korrelációs együttható jelen esetben is jó eredményt adott ($r = 0,8066$). Ha azonban bele vesszük az egyenes illesztésbe azokat a mintákat, amelyeknek az As-konzentrációja kisebb, mint az LOQ (az LOQ értékekkel számolva minden ilyen esetben), akkor az $r^2 = 0,6506$ értékre csökken.

Amíg nem születik végleges megoldás a természetes As-szennyezettséggel érintett területeken az ivóvíz As-konzentrációjának csökkentésére, addig fontos megbecsülni azt, hogy az As nagyobb előfordulása jelent-e kockázatot a lakosság számára. Ahhoz, hogy reális eredményt kapjunk, első megközelítésben a napi használatban lévő kutak vizsgálatára van szükség. Ezután az As-speciáció is elvégezhető a nyers vízminta anioncserélő gyantával töltött SPE-oszlopon végzett megbízható helyszíni áteresztése után. Az anioncserélő alkalmazása kényelmes megoldásnak bizonyult a minták tárolására is. A vizsgált mintákban az As(V) az uralkodó speciesz, ami kisebb kockázatot jelent, mint az As(III). Ráadásul a legtöbb esetben az oxoanion-képző elemek koncentrációja a vizsgált kutakból származó

19. ábra: Magyarországi közkutakból vett vízminták V és As(V) koncentráció adatpárokrá végzett egyenes illesztése
mintákban jobban megerősítette a számított nagy As(V)/As(III) koncentrációarányt. Így kiegészítésképpen az oxoanion-képző elemek vizsgálatában segítheti az eredmények megbízhatóságát, mint a helyszínen vizsgált más paraméter, mint például a pH, a hőmérséklet, a vezetőképesség, vagy a redoxpotenciál (11.7 Melléklet).

Vizsgálatexink során a vízmintákat olyan közkutakból vettük, ahova vízműveken keresztül szállítják a vizet, és így az As(III) egy része, feltehetően a klórozás miatt, könnyen As(V)-tá oxidálódhat, mielőtt még elérne a vízkivetési pontot. Víz fertőtlenítésére gyakran használt klórtartalmú szerek többek között, a NaClO, a klóramin, a klórgáz és a ClO₂. Az ivóvíz a víztoronyban is érintkezésbe kerül a levegővel (tartózkodási idő), amely szintén oxidatív közeg.

Eredményeim szerint a Smedley által közölt geológiai elmélet [61], miszerint felszín alatti vizekben, ott ahol az oxoanion-képző elemek koncentrációja nagy, az As inkább As(V) formában fordul elő, nem vagy csak korlátozottan alkalmazható ivóvíz esetében. Ha az elmélet ivóvízre is működne, akkor nem lenne szükség az ivóvíz speciációs vizsgálatára, mert az ICP-MS-technikával az oxoanion-képző elemek vizsgálata gyorsan és egyszerűen elvégezhető lenne. A jelenlegi eredmények azt mutatják, hogy továbbra is a speciációs vizsgálat a legmegbízhatóbb az As(V)/As(III) arány meghatározására.
7 Új tudományos eredmények

1. Élelmiszergyártó, -feldolgozó és (köz)étkeztetéssel foglalkozó cégektől gyűjtött 67 különböző élelmiszerek- és azok készítéséhez felhasznált vízminták összes As-tartalmanak hidridfejlesztéses atomabszorpciós spektrometriával és induktív csatolású plazma kvadrupol tömegspektrometriával végzett meghatározásával igazoltam, hogy lineáris korreláció mutatható ki a nagy víztartalmú élelmiszerek (pl. leves, főzelék, befőtt és üdítők) és az előállításukhoz felhasznált vizek As-konzentrációja között. A nagyobb szárazanyag-tartalmú élelmiszereknél ilyen jellegű korrelációt nem tudtam megállapítani.

2. Számításaim alapján a 3,0 µg/testtömeg kg/nap értékben megállapított dózis küszöbértéket, amely 0,5%-kal növeli meg a tüdőrák előfordulásának kockázatát (BMDL_{0.5}), az As-bevitelt két településen kizárólag az ivóvíz fogyasztásával, illetve másik három esetben az ivóvíz és az élelmiszer fogyasztásával együtt haladja meg. A legnagyobb napi As-bevitel, amelyet csak az ivóvíz fogyasztásával is el lehet érni, 3,5 µg/testtömeg kg/nap, míg az ivóvíz és élelmiszer fogyasztásával együtt a becsült elérhető maximális As-bevitel 3,8 µg/testtömeg kg/nap. Az öt település közül, amelyeken az As-bevitel meghaladta a BMDL_{0.5} értéket, három Csongrád megyében található, távolságuk egymástól kevesebb mint 55 km.

4. A közútakból vett ivóvízminták 5,5 – 163 µg/l As(V) és < 0,1 – 44,5 µg/l As(III) specieszt tartalmaztak. A minták közel kétharmadában az As(V)/As(III) arány nagyobb volt mint 1,5, illetve a minták közel 40 %-ában ez az arány túllépte a 7,3 értéket is.

5. A geokémiai környezet redoxi tulajdonságára információit adó o xoanion-képző elemek (Mo, Se, U, V, W) koncentrációja a rétegvizekkel ellentétben nem vagy csak korlátozottan alkalmazható az ivóvízek As-specieszek előfordulásának becslésére, de meghatározásuk jobban alátámasztja az As-specieszek eloszlására kapott eredmények megbízhatóságát, mint más, a helyszínen vizsgált paraméter, mint például a pH, a vezetőképesség és a redoxpotenciál.
8 Közlemények

Az értekezéshez kapcsolódó tudományos közlemények

 IF: 2,610

 IF: 3,583

 IF: -

Az értekezéshez kapcsolódó konferencián elhangzott szóbeli előadások

Az értekezéshez kapcsolódó konferencián bemutatott poszter előadások

Az értekezéshez nem kapcsolódó tudományos közlemények

Az értekezéshez nem kapcsolódó konferencia poszterek

9 Összefoglalás

A Nemzeti Élelmiszerlánc-biztonsági Hivatal jogelődjé a Mezőgazdasági Szakigazgatási Hivatal 2010-ben országos felmérés keretében 67 élelmiszermintának (italokat is beleértve) vizsgálta meg az As-tartalmát. Az élelmiszermintával egyidejűleg az élelmiszer feldolgozása során felhasznált vízből is történt mintavétel. Összesen 57 élelmiszer- és vendéglátóipari vállalkozásnál volt hatósági mintavétel. A vizsgált vállalkozások 75 %-a kis- és közepes vállalkozás (KKV), továbbá a KKV-k 40 %-a pedig mikrovállalkozás volt. A szilárd minták As-tartalmának meghatározása szárazhamvasztás után hidridfejlesztéses atomabszorpciós technikával, a nagy víztartalmú élelmiszerek és a vízminták vizsgálata pedig induktív csatolású plazma kvadrupol tömegspektrometriával (Q-ICP-MS) történt. A KKV-knál vett vízminták As-konzentrációja 74 %-ban haladta meg a 10 μg/l-es EU által az 98/83/EK direktívában írott határértéket. A nagy víztartalmú élelmiszer- és az élelmiszerfeldolgozások használt vízminták As-konzentrációja lineáris összefüggést mutatott.

Az eredményekből becsült ivóvízfogyasztással egybekötött napi As-bevitel, Magyarországon az étkezési szokásokat figyelembe véve közel 40 %-a a WHO/FAO által ajánlott 3,0 μg /testsúly kg /nap köszöbértéknek, ami felett 0,5 %-kal nö a tüdőrák kockázatát. Öt településen az As-bevitel meghaladta a BMDL₀,₅ értéket. Ezek közül három Csongrád megyében található, távolságuk egymástól kevesebb, mint 55 km. A maximális As-bevitel 3,8 μg / testsúly kg-ra becsülhető.

Huszonkét vízmintát gyűjtöttten közkutakból, három olyan magyarországi megyéből, ahol köztudottan nagy az ivóvíz természetes As-konzentrációja, valamint a vízforrások közeli üdülőövezetben As(III) és As(V) speciesek vizsgálatának a céljából. Annak érdekében, hogy a mintákban megadályozzam ezen As-speciesek egymásba való átalakulását, egyszerű ioncserés elválasztáson alapuló módszert alkalmaztak szilárd fázisú extrakciós anioncserélő patronokkal a nagyfelbontású induktív csatolású plazma tömegspektrometriás elemzéseket megelőzően.

Huszonhárom vízmintát gyűjtöttten közkutakból, három olyan magyarországi megyéből, ahol köztudottan nagy az ivóvíz természetes As-konzentrációja, valamint a vízforrások közeli üdülőövezetben As(III) és As(V) speciesek vizsgálatának a céljából. Annak érdekében, hogy a mintákban megadályozzam ezen As-speciesek egymásba való átalakulását, egyszerű ioncserés elválasztáson alapuló módszert alkalmaztak szilárd fázisú extrakciós anioncserélő patronokkal a nagyfelbontású induktív csatolású plazma tömegspektrometriás elemzéseket megelőzően.

Huszonkét ivóvízmintában nagyobb volt az összes As-konzentráció mint 10 μg/l. Az összes As-konzentráció a mintákban 7,2 és 210,3 μg/l tartományban mozgott. A vizsgált minták közel kétharmadában az As(V)/As(III) koncentrációarány nagyobb volt mint 1,5. A mintákban előforduló As-módosulatok speciációs elemzésével történő meghatározása ivóvízben még mindig megbízhatóbb, mint a geokémiai környezet oxidatív tulajdonságára és egyben As(V) jelenlétrére utaló o xoanion-képző elemek (pl. Mo, Se, U, V, W) koncentrációjának meghatározása.
10 Summary (Angol nyelvű összefoglaló)

As part of a survey conducted by the Central Agricultural Office of Hungary, 67 food samples including beverages were taken from 57 food industrial and catering companies, 75 % of them being small and medium-sized enterprises (SMEs). Moreover, 40 % of the SMEs were micro entities. Water used for food processing was simultaneously sampled. The As content of solid food stuff was determined by hydride generation atomic absorption spectrometry after dry ashing. Food stuff with high water content and water samples were analyzed by inductively coupled plasma quadrupole mass spectrometry (Q-ICP-MS). The As concentration exceeded the 10 μg/L health limit value established by the 83/1998 EC directive for drinking water in 74 % of the water samples taken from SMEs. The As concentration of food samples with high water content and water used for their production correlated linearly.

The estimated As intake from combined exposure to drinking water and food of the population was on average 40 % of the daily benchmark dose limit value of 3 μg/kg body weight/day recommended by WHO/FAO that increases the incidence of lung cancer by 0.5 % (BMDL_{0.5}) for As. Five settlements had higher As intake than the BMDL_{0.5}. Three of these settlements are situated in Csongrád county and the distance between them is less than 55 km. The maximum As intake might be 3.8 μg/kg body weight/day.

Twenty-three water samples were collected from public wells from three different counties as well as the resort area close to the capital city, having historically high natural As occurrence in Hungary, for speciation analysis of As(V) and As(III). In order to prevent interconversion of As species in the samples, a simple field separation method was applied by using solid phase extraction cartridges filled with an anion exchange material prior to the high resolution inductively coupled plasma mass spectrometer analysis. Total As level in the samples was confirmed to be higher than 10 μg/L health limit of 83/1998 EC directive for drinking water in 22 samples. Thus, the total As concentration of the samples ranged between 7.2 and 210.3 μg/L. Two thirds of the samples contained As(V) in more than 60 %. As speciation is still more reliable for the determination of the chemical form of As in drinking water than the determination of the concentration of oxyanion-forming elements (i.e., Mo, Se, U, V and W) as indicators of the oxidative character of the geochemical environment and hence, occurrence of As(V) in water.
11 Mellékletek
11.1 Rövidítések jegyzéke

AAS Atomabszorpciós spektrometria
AB Arzeno-betain
AC Arzeno-kolin
ANTSZ Állami Népegészségügyi és Tisztorvosi Szolgálat
As(III) Arzenit (AsO$_3^3$)
As(V) Arzenát (AsO$_4^3$)
BMDL$_{0.5}$ Benchmark dose limit. A WHO által megállapított küszöbérték, amely 0,5%-kal növeli meg a tüdőrák előfordulásának kockázatát
DMA(III) Dimetil-arzinessav
DMA(V) Dimetil-arzinsav
DRC Dinamikus reakciócella vagy ütközési cella
EFSA European Food Safety Agency, Európai Élelmiszerbiztonsági Hatóság
FAAS Lángatomabszorpciós spektrometria
FAO Food and Agricultural Organization, Élemezésügyi és Mezőgazdasági Világszervezet
GSH Redukált glutation
HG-AAS Hidridfejlesztéses atomabszorpciós spektrometria
HR-ICP-MS Nagy felbontású induktív csatolású plazma tömegspektrométer
iAs Szervetlen arzénvegyületek
ICP-MS Induktív csatolású plazma tömegspektrometria
KKV Kis- és középvállalkozás (10 – 205 alkalmazott)7
LD$_{50}$ Median Lethal Dose. Az LD$_{50}$-érték megadja, hogy a vizsgált vegyületből mekkora mennyiség okozza a kísérleti állatok 50 %-ának pusztulását 24 órán belül.
LOD Kimutatási határ
LOQ Meghatározási határ
MGHZIK Mezőgazdasági Szakigazgatási Hivatal központ
MMA(III) Monometil-arzonossav
MMA(V) Monometil-arzonsav

7 a 2003/36/EC ajánlása szerint
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV</td>
<td>Mikrovállalkozás (< 10 alkalmazott)</td>
</tr>
<tr>
<td>NÉBIH</td>
<td>Nemzeti Élelmiszerbiztonsági Igazgatóság</td>
</tr>
<tr>
<td>NV</td>
<td>Nagyvállalat (> 250 alkalmazott)</td>
</tr>
<tr>
<td>OPLC</td>
<td>Túlnyomásos vékonyréteg-kromatográfia</td>
</tr>
<tr>
<td>Q-ICP-MS</td>
<td>Induktív csatolású plazma kvadrupol tömegspektrométer</td>
</tr>
<tr>
<td>RSD</td>
<td>Relatív szórás</td>
</tr>
<tr>
<td>SPE</td>
<td>Szilárd fázisú extrakció</td>
</tr>
<tr>
<td>TMA</td>
<td>Tetrametil-arzoniumion</td>
</tr>
<tr>
<td>VRK</td>
<td>Vékonyréteg kromatográfia</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation, Egészségügyi Világszervezet</td>
</tr>
</tbody>
</table>
| XRF | Röntgen fluorescenciat
11.2 Hazai élelmiszerek és az előállításukhoz felhasznált víz vizsgálatához tartozó minták

M1. táblázat: A minták csoportosítása fajtájuk és származási helyük szerint

<table>
<thead>
<tr>
<th>Minta</th>
<th>Vízminta típusa</th>
<th>Vállalkozás típusa</th>
<th>Származási hely (megye)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sütőipari termékek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Félbarna kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>Fehér kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Békés</td>
</tr>
<tr>
<td>Búzakenyer</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Borsod-Abaúj-Zemplén</td>
</tr>
<tr>
<td>Fehér kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Csongrád</td>
</tr>
<tr>
<td>Házi jellegű kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>Fehér kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Heves</td>
</tr>
<tr>
<td>Házi jellegű kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Jász-Nagykun-Szolnok</td>
</tr>
<tr>
<td>Fehér kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Pest</td>
</tr>
<tr>
<td>Fehér kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Pest</td>
</tr>
<tr>
<td>Fehér kenyer</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>Kifli</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Pest</td>
</tr>
<tr>
<td>Zsömle</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Pest</td>
</tr>
<tr>
<td>Tej és tejtermékek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Félzsíros tehéntúró</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>Mozzarella sajt</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Békés</td>
</tr>
<tr>
<td>Félzsíros tehéntúró</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>Körösi krém sós lében</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Pest</td>
</tr>
<tr>
<td>Tejföl</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>Nyers tej</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Csongrád</td>
</tr>
<tr>
<td>Nyers tej</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Csongrád</td>
</tr>
<tr>
<td>Nyers tej</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>Nyers tej</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Heves</td>
</tr>
<tr>
<td>Pasztőröztött tej</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Jász-Nagykun-Szolnok</td>
</tr>
<tr>
<td>Pasztőröztött tej</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Pest</td>
</tr>
<tr>
<td>Nyers tej</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Vas</td>
</tr>
<tr>
<td>Reggeli tejital</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>Tojás és húskészítmények</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyúktojás</td>
<td>Itatóvíz</td>
<td>KKV</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>Tyúktojás</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Csongrád</td>
</tr>
<tr>
<td>Minta</td>
<td>Vízminta típusa</td>
<td>Vállalkozás típusa</td>
<td>Származási hely (megye)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Tyúktojás</td>
<td>Kütvíz</td>
<td>KKV</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>Tyúktojás</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Jász-Nagykun-Szolnok</td>
</tr>
<tr>
<td>Tyúktojás</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>Pizza sonka</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Békés</td>
</tr>
<tr>
<td>Juhebels virsli</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Borsod-Abaúj-Zemplén</td>
</tr>
<tr>
<td>Pácolt karaj</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Csongrád</td>
</tr>
<tr>
<td>Sertés párizsi</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>Füstölt comb</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Vas</td>
</tr>
</tbody>
</table>

Bébiétel

<table>
<thead>
<tr>
<th>Minta</th>
<th>Vízminta típusa</th>
<th>Vállalkozás típusa</th>
<th>Származási hely (megye)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zöldborsófűzelék csirkehússal</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>Sárgarépa fűzelék csirkehússal</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Bács-Kiskun</td>
</tr>
</tbody>
</table>

Készételek

<table>
<thead>
<tr>
<th>Minta</th>
<th>Vízminta típusa</th>
<th>Vállalkozás típusa</th>
<th>Származási hely (megye)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zöldséglevés</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Baranya</td>
</tr>
<tr>
<td>Húsleves</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Békés</td>
</tr>
<tr>
<td>Karfiolleves</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Borsod-Abaúj-Zemplén</td>
</tr>
<tr>
<td>Piritott tésztaleves</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Csongrád</td>
</tr>
<tr>
<td>Zöldbableves</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Fejér</td>
</tr>
<tr>
<td>Meggyleves</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>Paradicsomos káposzta</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Pest</td>
</tr>
<tr>
<td>Karalábéleves</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Pest</td>
</tr>
<tr>
<td>Bableves</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>Karfiolleves</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Vas</td>
</tr>
</tbody>
</table>

Kompótok és savanyúságok

<table>
<thead>
<tr>
<th>Minta</th>
<th>Vízminta típusa</th>
<th>Vállalkozás típusa</th>
<th>Származási hely (megye)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apró csemegeuborka (<5 cm)</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>Ecetes cékla</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Békés</td>
</tr>
<tr>
<td>Magozott meggybefőtt</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Csongrád</td>
</tr>
<tr>
<td>Csemegeuborka (5-8 cm)</td>
<td>Kütvíz</td>
<td>KKV</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>Meggybefőtt (nem magozott)</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Heves</td>
</tr>
<tr>
<td>Savanyú káposzta (vágott)</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Jász-Nagykun-Szolnok</td>
</tr>
<tr>
<td>Magozott meggybefőtt</td>
<td>Vezetékes ivóvíz</td>
<td>Nagyvállalat</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>Cseresznyebeefőtt</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
</tbody>
</table>

Alkoholos és alkoholmentes italok

<table>
<thead>
<tr>
<th>Minta</th>
<th>Vízminta típusa</th>
<th>Vállalkozás típusa</th>
<th>Származási hely (megye)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilseni típusú világos sör</td>
<td>Kütvíz</td>
<td>KKV</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>Minta</td>
<td>Vízminta típus</td>
<td>Vállalkozás típusa</td>
<td>Származási hely (megye)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Vilmoskörte ízű szénsavas üdítő</td>
<td>Kútvíz</td>
<td>Mikrovállalkozás</td>
<td>Bács-Kiskun</td>
</tr>
<tr>
<td>Világos sör</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Békés</td>
</tr>
<tr>
<td>Szikvíz</td>
<td>Vezetékes ivóvíz</td>
<td>Mikrovállalkozás</td>
<td>Békés</td>
</tr>
<tr>
<td>Szikvíz</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Békés</td>
</tr>
<tr>
<td>Szikvíz</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Borsod-Abaúj-Zemplén</td>
</tr>
<tr>
<td>Szikvíz</td>
<td>Kútvíz</td>
<td>KKV</td>
<td>Csongrád</td>
</tr>
<tr>
<td>Narancs ízű szénsavas üdítő</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Hajdú-Bihar</td>
</tr>
<tr>
<td>Világos sör</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Jász-Nagy kun-Szolnok</td>
</tr>
<tr>
<td>Cola ízű szénsavas üdítő</td>
<td>Vezetékes ivóvíz</td>
<td>KKV</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
<tr>
<td>Szikvíz</td>
<td>nincs adat</td>
<td>KKV</td>
<td>Szabolcs-Szatmár-Bereg</td>
</tr>
</tbody>
</table>

Egyebek

<table>
<thead>
<tr>
<th>Maláta</th>
<th>Kútvíz</th>
<th>KKV</th>
<th>Bács-Kiskun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Víz</td>
<td>Kútvíz</td>
<td>KKV</td>
<td>Heves</td>
</tr>
</tbody>
</table>

Rövidítés: KKV: kis- és középvállalkozás
11.3 A vizsgált kutak helykoordinátái

M2. táblázat: A vizsgált kutak helykoordinátái és a mintavétel helyszínei

<table>
<thead>
<tr>
<th>Minta azonosító</th>
<th>Koordináták</th>
<th>Település</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Szélességi</td>
<td>Hosszúsági</td>
</tr>
<tr>
<td>Bács-Kiskun megye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N46° 34' 41.65"</td>
<td>E19° 24' 04.68"</td>
</tr>
<tr>
<td>2</td>
<td>N46° 42' 42.98"</td>
<td>E19° 16' 11.06"</td>
</tr>
<tr>
<td>Békés megye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N46° 30' 12.62"</td>
<td>E21° 05' 36.09"</td>
</tr>
<tr>
<td>4</td>
<td>N46° 35' 46.75"</td>
<td>E21° 00' 48.58"</td>
</tr>
<tr>
<td>5</td>
<td>N46° 37' 48.85"</td>
<td>E20° 50' 02.46"</td>
</tr>
<tr>
<td>6</td>
<td>N46° 38' 59.24"</td>
<td>E21° 17' 16.56"</td>
</tr>
<tr>
<td>7</td>
<td>N46° 45' 36.69"</td>
<td>E20° 47' 27.15"</td>
</tr>
<tr>
<td>8</td>
<td>N46° 47' 38.20"</td>
<td>E20° 42' 59.23"</td>
</tr>
<tr>
<td>9</td>
<td>N46° 48' 42.56"</td>
<td>E20° 50' 45.67"</td>
</tr>
<tr>
<td>10</td>
<td>N47° 09' 16.60"</td>
<td>E21° 03' 39.48"</td>
</tr>
<tr>
<td>11</td>
<td>N47° 12' 42.39"</td>
<td>E20° 59' 06.40"</td>
</tr>
<tr>
<td>Csongrád megye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>N46° 11' 14.76"</td>
<td>E20° 26' 19.33"</td>
</tr>
<tr>
<td>13</td>
<td>N46° 13' 08.18"</td>
<td>E20° 28' 49.96"</td>
</tr>
<tr>
<td>14</td>
<td>N46° 16' 17.41"</td>
<td>E20° 20' 59.35"</td>
</tr>
<tr>
<td>15</td>
<td>N46° 17' 42.75"</td>
<td>E20° 26' 12.02"</td>
</tr>
<tr>
<td>16</td>
<td>N46° 27' 10.34"</td>
<td>E20° 27' 09.33"</td>
</tr>
<tr>
<td>17</td>
<td>N46° 34' 31.91"</td>
<td>E20° 26' 33.66"</td>
</tr>
<tr>
<td>18</td>
<td>N46° 36' 56.78"</td>
<td>E20° 33' 00.05"</td>
</tr>
<tr>
<td>19</td>
<td>N46° 40' 42.95"</td>
<td>E20° 27' 35.68"</td>
</tr>
<tr>
<td>20</td>
<td>N46° 42' 33.20"</td>
<td>E20° 33' 38.22"</td>
</tr>
<tr>
<td>Pest megye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>N47° 11' 11.69"</td>
<td>E18° 57' 28.64"</td>
</tr>
<tr>
<td>22</td>
<td>N47° 16' 37.53"</td>
<td>E19° 03' 56.89"</td>
</tr>
<tr>
<td>23</td>
<td>N47° 24' 04.68"</td>
<td>E19° 04' 00.01"</td>
</tr>
</tbody>
</table>
11.4 A vízmintavétel során használt terepi eszközök

M1. ábra: Közkútból történő mintavétel illusztrálása

M2. ábra: DOWEX® 1-X8 anioncserélő gyantával töltött elválasztó oszlop

M3. ábra: Hordozható WTW Multi 350i típusú vízelemző készülék
11.5 Az MGSZHK IMEP 107 nemzetközi körvizsgálatban való részvételének az eredménye

Az összes és a szervetlen As meghatározása rizsben

Az MGSZH, mint európai uniósi referencialabor, az ICP-MS-vizsgálattal részt vett 2010-ben a JRC IRMM által szervezett IMEP-107-es körvizsgálatában, amelyben az összes As-konzentráció meghatározása mellett már külön szerepelt a szervetlen As-tartalomé is. A fenti módszert alkalmazva, az összes As-konzentrációból levonva a HPLC-ICP-MS csatolással külön meghatározott szerves As-komponensek összegét, adtam meg az eredményt (0,138 ± 0,044 mg/kg; z-érték=2,0) [145].

A körvizsgálat keretében összesen 32 résztvevő laboratórium küldte be az eredményeit, 27 országból. A minta összes As-tartalmára vonatkozó referenciaértéke 0,172 ± 0,018 mg/kg volt. A statisztikai kiértékeléskor alkalmazott összefüggésben a z-score és a ζ-score értékét a következőképpen számították:

\[
z = \frac{x_{lab} - X_{ref}}{\sigma} \quad (M.1)
\]

\[
ζ = \frac{x_{lab} - X_{ref}}{\sqrt{u_{ref}^2 - u_{lab}^2}} \quad (M.2)
\]

ahol \(x_{lab}\) a laboratórium által beküldött érték, az \(X_{ref}\) a referencia minta As-tartalma, az \(u_{lab}\), ill. \(u_{ref}\) a megadott értékek bizonytalansága, a \(σ\) pedig a szórás. Az eredmény akkor megfelelő, ha \(|z| ≤ 2\), megkérdőjelezhető, ha \(2 < |z| ≤ 3\) és nem megfelelő, ha \(|z| > 3\), ugyanígy a ζ-score esetében is: \(|ζ| ≤ 2\) megfelelő, megkérdőjelezhető, ha \(2 < |ζ| ≤ 3\) és nem megfelelő, ha \(|ζ| > 3\).

A körvizsgálatban az ICP-MS-technikával kapott eredményeim \(x_{lab} = 0,168 ± 0,008\) mg × kg⁻¹, és a hozzá tartozó z-érték -0,2 illetve a ζ-érték -0,4.
11.6 A vizsgált élelmiszerek és az előállításukhoz felhasznált víz As-tartalma

M3. táblázat: A vizsgált élelmiszerek és az előállításukhoz felhasznált víz átlagos As-tartalma élelmiszerfajták szerint

<table>
<thead>
<tr>
<th>Élelmiszer-csoport</th>
<th>Mért átlagos As-tartalom</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Víz (µg/l)</td>
<td>Élelmiszer (µg/kg)</td>
</tr>
<tr>
<td>Bébiétel</td>
<td>1,00</td>
<td>26,50</td>
</tr>
<tr>
<td>Húskészítmények</td>
<td>29,81</td>
<td>7,60</td>
</tr>
<tr>
<td>Készételek</td>
<td>11,67</td>
<td>11,45</td>
</tr>
<tr>
<td>Konzervipari termék</td>
<td>16,66</td>
<td>11,13</td>
</tr>
<tr>
<td>Pékáru</td>
<td>17,72</td>
<td>15,60</td>
</tr>
<tr>
<td>Sőr</td>
<td>17,67</td>
<td>15,09</td>
</tr>
<tr>
<td>Tejtermékek</td>
<td>15,15</td>
<td>8,00</td>
</tr>
<tr>
<td>Tojás</td>
<td>42,32</td>
<td>4,60</td>
</tr>
<tr>
<td>Üdítők</td>
<td>14,61</td>
<td>12,59</td>
</tr>
</tbody>
</table>

Rövidítések: SD = szórás

M4. táblázat: A vizsgált élelmiszerek és az előállításukhoz felhasznált víz As-konzentráció-jának minimum, maximum és medián értékei élelmiszerfajták szerint

<table>
<thead>
<tr>
<th>Élelmiszer-csoport</th>
<th>Medián</th>
<th>Minimum érték</th>
<th>Maximum érték</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Víz (µg/l)</td>
<td>Élelmiszer (µg/kg)</td>
<td>Víz (µg/l)</td>
<td>Élelmiszer (µg/kg)</td>
</tr>
<tr>
<td>Bébiétel</td>
<td>1,00</td>
<td>26,50</td>
<td>1,00</td>
<td>25,00</td>
</tr>
<tr>
<td>Húskészítmények</td>
<td>18,92</td>
<td>10,00</td>
<td>5,48</td>
<td>2,00</td>
</tr>
<tr>
<td>Készételek</td>
<td>13,02</td>
<td>11,00</td>
<td>< 1,0</td>
<td>2,00</td>
</tr>
<tr>
<td>Tartósítóipari termék</td>
<td>14,35</td>
<td>9,50</td>
<td>0,50</td>
<td>2,00</td>
</tr>
<tr>
<td>Pékáru</td>
<td>14,32</td>
<td>17,00</td>
<td>1,48</td>
<td>7,00</td>
</tr>
<tr>
<td>Sőr</td>
<td>14,30</td>
<td>15,00</td>
<td>9,01</td>
<td>8,26</td>
</tr>
<tr>
<td>Tejtermékek</td>
<td>14,01</td>
<td>4,00</td>
<td>5,44</td>
<td>< 1,8</td>
</tr>
<tr>
<td>Tojás</td>
<td>44,00</td>
<td>2,00</td>
<td>8,82</td>
<td>< 1,0</td>
</tr>
<tr>
<td>Üdítők</td>
<td>12,90</td>
<td>13,00</td>
<td>9,85</td>
<td>8,76</td>
</tr>
</tbody>
</table>
11.7 A vizsgált ivóvízminták As(III) és As(V) koncentrációinak megoszlása a környezeti paraméterek függvényében

M5. ábra: A vizsgált ivóvízmintákban az As(III) és As(V) százalékos megoszlása a pH függvényében

M6. ábra: A vizsgált ivóvízmintákban az As(III) és As(V) százalékos megoszlása a hőmérséklet függvényében
M7. ábra: A vizsgált ivóvízmintákban az As(III) és As(V) százalékos megoszlása a vezetőképesség függvényében

M8. ábra: A vizsgált ivóvízmintákban az As(III) és As(V) százalékos megoszlása a redoxpotenciál függvényében
11.8 Egyes élelmiszerfajták As-ra vonatkozó határértékei a 17/1999 EüM rendelete szerint

Minden megállapított maximális As-tartalom az adott élelmiszer ehető részére, illetve fogyasztásra kész állapotára vonatkozik.

M5. táblázat: Az élelmiszerek maximális As-tartalma a 17/1999 EüM rendelete szerint [102]

<table>
<thead>
<tr>
<th>Élelmiszercsoport, élelmiszerfajta</th>
<th>As-tartalom teljes tömegre számolva [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sajt</td>
<td>0,3</td>
</tr>
<tr>
<td>Túrót</td>
<td>0,3</td>
</tr>
<tr>
<td>Tejszín, tejföl</td>
<td>0,1</td>
</tr>
<tr>
<td>Vaj</td>
<td>0,1</td>
</tr>
<tr>
<td>Húskészítmények</td>
<td>0,2</td>
</tr>
<tr>
<td>Tartósított húskészítmények fémdobozos csomagolásban (a májkréme kivételével)</td>
<td>0,2</td>
</tr>
<tr>
<td>Májkréme fémdobozos vagy tubusos csomagolásban</td>
<td>0,2</td>
</tr>
<tr>
<td>Vadhús és készítményei</td>
<td>1,0</td>
</tr>
<tr>
<td>Állati zsiradék, szalonna</td>
<td>0,1</td>
</tr>
<tr>
<td>Liszt, egyéb gabonaőrlemények (a korpát kivéve)</td>
<td>0,1</td>
</tr>
<tr>
<td>Rizs</td>
<td>0,3</td>
</tr>
<tr>
<td>Étkezési korpa (búza, árpa, rozs, zab)</td>
<td>0,1</td>
</tr>
<tr>
<td>Száraz hüvelyesek</td>
<td>0,5</td>
</tr>
<tr>
<td>Friss és fogyasztott gyümölcs</td>
<td>0,2</td>
</tr>
<tr>
<td>Szárított gyümölcs</td>
<td>2,0</td>
</tr>
<tr>
<td>Étkezési zselatin, pektin</td>
<td>0,5</td>
</tr>
<tr>
<td>Szárított zöldség</td>
<td>2,0</td>
</tr>
<tr>
<td>Tartósított zöldség- és gyümölcskészítmények fémdobozos csomagolásban</td>
<td>0,2</td>
</tr>
<tr>
<td>Tartósított zöldség- és gyümölcskészítmények üvegben</td>
<td>0,2</td>
</tr>
<tr>
<td>Paradicsompüré</td>
<td>0,2</td>
</tr>
<tr>
<td>Termesztett friss gomba, gombakészítmények</td>
<td>0,5</td>
</tr>
<tr>
<td>Napraforgó mag, hántolt (nyers v. pirított)</td>
<td>0,2</td>
</tr>
<tr>
<td>Tojás</td>
<td>0,1</td>
</tr>
<tr>
<td>Tojáspor</td>
<td>0,5</td>
</tr>
<tr>
<td>Cukor (kristály, kocka, por)</td>
<td>0,1</td>
</tr>
<tr>
<td>Cukorka</td>
<td>0,1</td>
</tr>
<tr>
<td>Kakaópor</td>
<td>0,5</td>
</tr>
<tr>
<td>Csokoládé és csokoládékészítmények</td>
<td>0,5</td>
</tr>
<tr>
<td>Élelmiszerkategória</td>
<td>As-tartalom teljes tömegre számolva [mg/kg]</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Növényi zsiradék (étolaj, margarin)</td>
<td>0,05</td>
</tr>
<tr>
<td>Étkezési só</td>
<td>1,0</td>
</tr>
<tr>
<td>Fűszerek (a fűszerpaprika kivételével)</td>
<td>1,0</td>
</tr>
<tr>
<td>Fűszerpaprika</td>
<td>1,0</td>
</tr>
<tr>
<td>Étrend-kiegészítők</td>
<td>-</td>
</tr>
<tr>
<td>Zöldség- és gyümölcs alapú bébiétel-készítmények</td>
<td>0,1</td>
</tr>
<tr>
<td>Szórdavíz, szikvíz</td>
<td>0,05</td>
</tr>
<tr>
<td>Alkoholmentes üdítőitalok</td>
<td>0,1</td>
</tr>
<tr>
<td>Gyümölcs és zöldség ivólevél</td>
<td>0,1</td>
</tr>
<tr>
<td>Bor, sör és egyéb szeszes italok</td>
<td>0,1</td>
</tr>
</tbody>
</table>
11.9 A tüdőrák előfordulása az Európai Unió 27 tagállamában (2008)

M9. ábra: A tüdőrák előfordulása az EU 27 tagállamában (2008), 100000 főre vonatkoztatva [146]
12 Irodalomjegyzék

9. Papp, G., Ásványok (Budapest: Magyar Könyvklub, 1992)

36. Sörös, Cs., Mérési eljárás kidolgozása és alkalmazása környezeti minták arzénspeciációs elemzésére, Doktori értekezés (Budapesti Corvinus Egyetem, Alkalmazott Kémia Tanszék, 2006)
40. Polya, D.; Mondal, D.; Giri A., Quantification of deaths and DALYs arising from chronic exposure to arsenic in groundwaters utilized for drinking, cooking and irrigation of food crops - Handbook of Disease Burdens and Quality of Life Measures (New York, USA: Springer-Verlag, 2009)

44. Air Resources Board and the Department of Health Services, Proposed Identification of Inorganic Arsenic as a Toxic Air Contaminant (Staff report) (California: 1990) http://oehha.ca.gov/air/toxic_contaminants/pdf1/inorganic%20arsenic.pdf (letöltés dátuma: 2013. február 8.)

47. European Food Safety Agency, Opinion of the scientific panel on contaminants in food chain on a request from the comission replated to arsenic as undesirable substance in animal feed, *EFSA J.*, 180 (2005) 1 – 35.

73. Tóth, Gy.; Egerer, F.; Namesánszky, K., Magyarország Vízgeokémiai Atlasza (Budapest: MÁFI, 1985)

111. Lengyel, B., Általános és szervetlen kémiai praktikum (Budapest: Tankönyvkiadó, 1990)

120. Mihucz, V.G., Habilitációs Pályázat, ELTE TTK, Kémiai Intézet (2014)

143. Bellovits, K., Az ivóvíz arzéntartalmának szerepe a rákos megbetegedések kialakulásában - BSc-szakdolgozat (Budapest: ELTE, TTK, Környezettudományi Centrum, 2014)

145. JRC-IRMM. IMEP-107: Total and inorganic As in rice. Report of the seventh interlaboratory comparison organised by European Union-Reference Laboratory for Heavy Metals in Feed and Food. (Geel, Belgium: JRC-IRMM, 2010)

Köszönetnyilvánítás

Elsősorban köszönetemet fejezem ki témavezetőmnek, Dr. Záray Gyula professzor úrnak a szakmai támogatásért, amelyre munkám során mindig számíthattam.

Külön köszönettel tartozom konzulensemnek, Dr. Mihucz Viktor Gábor adjunktusnak, akinek szervezőmunkája és szakmai útmutatása révén hatékonyan és kiválóan együttműködve tudtam dolgozni.

Öszinte köszönettel tartozom mindazoknak, akik a kutatómunkában részt vettek vagy abban segítséget nyújtottak: Dr. Bartha Andrásnak és Dr. Bertalan Évának az As-speciációs vizsgálatokban adott ötletekért; az MGSZHK-ban dolgozó korábbi munkatársaimnak a HG-AAS vizsgálatokban nyújtott segítségükért; Dr. Tatár Enikőnek a szakmai tanácsaiért és Virág Istvánnak a HR-ICP-MS működtetésében nyújtott segítségéért.

Köszönöm Dr. Sass Barnabásnak, az Országos Élelmiszervizsgáló Intézet korábbi igazgatójának, a belém vetett bizalmát és azt, hogy lehetővé tette, hogy elkezdjem PhD-tanulmányaimat az intézetben.

Köszönettel tartozom Dr. Szarka Lászlónak, az MTA Titkárság Kutatóintézeti Főosztálya vezetőjének, hogy biztosította számomra a disszertációra való felkészüléshez és annak megírásához szükséges időt.

Hálával tartozom családomnak és barátaimnak a türelmükért, a sok biztató, bátorító szóért, valamint hogy a munkámhoz biztos háttert teremtettek, és külön kislányomnak, Szonjának, aki türelemmel viselte távolételeimet.
ADATLAP
a doktori értekezés nyilvánosságra hozatalahoz

I. A doktori értekezés adatai
A szerző neve: Sugár Éva
MTMT-azonosító: 10032920
A doktori értekezés címe és alcíme:
Hazard felméréserek és az előállításukhoz felhasznált víz arzéntartalmának vizsgálata
DOI-azonosító: 10.15476/ELTE.2015.015
A doktori iskola neve: Kémia Doktori Iskola
A doktori iskolán belüli doktori program neve: Analitikai, kolloid- és környezetkémia, elektrokémia program
A témavezető neve és tudományos fokozata: Dr. Zárány Gyula, DSc
A témavezető munkahelye: Eötvös Loránd Tudományegyetem

II. Nyilatkozatok
A doktori értekezés szerzőjeként:
1. hozzájárulok, hogy a doktori fókózat megjelenését követően a doktori értekezés és a tézisek nyilvánosságára kerüljön az ELTE Digitális Intézményi Tudatában. Felhatalmazom a Természettudományi Kar Tudományoszervezési és Egyetemi közé Kapszolatók Összámának ügyvédjét Bőrő Évát, hogy az értekezést és a téziseket feltöltse az ELTE Digitális Intézményi Tudatában, és ennek során kötöse a feltételhez szükséges nyilatkozatokat.
2. kérem, hogy a mellékelt kérelemben részletezett szabadalmi, illetőleg oltalmi bejelentés közvetítésében a doktori értekezést ne bocsássák nyilvánosságra az Egyetemi Könyvtárból és az ELTE Digitális Intézményi Tudatában;
3. kérem, hogy a nemzetbiztonsági okból minősített adatot tartalmazó doktori értekezést a minősítés (ditium)-ig tartó időtartama alatt ne bocsássák nyilvánosságra az Egyetemi Könyvtárból és az ELTE Digitális Intézményi Tudatában;
4. kérem, hogy a mű kiadására vonatkozó mellékelt kiadó szerződésre tekintettel a doktori értekezést a könyv megjelenéséig ne bocsássák nyilvánosságra az Egyetemi Könyvtárból, és az ELTE Digitális Intézményi Tudatában csak a könyv bibliográfiai adatait teggék közé. Ha a könyv a főkajtszerzést követően egy évig nem jelenik meg, hozzájárulok, hogy a doktori értekezés és a tézisek nyilvánosságra kerüljön az Egyetemi Könyvtárból és az ELTE Digitális Intézményi Tudatában.

2. A doktori értekezés szerzőjeként kijelentem, hogy
a) az ELTE Digitális Intézményi Tudatába feltöltendő doktori értekezés és a tézisek saját eredeti, önálló szerelemi munkám és legjobb tudomásom szerint nem sértem vele senki szerzői jogait;
b) a doktori értekezés és a tézisek nyomtatott változatai és az elektronikus adathordozón benyújtott tartalmak (szöveg és ábrák) minősében megegyeznek.
3. A doktori értekezés szerzőjeként hozzájárulok a doktori értekezés és a tézisek szövegének plágiumkereső adatházisba helyezéséhez és plágiumellenőrző vizsgálatok lefuttatásához.

Sugár Éva

a doktori értekezés szerzőjének aláírása

38 Beiktatta az Egyetemi Doktori Stagibázis módosításáról szóló CXXXIX/2014. (VI. 30.) Szen. sz. határozat.
39 A kari hivatal ügyintézője lett ki.
40 A megfelelő szöveg átadásának.
41 A doktori értekezés benyújtásával egyidejűleg be kell adni a tudományos doktori tanácsokhoz szabadalmi, illetőleg oltalmi bejelentést tanúsító okiratot és a nyilvánosságra hozatal elhárítása iránti kérelmet.
42 A doktori értekezés benyújtásával egyidejűleg be kell nyújtani a minősített adatra vonatkozó közönséget.
43 A doktori értekezés benyújtásával egyidejűleg be kell nyújtani a mű kiadására szóló kívüli szerzői jogát.