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Abstract: The online routing game model can be used to measure and prove the 
benefits of online real time data in road traffic navigation systems. A few properties 
of the routing strategies are already proved. In this paper we point out that there 
are some paradoxes like phenomena behind these proofs, similarly as in the Braess 
network. 
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1. Introduction 

Road traffic navigation is an application area of the classical routing problem which 
is modelled with the help of routing games in algorithmic game theory. Algorithmic 
game theory studies networks with source routing (Section 18 in [1]), in which the 
end users simultaneously choose a full route to their destination and the traffic is 
routed in a congestion sensitive manner. In the routing game approach every 
participant knows the congestion characteristics of the road network and the 
participants make their optimal routing decision based on this static information. It 
is well known that individually self-optimizing travel routes do not necessarily 
result in optimal traffic (optimal for any global parameter) and each participant may 
have a longer travel time than with central planning. This is known as the “price of 
anarchy” which was explored by 2012 Gödel prize winners Roughgarden and 
Tardos. In their paper [2] they investigated the old conundrum in transportation 
science, known as the “Braess’s paradox” [11]. The algorithmic game theory 
investigations revealed important properties of the routing games, however the 
algorithmic game theory approach includes assumptions which do not handle the 
dynamic online information environment of the current navigation devices. The 
navigation devices in modern cars can get up-to-date information of the current 
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status of the traffic, like the current travel time on each road, indicating the current 
situation of the traffic that needs to be adapted to. In this paper we are discussing 
the routing game problem in such online environment and are going to point out 
some novel forms of the paradox phenomena of the online routing game problem.  

The online routing game problem is basically autonomous and self-adapting 
navigation which we are going to expound in the next two paragraphs. 

If all the information about the road network, the cars on the roads and the 
destination of the cars could be collected by a centralized system, then it would be 
able to create an optimal plan for the trips of the cars. Optimality may be measured 
in several ways, but usually we assume that the goal is to optimize a ”global” 
parameter of the traffic, like the sum of the travel times. We also assume that the 
purpose is to assure some kind of fairness for all the traffic participants, for example 
none of the cars pays some extra-long travel time to achieve the global optimum of 
the whole traffic. Everyday traffic is not coordinated by a centralized system and 
even if the traffic was coordinated by such a centralized system, there would come 
the question whether the individual traffic participants would conform to its 
instructions. In reality the traffic participants make their own autonomous decisions 
based on their intentions and the information available locally for them. This means 
that instead of centralized decision making, we have a set of autonomous distributed 
decision makers. In this aspect autonomy refers to the autonomous route planning 
by the navigation devices in the individual cars instead of following the instructions 
of a centralized planner. 

Another aspect of the autonomous behaviour of the online navigation systems 
is related to the ability of the traffic as a whole to self-adapt to the current situation. 
The current wave of the progress of information technology is marked by the 
widespread availability of the online real time data. The routing algorithms 
implemented in the navigation devices must be able to utilize this real time data to 
self-heal the global traffic, for example if a road becomes congested then the 
navigation devices autonomously tell the individual cars how to adapt to the current 
traffic situation and send the cars to less congested roads. Note that here we focus 
on online-data-based self-adaptation which is different from the self-adaptation 
based on previous experiences, like in the case of a route selection from home to 
work based on the experience of the previous day. 

This paper has five main sections. In Section 2 we shortly describe the online 
game theory model which is able to model self-adaptation to real time information. 
In Section 3 we discuss some properties of the class of simple naive online routing 
games, which model the currently available commercial online-data-based 
navigation systems. In Section 4 we discuss the properties of the class of simple 
naive intention propagation online routing games, which model the prediction 
utilizing anticipatory vehicle routing systems proposed by researchers with the 
purpose to improve the currently available commercial online-data-based 
navigation systems. In Section 5 we point out two paradox phenomena in these 
online routing games. Finally, in Section 6 we summarize the main messages and 
implications of this paper. The interesting findings of this paper are based on the 
formal proofs in papers [13] and [14]. 
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2. Online routing games 

The online-data-based self-adapting routing problem is a challenging application, 
because in this problem the autonomous agents have access to real time data, and 
based on this information they autonomously try to self-organize themselves by 
creating adapted plans to achieve their individual goals in an environment where 
they jointly utilize the resources that become more costly since more agents use 
them. In this problem the agents are dynamically arriving and departing after 
completing their plans. The plans are created by exploiting the online data that 
describe the current status and the current cost of the resources. There is uncertainty 
about the feasible decision of an agent, because the cost of the resources will 
change by the time the agent starts to use them: the departing agents will release the 
resources as they complete their plans, the agents simultaneously creating their 
plans will influence each other’s costs, and the agents arriving later may also 
influence the cost of the resources used by the agents already executing their plans. 
This is somewhat similar to the typical game theory problems, where the outcome 
of the action of an agent depends on its own decision plus the decisions of the other 
agents, however in the online routing problem the outcome depends on even more 
circumstances as written above. This type of applications is called online joint 
resource utilization games [13], derived from the algorithmic game theory [1] and 
online mechanisms [3]. Note that these games are different from the resource 
allocation or minority games [5] which are simultaneous one shot or the repeated 
simultaneous games where there might be some coordination among some of the 
agents. In contrast, the online joint resource utilization games are continuous and 
non-cooperative games exploiting real time online data. 

The adaptive car navigation using real time data is a special case of the online 
joint resource utilization games, because the possible order of the resource 
utilization in the plan of the agents is determined by the structure of the road 
network. From a theoretical point of view, the online-data-based car navigation 
applications are called online routing games [13]. Note that in this approach each 
driver makes an individual online-data-based decision at the time of entering the 
network, whereas in other approaches [6] the drivers learn the best route to select, 
based on their past experiences. 

2.1. The model of online routing games 

In order to have a generic model, the model of the online joint resource utilization 
game was defined [13] as an extension of the algorithmic game theory model of the 
routing problem and the online mechanisms. The model resembles the algorithmic 
game theory routing game model in concepts of the flow, cost and resource, and it 
resembles the model of online mechanisms in sequences of time periods and 
decisions. A time unit T  is introduced in order to be able to compute the rate of the 
resource utilization, which is called a flow. The model of online routing games [13] 
is like the model of online joint resource utilization games but with a restriction on 
the allowed plans represented by a graph and with somewhat different cost 
functions. 
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The model of the online routing game is the sextuple (t, T, G, c, r, k), where 
• t = {1, 2, …} is a sequence of equal time periods; 
• T is a natural number with T time periods giving one time unit; 
• G is a directed graph G = (V, E) with a vertex set V and an edge set E where 

each e   E is characterized by a cost function ce which is equal to the utilization א
time of the edge; 

• c is the cost function of G with ce: R+→R+ for each edge e of G mapping 
the incoming flow to the travel time on that edge, which is never less than the 
remaining cost of any other agent currently utilizing that edge increased by the time 
gap of the flow; in this model the cars cannot overtake the cars already on the road 
and there is a time gap, i.e., a minimum ”following distance”; 

• r is the total flow given by a vector of ri flows with ri denoting the flow 
aiming for a trip Pi from a source vertex si of G to a target vertex ti of G; 

• k = (k1, k2,…) is a sequence of decision vectors with a decision vector  
kt = (kt

1, kt
2,…) made in the time period t and kt

i is the decision made by the agent of 
the flow ri in the time period t. 

In this model the graph G may contain parallel edges. The cost functions are 
non-negative, continuous and non-decreasing. The cost functions have a constant 
part (the non-congested part) which does not depend on the flow on the edge and a 
variable part which depends on the flow on the edge. The variable part is not known 
to any of the actors of the model until an agent exits an edge and reports it. The 
flow ri is given by T/ni where ni is a natural number constant, meaning that the 
following distance of the units of the flow ri are ni time periods. So if T = 6 and  
ni = 2, then one car enters the network every second time step and the intensity of 
the flow is 3, because 3 cars enter the network in a time unit consisting of 6 time 
steps. The kt

i decision is how the trip Pi is routed on a single path of the paths 
leading from si to ti. The actual cost of a path (e1, e2, e3,…) for a flow at time period 
t is the sum of the cost of the edges where the actual cost of an edge is determined 
at the time when the flow enters the edge. 

The actual cost of the edges becomes known for the agents only when an agent 
reports its actual cost. Because the agents do not report the cost values at each time 
step, the agents interested in the cost values must decrease the last reported value by 
taking into account the time elapsed since the last reporting event (it is similar to the 
pheromone evaporation in [9]). 

The online routing game model can accommodate changes of the cost function 
c over the sequence of time periods t, because the agents can get information about 
the actual cost only from the cost reported by the agents exiting an edge. 

2.2. Routing strategy 

The critical point in the online routing game is how to determine the best decision 
vector k. The algorithmic game theory approach assumes that the agents have full 
information about the cost functions and the theory tells what the best strategy is in 
case of simultaneous decisions, but does not tell how the agents can achieve this. In 
online mechanisms, a central planner decides which resources at which cost are 
allocated to which agent. In online routing games there is no central planner. The 
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agents in online routing games will have to apply algorithms similar to the online 
algorithms [4].  

2.3. The benefit of online real time data 

We would like to be able to tell if the agents are better off by autonomously trying 
to self-adapt to the observed online real time data or not. If we want to evaluate 
only the benefits of the autonomous self-adaptation using online real time data, then 
we want to compare the results with an ”oracle” using the same decision making 
strategy. 

In the algorithmic game theory model there is an equilibrium and the price of 
the anarchy concept is the ratio between the equilibrium and the optimum. The 
online routing games investigated in [13] and [14] do not have equilibrium at some 
flow values. Because there is no equilibrium, different measures for the best, worst 
and average cases (which are guaranteed to exist if there is a finite sequence of time 
periods) are defined. Depending on the type of application, we are interested in the 
different types of benefits. Most important is the worst case, because it can be used 
to provide a guarantee in critical applications. The best case can be used in 
applications, where we have to make sure that a certain value is achieved at least 
once. The average case is seldom useful in itself, usually we have to consider the 
statistical distribution parameters as well. 

The definition of the different benefits of the online real time data [13] is given 
in the next paragraph. If these benefits are greater than 1, then they are in fact a 
”price” like the price of anarchy [2]. 

Defintion 1. The worst/best/average case benefit of the online real time data at 
a given flow is the ratio between the cost of the maximum/minimum/average cost of 
the flow and the cost of the same flow with an oracle using the same decision 
making strategy and only the fixed part of the cost functions. 

2.4. Classes of online routing games 

The online routing games using the same type of decision strategies belong to the 
same class of online routing games. Each class needs to be evaluated of how large 
benefit it makes out of the online real time data, in order to be able to determine the 
type of a suitable application. The evaluation must include formal proofs. Further 
research is needed to study different online routing game decision strategies derived 
from other related games, like resource allocation or minority games [5] and El 
Farol Bar problem in [12]. 

3. Simple naive strategy online routing games 

Typical navigation software, currently installed in cars uses the simple shortest path 
search on the road network, possibly modifying the distances with the online 
information about the actual traffic delay. We call this decision strategy a simple 
naive strategy. This strategy was investigated because of its practical importance. 
Note that the simple naive strategy is by definition deterministic, thus it is a pure 
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strategy. The properties of the simple naive strategy were investigated in [13] and 
three properties were proved.  

The first property says that if the agents of the car navigation systems use a 
simple naive strategy to self-adapt autonomously to the current situation of the 
traffic, then at some flow values they may make the traffic fluctuate. 

The second property is the possibility of “single flow intensification”: if the 
agents of the navigation system use a simple naive strategy to autonomously self-
adapt to the current situation of the traffic and only a single flow enters the road 
network, then at some flow value at some time there may be a road somewhere in 
the network, where the flow is bigger than the flow that entered the network. 

The third property is that the online information may have a price: if the 
agents of the car navigation systems use the simple naive strategy to autonomously 
self-adapt to the current situation of the traffic, then at some flow values sometimes 
they may be worse off than without exploiting the information about the current 
situation. 

 
Fig. 1. A simple naive online routing game with “single flow intensification” and “price” 

The proofs of these properties [13] are related to the online routing game 
which has the network shown in Fig. 1. In this network road e2 is not susceptible to 
a congestion, the non-congested travel time on road e1 is smaller than the travel 
time on e2, which is smaller than the congested travel time on e1 at some flow value 
less than r1, which is smaller 1.5 times than the travel time on e2. In addition, the 
travel time on e2 is bigger than 2 time units. If online information is not available, 
then all cars select the path (e1, e3), because it is the shortest one. If online 
information is available, then roads e1 and e2 will be used alternatively and it may 
happen that a platoon of the full incoming flow going on e1 is caught up by some 
agents that go on e2 and arrive at vertex v2 at the same time, so a bigger flow will go 
into e3 than the one that enters the network. The result is that the travel time on path 
(e1, e3) in this case will be longer than the travel time without any online 
information. We will return to this online routing game later in Section 5. 

The above formal proof results are underlined by similar simulation results as 
well, like the simple scenario consisting of two parallel routes investigated in [10]. 
These simulations also showed that the online information often leads to 
oscillations in the number of cars on the routes, the velocity and the travel times, 
which leads to worse overall performance. In the discussion the authors conclude 
that one of the reasons for oscillations is that the real time travel information 
reflects the state of the network some time ago. Another reason for the oscillations 
is that the agents do not coordinate their actions. In order to improve this, the 
authors advise the usage of anticipatory traffic forecast based on the broadcast route 
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choice of the agents, which basically means that the agents share or propagate their 
intentions. 

4. Simple naive intention propagation strategy online routing games 

The anticipatory vehicle routing proposed in [7] uses the individual planned routes 
of the agents to forecast the future traffic density. Every vehicle is represented by a 
vehicle agent running on a smart device inside the vehicle. The vehicle agents 
communicate with the delegate Multi-Agent System (delegate MAS) which 
represents the traffic environment and is able to make forecast of the future traffic 
density based on the current traffic situation and the planned routes of the vehicles. 
The delegate multi-agent system provides the traffic forecast back to the vehicle 
agents which use this information to plan their shortest trip. 

A slightly modified version of the above anticipatory vehicle routing system is 
used to define and formally analyze the class of online routing games that use 
intention-propagation-based prediction in their decision mechanism [14]. This class 
of online routing games are called simple naive intention propagation online routing 
games. 

Definition 2. Simple Naive Intention Propagation online routing games (SNIP 
online routing games) are online routing games where the decision making agents 
of the flows ri are the vehicle agents of the anticipatory vehicle routing system; the 
vehicle agents use the delegate MAS as above described to predict the travel time 
for each path pj of their trip Pi; and their decision kt

i is to select the path with the 
shortest travel time among the predicted travel times on the different paths of their 
trip Pi. The vehicle agent notifies the delegate MAS of its selected path and the 
delegate MAS remembers this selection while the vehicle agent is in the network 
and invalidates it when the vehicle agent exits the road network. 

In SNIP online routing games the agents receive a prediction of the future 
traffic, so we would expect that this additional information can be used to improve 
the properties of the simple naive online routing games. This was investigated 
formally in [14] with the following results. Unfortunately, intention propagation 
does not solve the “single flow intensification” problem. In SNIP online routing 
games “single flow intensification” may happen because the agents try to exploit 
the “gain by delay” phenomenon as shown in the proof in [14]; however this “gain 
by delay” phenomenon does not cause the same problem for the worst case benefit 
of online data as in the case of simple naive online routing games. In spite of this, 
there are SNIP online routing games which may have the worst case benefit of 
online data above one at some flow values. In addition, SNIP online routing games 
manifest fluctuation as well. 

 
Fig. 2. The network of the SNIP online routing game with “fluctuation” and “price” 
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The proofs of the latter two properties above are related to the online routing 
game which has a network shown in Fig. 2. The cost functions are ce1 = 1, ce2 = 1, 
ce3 = 10+x, and ce4 = 10.5+10×x, where x is the total incoming flow on the edge. 
The total traffic flow is r = (r1, r2) with a flow r1 = 1 from the source node v0 to the 
target node v3, and a flow r2 = 1 from v1 up to v3. Without online data, both flows 
would select the road e3, so the cost of both flows would be 13 and the total cost − 
26. With online data, the flows realize at some time that the cost of e3 goes above 
the cost of e4. This happens at the same time for both flows and they are not aware 
that the other flow is going to change to e4 at the same time, so they do not take into 
account the additional cost on e4. This is because the traffic forecaster is only aware 
of the intention propagations before the current time step, but does not know and 
cannot forecast the decisions at the current time step. Because e4 is more susceptible 
to congestion than e3, the cost on e4 will be more than on e3, so the total cost may go 
above 26 which is the travel time without online information. We will return to this 
online routing game later in Section 5. 

5. Paradox phenomena  

The Braess paradox is well known in the classical road traffic scenarios: if we add a 
new road to a road network in which the cars selfishly choose their routes and 
seemingly we increase the throughput capacity of the network, then in some cases 
the overall performance will be reduced. In the above sections we described some 
online-data-based navigation road traffic scenarios modelled by online routing 
games. Interestingly, these scenarios contain paradoxes similarly to the original 
Braess paradox. 

5.1. Paradox in the simple naive online routing game 

Let us take the simple naive online routing game which has the network shown in 
Fig. 3. The cost functions of roads e1 and e2 are the same as in the online routing 
game of Fig. 1. In this network the traffic flow r1 is from v1 to v3, so all cars go on 
the path (e1, e3), because that is the only path.  

 
Fig. 3. Simple naive online routing game paradox 

The paradox is that if we extend this online routing game with an additional 
road e2 to increase the throughput capacity between nodes v1 and v2 to get the online 
routing game of Fig. 1, then sometimes the performance will be reduced. 

Interestingly, the additional road e2 in Fig. 1 is not susceptible to congestion, 
and the travel time on e2 is bigger than the non-congested travel time on road e1, so 
seemingly the throughput capacity between v1 and v2 is increased. Also, the travel 
time on e2 is smaller than the congested travel time on e1 at the flow value of r1, so 
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road e2 could ease the congestion on e1. However, the cars of flow r1 are 
continuously trying to adapt to the observed traffic conditions, which makes the 
traffic fluctuate and sometimes they will suffer worse traffic conditions than 
without road e2, because the worst case benefit of the online data is above 1. 

5.2. Paradox in the simple naive intention propagation online routing game 

Let us take the simple naive intention propagation online routing game which has 
the network shown in Fig. 4. The cost functions of roads e1, e2 and e3 are the same 
as in the online routing game of Fig. 2. In this network the traffic flow r1 is from v0 
to v3 and the traffic flow r2 is from v1 to v3, so all the cars of r1 go on the path (e1, e3) 
and all the cars of r2 go on the path (e2, e3). 

 
Fig. 4. SNIP online routing game paradox 

The paradox is that if we extend this network with an additional road e4 to 
increase the throughput capacity between nodes v2 and v3 to get the network 
presented in Fig. 2, then sometimes the performance will be reduced. 

Although the additional road e4 in Fig. 2 seemingly increases the throughput 
capacity between v2 and v3 and we would expect that road e4 could ease the 
congestion on e3, the flows r1 and r2 are continuously trying to adapt to the observed 
traffic conditions, and from time to time the flows simultaneously switch to e4. 
Because e4 is more susceptible to congestion than e3, the result is that the traffic will 
fluctuate and sometimes the cars will suffer worse traffic conditions than without 
road e4. 

6. Conclusions 

In this paper we have discussed the routing game problem in online environment 
where the cars try to adapt to the current status of the traffic. The status of the 
traffic is obtained from up-to-date information, like the current travel time on each 
road. We have pointed out two novel forms of the paradox phenomena of the online 
routing game problem: one in the simple naive online routing game and one in the 
simple naive intention propagation online routing game. These paradox phenomena 
of the online routing problem have similarity to the Braess paradox of the classic 
routing problem in the sense that although the throughput capacity of the network is 
extended, sometimes the overall performance will be reduced. 

These paradox phenomena have implications for the structure of the road 
network. If there are parallel roads as in the above networks and the cars use online 
navigation devices, then at some flow values the traffic might start to fluctuate and 
the traffic will be worse than with only one road instead of parallel roads. The 
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designers of road networks should try to avoid such parallel roads if the cars use 
navigation devices exploiting online information. 
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