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Abstract

A system of sets forms an m-fold covering of a set X if every point of
X belongs to at least m of its members. A 1-fold covering is called a cover-
ing. The problem of splitting multiple coverings into several coverings was
motivated by classical density estimates for sphere packings as well as by
the planar sensor cover problem. It has been the prevailing conjecture for
35 years (settled in many special cases) that for every plane convex body
C, there exists a constant m =m(C) such that every m-fold covering of the
plane with translates of C splits into 2 coverings. In the present paper, it is
proved that this conjecture is false for the unit disk. The proof can be gener-
alized to construct, for every m, an unsplittable m-fold covering of the plane
with translates of any open convex body C which has a smooth boundary
with everywhere positive curvature. Somewhat surprisingly, unbounded open
convex sets C do not misbehave, they satisfy the conjecture: every 3-fold
covering of any region of the plane by translates of such a set C splits into
two coverings. To establish this result, we prove a general coloring theorem
for hypergraphs of a special type: shift-chains. We also show that there is a
constant c > 0 such that, for any positive integer m, every m-fold covering of
a region with unit disks splits into two coverings, provided that every point
is covered by at most c2m/2 sets.
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1 Introduction
Let C be a family of sets in Rd, and let P ⊆ Rd. We say that C is an m-fold covering

of P if every point of P belongs to at least m members of C. A 1-fold covering is called
a covering. Clearly, the union of m coverings is an m-fold covering. We will be mostly
interested in the case when P is a large region or the whole space Rd.

Sphere packings and coverings have been studied for centuries, partially because of
their applications in crystallography, Diophantine approximation, number theory, and
elsewhere. The research in this field has been dominated by density questions of the fol-
lowing type: What is the most “economical” (i.e., least dense) m-fold covering of space
by unit balls or by translates of a fixed convex body? It is suggested by many classical
results and physical observations that, at least in low-dimensional spaces, the optimal
arrangements are typically periodic, and they can be split into several lattice-like cover-
ings [14, 15]. Does a similar phenomenon hold for all sufficiently “thick” multiple coverings,
without any assumption on their densities?

About 15 years ago, a similar problem was raised for large scale ad hoc sensor net-
works; see Feige et al. [13], Buchsbaum et al. [6]. In the – by now rather extensive –
literature, it is usually referred to as the sensor cover problem. In its simplest version it
can be phrased as follows. Suppose that a large region P is monitored by a set of sen-
sors, each having a circular range of unit radius and each powered by a battery of unit
lifetime. Suppose that every point of P is within the range of at least m sensors, that is,
the family of ranges of the sensors, C, forms an m-fold covering of P . If C can be split
into k coverings C1, . . . ,Ck, then the region can be monitored by the sensors for at least
k units of time. Indeed, at time i, we can switch on all sensors whose ranges belong to
Ci (1 ≤ i ≤ k). We want to maximize k, in order to guarantee the longest possible service.
Of course, the first question is the following.

Problem 1 (Pach, 1980 [31]). Is it true that every m-fold covering of the plane with
unit disks splits into two coverings, provided that m is sufficiently large?

In a long unpublished manuscript, Mani and Pach [27] claimed that the answer to
this question was in the affirmative with m ≤ 33. Pach [35] warned that this “has never
been independently verified.” Winkler [42] even conjectured that the statement is true
with m = 4. For more than 30 years, the prevailing conjecture has been that for any open
plane convex body (i.e., bounded convex set) C, there exists a positive integer m =m(C)
such that everym-fold covering of the plane with translates of C splits into two coverings.
This conjecture was proved in [32] for centrally symmetric convex polygons C. It took
almost 25 years to generalize this statement to all convex polygons [40, 38]. Moreover, it
was proved by Aloupis et al. [3] and Gibson and Varadarajan [19] that in these cases, for
every integer k, every at least bk-fold covering splits into k coverings, where b = b(C) is
a suitable positive constant. See [33, 36, 34], for surveys.

Here we disprove the above conjecture by giving a negative answer to Problem 1.

Theorem 2. For every positive integer m, there exists an m-fold covering of the plane
with open unit disks that cannot be split into 2 coverings.

Our construction can be generalized as follows.
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(a) The disks form a 2-fold cover-
ing of the green triangle. The col-
ors give a split into 2 coverings. It
follows, however, from the proof of
Theorem 2, that for any m there is
an m-fold covering of a triangle by
disks that does not split.

(b) The parabolas form a 2-fold covering of the
green triangle, but no matter how we 2-color
them, there will be a point not covered by one of
the colors. It follows, however, from Theorem 6
and a standard compactness argument, that any
3-fold covering of a closed triangle by the trans-
lates of an open parabola splits into 2 coverings.

Figure 1: Two simple examples.

Theorem 3. Let C be any open plane convex set, which has two parallel supporting lines
with positive curvature at their points of tangencies. Then, for every positive integer m,
there exists an m-fold covering of the plane with translates of C that cannot be split into
2 coverings.

As was mentioned above, for every open convex polygon Q, there exists a smallest
positive integer m(Q) such that every m(Q)-fold covering of the plane with translates
of Q splits into 2 coverings. We have that supm(Q) =∞, where the sup is taken over all
convex polygons Q. Otherwise, we could approximate the unit disk with convex n-gons
with n tending to infinity. By compactness, we would conclude that the unit disk C
satisfies m(C) < +∞, which contradicts Theorem 2.

Problem 4. Does there exist, for any n > 3, an integer m(n) such that every convex
n-gon Q satisfies m(Q) ≤m(n)?

For any triangle T , there is an affine transformation of the plane that takes it into an
equilateral triangle T0. Therefore, we have m(T ) = m(T0) and m(3) is finite. For n = 4,
Problem 4 is open.

In spite of our sobering negative answer to Problem 1 and its analogues in higher
dimensions (cp. [27]), there are important classes of multiple coverings such that all of
their members are splittable. According to our next, somewhat counter-intuitive result,
for example, any m-fold covering of Rd with unit balls can be split into 2 coverings,
provided that no point of the space is covered by too many balls. (We could innocently
believe that heavily covered points make it only easier to split an arrangement.)
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Theorem 5. For every d ≥ 2, there exists a positive constant cd with the following
property. For every positive integer m, any m-fold covering of Rd with unit balls can be
split into two coverings, provided that no point of the space belongs to more than cd2m/d

balls.

Theorem 5 was one of the first geometric applications of the Lovász local lemma [10],
and it was included in [2]. Here, we establish a more general statement (see Theorem 8.2).

One may also believe that unbounded convex sets behave even worse than the bounded
ones. It turns out, however, that this is not the case.

Theorem 6. Let C be an unbounded open convex set and let P be a finite set of points
in the plane. Then every 3-fold covering of P ⊂ R2 with translates of C can be split into
two coverings of P .

In fact, using a standard compactness argument, Theorem 6 also holds if P is any
compact set in the plane. However, Theorem 6 does not generalize to higher dimensions.
Indeed, it follows from the proof of Theorem 2 that, for every positive integer m, there
exists a finite family C of open unit disks in the plane and a finite set P ⊂ R2 such that
C is an m-fold covering of P that cannot be split into two coverings. Consider now an
unbounded convex cone C′ in R3, whose intersection with the plane R2 is an open disk.
Take a system of translates of C′ such that their intersections with the plane coincide
with the members of C. These cones form an m-fold covering of P that cannot be split
into two coverings.

For interesting technical reasons, the proof of Theorem 6 becomes much easier if we
restrict our attention to multiple coverings of the whole plane. In fact, in this case, we
do not even have to consider multiple coverings! Moreover, the statement remains true
in higher dimensions.

Proposition 7. Let C be an unbounded line-free open convex set in Rd. Then every
covering of Rd with translates of C can be split into two, and hence into infinitely many,
coverings.

The reason why we assume here that C is line-free (i.e., does not contain a full line) is
the following. If C contains a straight line, then it can be obtained as the direct product of
a line l and a (d−1)-dimensional open convex set C′. Any arrangement C of translates of
C in Rd is combinatorially equivalent to the (d−1)-dimensional arrangement of translates
of C′, obtained by cutting C with a hyperplane orthogonal to l. In particular, the problem
whether an m-fold covering of Rd with translates of C can be split into two coverings
reduces to the respective question about m-fold coverings of Rd−1 with translates of C′.

Proposition 7 is false already in the plane without the assumption that C is open.
However, every 2-fold covering of the plane with translates of an unbounded C can be
split into two coverings. We omit the proof as it reduces to a simple claim about intervals.

However, in higher dimensions, the similar claim is false.

Theorem 8. There is a bounded convex set C′ ⊂ R3 with the following property. One
can construct a family of translates of C = C′ × [0,∞) ⊂ R4 which covers every point of
R4 infinitely many times, but which cannot be split into two coverings.

The construction given in Section 7 is based on an example of Naszódi and Taschuk
[30], and explores the fact that the boundary of C′ can be rather “erratic.” We do not
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know whether sufficiently thick coverings of R3 by translates of an unbounded line-free
convex set can be split into two coverings or not.

In the sequel, we will study the equivalent “dual” form of the above questions. Consider
a family C = {Ci ∶ i ∈ I} of translates of a set C ⊂ Rd that form an m-fold covering of
P ⊆ Rd. Suppose without loss of generality that C contains the origin 0. For every
i ∈ I, let ci denote the point of Ci that corresponds to 0 ∈ C. In other words, we have
C = {C + ci ∶ i ∈ I}. Assign to each p ∈ P a translate of −C, the reflection of C about the
origin, by setting C∗

p = −C + p. Observe that

p ∈ Ci ⇐⇒ ci ∈ C∗
p .

In particular, the fact that C forms an m-fold covering of P is equivalent to the following
property: Every member of the family C∗ = {C∗

p ∶ p ∈ P} contains at least m elements of
{ci ∶ i ∈ I}. Thus, Theorem 2 can be rephrased in the following dual form.

Theorem 2’. For every m ≥ 2, there is a set of points P ∗ = P ∗(m) in the plane with the
property that every open unit disk contains at least m elements of P ∗, and no matter how
we color the elements of P ∗ with two colors, there exists a unit disk such that all points
in it are of the same color.

A set system not satisfying this condition is said to have property B (in honor of
Bernstein) or is 2-colorable (see [29, 9, 39]). Generalizations of this notion are related
to conflict-free colorings [12] and have strong connections, e.g., to the theory of ε-nets,
geometric set covers and to combinatorial game theory [21, 34, 1, 41, 18].

The rest of this paper is organized as follows. In the next three sections, we prove
Theorem 2’ in 3 steps. In Section 2, we exhibit a family of non-2-colorable m-uniform
hypergraphsH(k, l). In Section 3, we construct planar “realizations” of these hypergraphs,
where the vertices correspond to points and the (hyper)edges to unit disks, preserving
the incidence relations. In Section 4, we extend this construction, without violating the
colorability condition, so that every disk contains at least m points. In Section 5, we
modify these steps in order to establish Theorem 3, a generalization of Theorem 2 to
bounded plane convex bodies with a smooth boundary. Sections 6 and 7 contain the
proofs of our results related to multiple coverings with unbounded convex sets: Theorem 6,
Proposition 7, and Theorem 8. The proof of a more general version of Theorem 5, using
the Lovász local lemma, can be found in Section 8. Finally, in Section 9 we make some
concluding remarks and mention a couple of open problems.

2 A family of non-2-colorable hypergraphs H(k, l)
In this section we define, for any positive integers k and l, an abstract hypergraph

H(k, l) with vertex set V (k, l) and edge set E(k, l). The hypergraphs H(k, l) are defined
recursively. The edge set E(k, l) will be the disjoint union of two sets, E(k, l) = ER(k, l)⊍
EB(k, l), where the subscripts R and B stand for red and blue. All edges belonging to
ER(k, l) will be of size k, all edges belonging to EB(k, l) will be of size l. In other words,
H(k, l) is the union of a k-uniform and an l-uniform hypergraph. If k = l =m, we get an
m-uniform hypergraph.

Definition 2.1. Let k and l be positive integers.
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p

V (3, 2) V (2, 3)

Figure 2: The hypergraph H(3,3) with (arbitrarily) 2-colored vertices. There is a
blue (dashed) set with 3 blue vertices or a red (solid) set with 3 red vertices.

1. For k = 1, let V (1, l) be an l-element set.
Set ER(1, l) ∶= V (1, l) and EB(1, l) ∶= {V (1, l)}.

2. For l = 1, let V (k,1) be a k-element set.
Set ER(k,1) ∶= {V (k,1)} and EB(k,1) ∶= V (k,1).

3. For any k, l > 1, we pick a new vertex p, called the root, and let

V (k, l) ∶= V (k − 1, l) ⊍ V (k, l − 1) ⊍ {p},

ER(k, l) ∶= {e ∪ {p} ∶ e ∈ ER(k − 1, l)} ∪ER(k, l − 1),
EB(k, l) ∶= EB(k − 1, l) ⊍ {e ∪ {p} ∶ e ∈ EB(k, l − 1)}.

By recursion, we obtain that

∣V (k, l)∣ = (k + l
k

) − 1,

∣ER(k, l)∣ = (k + l − 1

k
), ∣EB(k, l)∣ = (k + l − 1

l
),

∣E(k, l)∣ = ∣ER(k, l)∣ + ∣EB(k, l)∣ = (k + l
k

).

Lemma 2.2 ([37]). For any positive integers k, l, the hypergraph H(k, l) is not 2-
colorable. Moreover, for every coloring of V (k, l) with red and blue, there is an edge
in ER(k, l) such that all of its k vertices are red or an edge in EB(k, l) such that all of
its l vertices are blue.

For completeness, here we include the proof of Lemma 2.2 from [37]. The induction
on two parameters, k and l, is similar to the proof of Ramsey’s theorem by Erdős and
Szekeres [11].
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Proof. We will prove that for every coloring of V (k, l) with red and blue, there is an edge
in ER(k, l) such that all of its k vertices are red or an edge in EB(k, l) such that all of
its l vertices are blue.

Suppose first that k = 1. If any vertex in V (1, l) is red, then it is a red singleton
edge in H(1, l). If all vertices in V (1, l) are blue, then the (only) edge V (1, l) ∈ EB(1, l)
contains only blue points. Analogously, the assertion is true if l = 1.

Suppose next that k, l > 1. Assume without loss of generality that the root p is red.
Consider the subhypergraph H(k − 1, l) ⊂ H(k, l) induced by the vertices in V (k − 1, l).
If it has a monochromatic red edge e ∈ ER(k−1, l), then e∪{p} ∈ ER(k, l) is red. If there
is a monochromatic blue edge in EB(k − 1, l), then we are again done, because it is also
an edge in EB(k, l).

For other interesting properties of the hypergraphs H(k, l) related to hereditary discrep-
ancy, see Matoušek [28].

3 Geometric realization of the hypergraphs H(k, l)
The aim of this section is to establish the following weaker version of Theorem 2’.

Theorem 2”. For every m ≥ 2, there exists a finite point set P = P (m) ⊂ R2 and a finite
family of unit disks C = C(m) with the property that every member of C contains at least
m elements of P , and no matter how we color the elements of P with two colors, there
exists a disk in C such that all points in it are of the same color.

We realize the hypergraph H(k, l) defined in Section 2 with points and disks. The
vertex set V (k, l) is mapped to a point set P (k, l) ⊂ R2, and the edge sets, ER(k, l) and
EB(k, l), to families of open unit disks, CR(k, l) and CB(k, l), so that a vertex belongs
to an edge if and only if the corresponding point is contained in the corresponding disk.
The geometric properties of this realization are summarized in the following lemma.

Given two unit disks C,C ′, let d(C,C ′) denote the distance between their centers. We
fix an orthogonal coordinate system in the plane so that we can talk about the topmost
and the bottommost points of a disk.

Lemma 3.1. For any positive integers k, l and for any ε > 0, there is a finite point set
P = P (k, l) and a finite family of open unit disks C(k, l) = CR(k, l) ⊍ CB(k, l) with the
following properties.

1. Any disk C ∈ CR(k, l) (resp. CB(k, l)) contains precisely k (resp. l) points of P .

2. For any coloring of P with red and blue, there is a disk in CR(k, l) such that all of
its points are red or a disk in CB(k, l) such that all of its point are blue. In fact, P
and C(k, l) realize the abstract hypergraph H(k, l) in the above sense.

3. For the coordinates (x, y) of any point from P , we have −ε < x < ε and −ε2 < y < ε2.
4. For the coordinates (x, y) of the center of any disk from CR(k, l), we have −ε < x < ε

and −ε2 < y − 1 < ε2.
5. For the coordinates (x, y) of the center of any disk from CB(k, l), we have −ε < x < ε

and −ε2 < y + 1 < ε2.
6. The topmost and the bottommost points of a disk C ∈ C(k, l) are not covered by the

closure of any other member of C(k, l).
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Looking at our construction from “far away” the two families CR and CB look like
two touching disks, with all points of P very close to the touching point. The segments
connecting the centers of disks from different families are almost vertical with all members
of CR lying “above” all members of CB . We prove the lemma by induction. Most conditions
are needed for the induction to go through. Condition 6 is an exception: it will be used
in Section 4.

Proof. We give a recursive construction. We can assume that ε < 1/10. It is easy to
see that, for k = 1 or l = 1, there exists such a family of unit disks for any ε > 0, see
Figure 3(a). The family C(2,2) is depicted in Figure 3(b), where the main idea of the
induction may already be visible.

Suppose that k, l ≥ 2 and we have already constructed P (k − 1, l) and C(k − 1, l), and
P (k, l−1) and C(k, l−1), for some ε(k−1, l) < ε/100 and ε(k, l−1) < ε/100, respectively. To
obtain P (k, l), we place the root p of H(k, l) into the origin (0,0), and we shift (translate)
P (k − 1, l) and P (k, l − 1) into new positions such that their roots are at (−ε/3,−ε2/10)
and (ε/3, ε2/10), respectively. With a slight abuse of notation, the shifted copies will also
be denoted P (k − 1, l) and P (k, l − 1). See Figure 3(c). In this way, it is guaranteed that
for the coordinates (x, y) of any point of P , we have

−ε < −(ε/3 + ε(k − 1, l) + ε(k, l − 1)) < x < ε/3 + ε(k − 1, l) + ε(k, l − 1) < ε

and

−ε2 < −(ε2/10 + ε2(k − 1, l) + ε2(k, l − 1)) < y < ε2/3 + ε2(k − 1, l) + ε2(k, l − 1) < ε2.

Thus, property 3 of the lemma holds.
The family C(k, l) is defined as the union of two previously defined families, C(k−1, l)

and C(k, l − 1), translated by the same vectors as P (k − 1, l) and, resp. P (k, l − 1) were.
Again, we use the same symbols to denote the translated copies. To verify properties
4 and 5, we only have to repeat the above calculations, with the y-coordinates being
shifted 1 higher (resp. 1 lower).

Now we show that our set of points P (k, l) and set of disks C(k, l) realize the hy-
pergraph H(k, l) (properties 1 and 2). It is easy to see that if C ∈ CR(k − 1, l) and
s ∈ P (k, l − 1), then s ∉ C but p = (0,0) ∈ C. The coordinates of the center of C are
( − ε/3 ± ε(k − 1, l),1 − ε2/10 ± ε2(k − 1, l)) (where here and in the following, ±z de-
notes a number that is between −z and z), so the distance of p from C is at most
(ε/3+ ε(k − 1, l))2 + (1− ε2/10+ ε2(k − 1, l))2 < 1. On the other hand, the coordinates of s
are (ε/3 ± ε(k, l − 1), ε2/10 ± ε2(k, l − 1)), thus the square of its distance from the center
of C is at least

(2ε/3 − ε(k − 1, l) − ε(k, l − 1))2 + (1 − 2ε2/10 − ε2(k − 1, l) − ε2(k, l − 1))2 > 1.

Analogously, if C ∈ CB(k, l − 1) and s ∈ P (k − 1, l), then s ∉ C but p = (0,0) ∈ C.
Let C ∈ CR(k, l− 1) and s ∈ P (k − 1, l). We prove that p, s ∉ C. The coordinates of the

center of C are (ε/3± ε(k, l − 1),1+ ε2/10± ε(k, l − 1)). Therefore, the distance of p from
the center of C is at least (ε/3−ε(k, l−1))2 +(1+ε2/10−ε(k, l−1))2 > 1. The calculation
for s is similar in the case C ∈ CR(k − 1, l). Analogously, we have that if C ∈ CB(k − 1, l)
and s ∈ P (k, l − 1), then p, s ∉ C. As the disks in C(k, l − 1) (resp. C(k − 1, l)) contain
precisely the same points of P (k, l − 1) (resp. P (k − 1, l), as before the shift, we have
obtained a geometric realization of H(k, l), and properties 1 and 2 hold.
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CR(k, 1)

CB(k, 1)

(a) Starting step: C(k,1).

CR(2, 2)

CB(2, 2)

(b) C(2,2) magnified (and a bit dis-
torted for visibility).

p (root)

P (k − 1, l)

P (k, l − 1)CR(k − 1, l)

CR(k, l − 1)

CB(k − 1, l)

CB(k, l − 1)

(c) Induction step.

Figure 3: The construction.



It remains to prove that the topmost and the bottommost points of a disk C ∈
C(k, l) are not covered by any other member of C(k, l) (property 6). Using that our
construction and disks are centrally symmetric, it is enough to prove the statement
for the topmost points. If C ∈ CR(k, l − 1), the coordinates of its topmost point are
(ε/3± ε(k, l− 1),2+ ε2/10± ε2(k, l− 1)). If C ∈ CR(k− 1, l), the coordinates of its topmost
point are ( − ε/3 ± ε(k − 1, l),2 − ε2/10 ± ε2(k − 1, l)). If C ∈ CB(k, l − 1), the coordinates
of its topmost point are (ε/3± ε(k, l − 1),−2+ ε2/10± ε2(k, l − 1)). If C ∈ CB(k − 1, l), the
coordinates of its topmost point are ( − ε/3 ± ε(k − 1, l),−2 − ε2/10 ± ε2(k − 1, l)).

If C ∈ CR(k, l − 1), by the induction hypothesis, its topmost point cannot be covered
by any other disk from C(k, l−1). Nor can it be covered by any other disk, as the topmost
points of all other disks are below it (i.e., have smaller y-coordinates). If C ∈ CR(k − 1, l),
then the square of the distance of its topmost point from the center of some C′ ∈ CR(k, l−1)
is at least

(2ε/3 − ε(k, l − 1) − ε(k − 1, l))2 + (1 − 2ε2/10 − ε2(k, l − 1) − ε2(k − 1, l))2 > 1.

If C ∈ CB(k, l − 1), then the distance of its topmost point from the center of some C′ ∈
CR(k − 1, l) is also at least

(2ε/3 − ε(k, l − 1) − ε(k − 1, l))2 + (1 − 2ε2/10 − ε2(k, l − 1) − ε2(k − 1, l))2 > 1.

In all other cases, trivially, the corresponding distances are also larger than 1. This
completes the proof of property 6 and hence the lemma.

4 Adding points to P – Proof of Theorem 2’
In this section, we extend the proof of Theorem 2” to establish Theorem 2’ (which is

equivalent to Theorem 2). Note that the only difference between Theorems 2” and 2’ is
that in the latter it is also required that every unit disk of the plane contains at least m
elements of the point set P ∗ = P ∗(m). The set P = P (m,m) constructed in Lemma 3.1,
does not satisfy this condition. In order to fix this, we will add all points not in ∪C(m,m)
to the set P (or rather a sufficiently dense discrete subset of R2 ∖ ∪C(m,m)). In order
to show that the resulting set P ∗ meets the requirements of Theorem 2’, all we have to
show is the following.

Lemma 4.1. No (open) unit disk C ∉ C(k, l) is entirely contained in ∪C(k, l).

For future purposes, we prove this statement in a slightly more general form. In what
follows, we only assume that C is an open convex body with a unique topmost point t
and a unique bottommost point b, which divide the boundary of C into two closed arcs.
They will be referred to as the left boundary arc and a right boundary arc.

Definition 4.2. A collection C of translates of C is said to be exposed if the topmost
and bottommost points of its members do not belong to the closure of any other member
of C.

By the last condition in Lemma 3.1, the collections of disks C(k, l) constructed in the
previous section are exposed. We prove the following generalization of Lemma 4.1.
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Lemma 4.3. Let C be a finite exposed collection of translates of an open convex body C
with unique topmost and bottommost points. If C ∉ C, then C /⊆ ∪C.

For the proof, we need a simple observation.

Claim 4.4. If the right boundary arcs of two translates of C intersect, then the closure
of one of the translates must contain the topmost or bottommost point of the other.

Proof. Let C1 and C2 be the two translates, and let γi denote the closed convex curve
formed by the right boundary arc of Ci and the straight-line segment connecting its two
endpoints (the topmost and the bottommost points of Ci). The curves γ1 and γ2 are
translates of each other, and since they intersect, they must cross twice. (At a crossing,
one curve comes from the exterior of the other, then it shares an arc with it, which may
be a single point, and enters the interior.) It cannot happen that both crossings occur
between the right boundary arcs, because they are convex and translates of each other.
Therefore, one of the two crossings involves the straight-line segment of one the curves,
say, γ1. But since the condition is that the right boundary arcs intersect, one of the two
endpoints of this straight-line segment, either the topmost or the bottommost point of
C1, lies in the closure of C2

Proof of Lemma 4.3. Suppose, for contradiction, that C ⊆ ∪C. By removing some mem-
bers of C if necessary, we can assume that C is aminimal collection of translates that covers
C. Then C must have a point which belongs to (at least) three translates, C1,C2,C3 ∈ C.
None of the topmost and bottommost points of these translates can be covered by C,
otherwise, it would also be covered by another member of C, contradicting the assumption
that C is exposed.

Thus, C intersects either the left or the right boundary arc of every Ci. Without loss
of generality, suppose that C intersects the right boundary arcs of C1 and C2. These right
boundary arcs must intersect inside C, otherwise C1 ∩ C ⊆ C2 ∩ C or C2 ∩ C ⊆ C1 ∩ C,
and C would not be minimal. Therefore, we can apply Claim 4.4 to conclude that one of
them must contain the topmost or bottommost point of the other.

Remark 4.5. In the construction described in Lemma 3.1, every disk in C(m,m) contains
at most ∣P (m,m)∣ < 22m points. At the last stage, we added many new points to P . We
can keep the maximum number of points of P lying in a unit disk bounded from above by
a function f(m). What is the best upper bound? The bound given by our construction
depends on ε(m,m) ≤ 100−2mε(1,1).

5 Other convex bodies – Proof of Theorem 3
Throughout this section, C denotes an open plane convex body which has two par-

allel supporting lines with positive curvature at the two points of tangencies. To prove
Theorem 3, by duality, it is sufficient to establish the analogue of Theorem 2’, where the
role of unit disks is played by translates of C.

Theorem 3’. For every m ≥ 2, there is a set of points P ∗ = P ∗(m) in the plane with
the property that every translate of C contains at least m elements of P ∗, and no matter
how we color the elements of P ∗ with two colors, there exists a translate of C such that
all points in it are of the same color.
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As in the case of disks, after defining the hypergraphs H(k, l), the proof consists of
two steps:

Step 1: We find a geometric realization of H = H(k, l) with translates of C, i.e., a
finite point set P representing the vertices and a collection C of translates of C repre-
senting the hyperedges of H such that a point of P lies in a member of C if and only if
the corresponding vertex belongs to the corresponding hyperedge. We show that C is an
exposed family.

Step 2: We show that no translate of C is entirely contained in ∪C, unless C ∈ C.
Thus, we can add all the points not in ∪C(k, l) to the points of P to ensure that every
translate of C contains many points.

In Section 4, we have shown that Step 2 can be completed, provided that C is exposed
(see Lemma 4.3). Therefore, here we concentrate on Step 1.

Without loss of generality, we can assume that C has unique bottommost and top-
most points, b and t, resp., at which the curvature is positive. After applying an affine
transformation, we can also attain that the line bt is vertical. Let rb and rt denote the
reciprocals of the curvatures at b and t, respectively. If we place b at the origin, then,
for every δ > 0, in a small neighborhood of b, the boundary of C will lie between the
parabolas y = (1 − δ)rbx2 and y = (1 + δ)rbx2. Analogously, if we place t at the origin,
then in a small neighborhood of it, the boundary of C will lie between the parabolas
y = −(1− δ)rtx2 and y = −(1+ δ)rtx2. We find a geometric realization using the following
lemma.

p (root)

P (k − 1, l)

s ∈ P (k, l − 1)

CR(k − 1, l)

Figure 4: Parabolas enclosing the boundary of C.

Lemma 3.1’. For any positive integers k, l and for any ε > 0, there is a finite point set
P = P (k, l) and a finite family of translates of C, C(k, l) = CR(k, l) ⊍ CB(k, l) with the
following properties.

1. Any translate from CR(k, l) (resp. CB(k, l)) contains precisely k (resp. l) points of
P .

2. For any coloring of P with red and blue, there is a translate from CR(k, l) such
that all of its points are red or a translate from CB(k, l) such that all of its point
are blue. In fact, P and C(k, l) realize the abstract hypergraph H(k, l) in the above
sense.

3. For the coordinates (x, y) of any point from P , we have −ε < x < ε and −ε2 < y < ε2.
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4. For the coordinates (x, y) of the bottommost point of any translate from CR(k, l),
we have −ε < x < ε and −ε2 < y < ε2.

5. For the coordinates (x, y) of the topmost point of any translate from CB(k, l), we
have −ε < x < ε and −ε2 < y < ε2.

6. The topmost and the bottommost points of translate from C(k, l) are not covered
by the closure of any other member of C(k, l).

Proof. Using an affine transformation, we can suppose that rt, rb < 1. We fix a δ that is
small enough compared to rt and rb, and an ε = ε(k, l) that is small enough compared
to δ, rt and rb, but big enough compared to ε(k, l − 1) and ε(k − 1, l). (To keep the
presentation simple, we omit the exact required dependencies here.) We will use that
the boundary of C in a 2ε(rt + rb) neighborhood around t and b is between the (above
mentioned) pairs of parabolas, y = (1 − δ)rbx2 and y = (1 + δ)rbx2, and y = −(1 − δ)rtx2
and y = −(1 + δ)rtx2.

If k = 1 or l = 1, the construction is trivial. For k, l ≥ 2, assume that the point sets
P (k−1, l) and P (k, l−1), and the families of translates of C, C(k−1, l) and C(k, l−1), have
already been defined, and that they satisfy all conditions in the lemma. To obtain P (k, l),
we place the root p of H(k, l) into the origin (0,0), and we shift P (k−1, l) and P (k, l−1)
such that their roots are at (−rtε,−(1+2δ)rbr2t ε2) and (rbε, (1+2δ)rtr2bε2), respectively.
The family of translates C(k, l) is defined as the union of the families C(k − 1, l) and
C(k, l − 1) translated by the same vectors, as P (k − 1, l) and P (k, l − 1), respectively.

To verify properties 3, 4, and 5, we need that −ε < −rtε, rbε < ε and −ε2 <
−(1 + 2δ)rbr2t ε2, (1 + 2δ)rtr2bε2 < ε2, which hold since rt, rb < 1 and δ is small. Notice
that where we have omitted ε(k, l − 1) and ε(k − 1, l) from these equations to keep the
calculations simple. This we can do as the difference of the two sides depends on ε, which
we can select to be sufficiently large compared to ε(k, l − 1) and ε(k − 1, l). We will also
omit dependencies of ε(k, l − 1) and ε(k − 1, l) later.

To verify properties 1 and 2, we have to show that for any C ∈ CR(k−1, l), the origin
p = (0,0) belongs to C, but no point s ∈ P (k, l−1) does, provided that ε > 0 is sufficiently
small. To see this, fix C ∈ CR(k − 1, l). The equation of the parabola that touches C from
the inside at its bottommost point is approximately y = (1+δ)rb(x+rtε)2−(1+2δ)rbr2t ε2.
If x = 0, the value of y is (1 + δ)rb(rtε)2 − (1 + 2δ)rbr2t ε2 = −δrbr2t ε2. This is negative,
which means that p = (0,0) lies above the parabola. Thus, we have p ∈ C. Analogously,
if C ∈ CB(k, l − 1) and s ∈ P (k − 1, l), then s ∉ C but p = (0,0) ∈ C.

On the other hand, the equation of the parabola that touches C at its bottommost
point from the outside is approximately y = (1 − δ)rb(x + rtε)2 − (1 + 2δ)rbr2t ε2. If x =
rbε ± ε(k, l − 1) the value of y at x is approximately

(1 − δ)rb(rbε + rtε)2 − (1 + 2δ)rbr2t ε2 = ((1 − δ)(r3b + 2r2brt) − 3δrbr
2
t ) ε2 ≥ (r3b +O(δ)) ε2.

Therefore, s = (rbε ± ε(k, l − 1), (1 + 2δ)rtr2bε2 ± ε2(k, l − 1)) is below the parabola, if δ is
small enough, thus s ∉ C.

Let C ∈ CR(k, l − 1) and s ∈ P (k − 1, l). We prove that p, s ∉ C. The equation of
the parabola that touches C from the outside at its bottommost point is approximately
y = (1 − δ)rt(x − rbε)2 − (1 + 2δ)rtr2bε2. If x = 0, the value of y is (1 + δ)rt(−rbε)2 −
(1 + 2δ)rtr2bε2 = −δrbr2t ε2 < 0, thus p ∈ C. The calculation for s is similar in the case
C ∈ CR(k − 1, l). Analogously, we have that if C ∈ CB(k − 1, l) and s ∈ P (k, l − 1), then
p, s ∉ C. As the translates in C(k, l − 1) (resp. C(k − 1, l)) contain precisely the same

13



points of P (k, l − 1) (resp. P (k − 1, l), as before the shift, we have obtained a geometric
realization of H(k, l), and properties 1 and 2 hold.

It remains to prove that the topmost and the bottommost points of a translate C(k, l)
are not covered by any other member of C(k, l) (property 6). Using that our construction
is symmetric, it is enough to prove the statement for the topmost points. Recall that the
line connecting b and t is vertical and denote their distance, the height of C, by h.

The coordinates of the topmost points of translates from CR(k, l−1) are approximately
(rbε + h, (1 + 2δ)rtr2bε2 + h). The coordinates of the topmost points of translates from
CR(k − 1, l) are approximately (−rtε + h,−(1 + 2δ)rbr2t ε2 + h). The coordinates of the
topmost points of translates from CB(k, l − 1) are approximately (rbε, (1 + 2δ)rtr2bε2).
The coordinates of the topmost points of translates from CB(k − 1, l) are approximately
(−rtε,−(1 + 2δ)rbr2t ε2).

If C1 ∈ CR(k, l− 1), by the induction hypothesis, its topmost point cannot be covered
by any other C2 ∈ C(k, l − 1). Nor can it be covered by any other translate, as the
topmost points of all other translates are below it (i.e., have smaller y-coordinates).
If C1 ∈ CR(k − 1, l), then the vector connecting it to the topmost point of some C2 ∈
CR(k, l − 1) is approximately the same as the vector connecting a point s ∈ P (k − 1, l)
to the topmost point of some C′ ∈ CB(k, l − 1). As we have seen earlier that s ∉ C′, the
same calculation shows that the topmost point of C1 is not in C2. If C1 ∈ CR(k − 1, l)
and C2 ∈ CB(k, l − 1) or C2 ∈ CB(k − 1, l), then the topmost point of C2 is lies below the
topmost point of C1. If C1 ∈ CB(k, l − 1) and C2 ∈ C(k, l − 1), by induction the topmost
point of C1 is not in C2. If C1 ∈ CB(k, l−1) and C2 ∈ C(k−1, l), then the topmost point of
C1 is approximately at the same place as the points of P (k, l − 1) which are avoided by
C2, and the same calculation works here. Similarly, if C1 ∈ CB(k−1, l) and C2 ∈ C(k−1, l),
we can use induction, and if C1 ∈ CB(k − 1, l) and C2 ∈ C(k, l − 1), we can use that the
topmost point of C1 is approximately at the same place as the points of P (k−1, l) which
are avoided by C2, the same calculation works here. This completes the proof of property
6 and hence the lemma.

6 Shift-chains – Proof of Theorem 6
Throughout this section, P denotes a fixed set of n points in the plane, no two of

which have the same x-coordinate, and C is a fixed open convex set that contains a
vertical upward half-line.

Definition 6.1. For A ⊂ [n] = {1,2, . . . , n}, denote by ai the ith smallest element of A.
For two equal sized sets, A,B ⊂ [n], we write A ⪯ B if ai ≤ bi for every i.

An m-uniform hypergraph on the vertex set [n] is called a shift-chain if its hyperedges
are totally ordered by the relation ⪯. A shift-chain H is special if for any two hyperedges,
A,B ∈H with A ⪯ B, we have max(A ∖B) <min(B ∖A).

For any integer m and real number x, let C(m;x) denote the translate of C which
a. contains exactly m points of P ,
b. can be obtained from C by translating it through a vector with x-coordinate x,
c. and has minimum y-coordinate, among all translates satisfying a and b.

The union of all translates of C through every vector that has x-coordinate x is a vertical
strip (or an open half-plane or the whole plane), denoted by S(x). If S(x) contains
precisely m points for some x, then in condition c, the minimum y-coordinate is y = −∞,
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and we set C(m;x) = S(x). If S(x) contains fewer than m points, then C(m;x) is
undefined.

Proposition 6.2. Let p1, p2, . . . , pn denote the elements of P , listed in the increasing
order of their x-coordinates. Then the m-uniform hypergraph consisting of the sets P (x) =
{i ∈ [n] ; pi ∈ C(m;x)}, over all x ∈ R, is a special shift-chain.

Proof. Notice that if x < x′, then the boundary of C(m;x) intersects the boundary of
C(m;x′) precisely once. Therefore, every element of (C(m;x) ∖ C(m;x′)) ∩ P is to the
left of all elements of (C(m;x′) ∖C(m;x)) ∩ P . This means that P (x) ⪯ P (x′).

In view of the duality described at the end of the introduction, Theorem 6 is an
immediate corollary of the following statement.

Theorem 6.3. For any m ≥ 3, every m-uniform special shift-chain is 2-colorable. More-
over, such a coloring can be constructed in linear time.

An example found by Fulek [16] (depicted on Figure 5) shows that Theorem 6.3 is
false without assuming that the shift-chain is special.
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Figure 5: A shift-chain of 13 triples, each of which corresponds to a row. For any
2-coloring of the 9 vertices, one of the triples is monochromatic.

Problem 6.4. Does there exist an integer m0 > 3 such that for every m ≥ m0, every
m-uniform shift-chain is 2-colorable?

If the answer to this question is yes, in some sense this could be regarded as an
extension of the Lovász local lemma [10]. For more problems and results related to shift-
chains and special shift-chains, consult [36, 25].
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Proof of Theorem 6.3. The proof breaks into several simple claims. In the rest of this sec-
tion, H denotes a fixed 3-uniform special shift-chain on [n] = {1,2, . . . , n}. For simplicity,
a hyperedge (triple) {a, b, c} ∈H with a < b < c will be denoted by {a < b < c}.

Claim 6.5. If {a < b < c} ∈H and {a′ < b < c′} ∈H, then a′ = a or c′ = c.

Proof. Otherwise, {a < b < c}∖ {a′ < b < c′} = {a < c} and {a′ < b < c′}∖ {a < b < c} = {a′ <
c′} would not be separated, contradicting our assumption that H is special.

Define a digraph, D = D(H) with vertex set [n] and edge set E, as follows. For any
b < c, the directed edge bc ∈ E if and only if there exist a, a′ ∈ [n], a ≠ a′, such that
{a < b < c} ∈ H and {a′ < b < c} ∈ H. Analogously, for any a < b, the directed edge ba ∈ E
if and only if there exist c, c′ ∈ [n], c ≠ c′, such that {a < b < c} ∈ H and {a < b < c′} ∈ H.
According to Claim 6.5, the out-degree of every vertex of D is at most one. Note that an
edge may appear in E with both orientations ab and ba.

Claim 6.6. The directed graph D can be constructed by a linear time algorithm.

Proof. H, as any 3-uniform shift-chain on n vertices has at most 3n − 8 hyperedges.
Suppose that they are listed in an arbitrary order, and process them one-by-one. Suppose
the next triple is {a < b < c}.

1. If b is a middle vertex for the first time, store it, together with both of its neighbors,
a and c.

2. If b is a middle vertex for the second time, decide if it was a or c that has been
previously stored as one of its neighbors. (By Claim 6.5, we know that one them
was.) If it is a, add ba to E, if it is c, add bc.

3. Otherwise, do not add any new edge, and pass to the next triple.

Claim 6.7. For a < b < c (or c < b < a) it is not possible that ac ∈ E and ba ∈ E.

Proof. Suppose ac, ba ∈ E. By definition, this means that there exist {x < a < c} ∈H and
{a < b < y} ∈ H, for some x and some y ≠ c. Obviously, with respect to the ordering of
the triples, we have {x < a < c} ≺ {a < b < y}. The sets {x < a < c} ∖ {a < b < y} = {x < c}
and {a < b < y}∖ {x < a < c} = {b < y} are not separated, because the maximal element of
the first set, c, is larger than the minimal element of the second set, b. This contradicts
our assumption that H was a special shift-chain.

Claim 6.8. For a < b < c < d it is not possible that bd ∈ E and ca ∈ E.

Proof. This would mean that there exist {x < b < d} ∈ H with x ≠ a and {a < c < y} ∈ H
with y ≠ d. These two triples are disjoint, but not separated, contradicting the assumption
that H is special.

If a directed graph T can be obtained from a directed tree oriented toward its root r,
by possibly adding one of the edges pr entering the root also with the reverse orientation
rp, then it is called a quasi-tree. Note that in this case, we can also think of T as a
quasi-tree rooted in p.

Claim 6.9. The graph D is the vertex-disjoint union of quasi-trees.
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Proof. As no vertex of D has out-degree larger than 1, it is enough to show that D has
no directed cycle of length larger than 2. Suppose there is such a directed cycle, and
denote its smallest and largest elements by a and b, respectively. By Claim 6.7, we have
that ab ∉ E and ba ∉ E. Let ya ∈ E and ax ∈ E be the incoming edge and the outgoing
edge of the cycle at a. Again, by Claim 6.7, we have a < x < y < b. There is a directed
path from x to b, and along this path there is a first edge uv with u < y and v > y. But
then the edges ya, uv ∈ E would contradict Claim 6.8, as a < u < y < v.

Now we are in a position to find a 2-coloring of H in linear time. For every {a < b <
c} ∈H, we will guarantee that the color of its middle vertex, b, will differ from the color
of a or the color of c.

First, using breadth-first search, we properly 2-color each connected component.
Hence, it will be guaranteed that if the out-degree of b is non-zero, then all triples of
the form {a < b < c} ∈ H contain both colors. Then assign to each vertex x ∈ [n] an edge
ab ∈ E such that a < x < b or b < x < a, provided that such an edge exists. This can be
done in linear time, but here we omit the details.

For every {x < y < z} ∈ H that does not yet contain both colors, its middle vertex
y has out-degree zero. If there is an edge bc ∈ E assigned to y such that b < y < c, then
there are two different hyperedges {a < b < c},{a′ < b < c} ∈ H. Either a ≠ x or a′ ≠ x,
and thus, necessarily, we have c = z. We color y with the same color as b (i.e., differently
from c = z), so that {x < y < z} contains both colors. Note that if the in-degree of y is
non-zero, then a simple case analysis shows that the only possibility is zy ∈ E. Thus, this
color agrees with the color given earlier to y from its connected component.

In a similar manner, if there is an edge ab ∈ E assigned to y such that a < y < b, then
necessarily a = x, and we can color y with the same color as b (i.e., differently from a = x).

Finally, if there are uncolored vertices, color them in increasing order so that when y
is colored, if there are {x < y < z} ∈ H, then y gets the opposite color as x. (This step is
well defined, because it follows from the fact that the out-degree of y is zero, that there
is only one triple {x < y < z} with the above property.)

This completes the proof of Theorem 6.3, as it follows that the middle vertex of any
triple will have a different color from another vertex of the triple.

7 Covering space with unbounded convex sets
Every open, unbounded, line-free convex set C is contained in a half-space with inner

normal vector v⃗ such that for any c ∈ C, the half-line emanating from c and pointing
in the direction of v⃗ lies entirely in C. We can assume without loss of generality that v⃗
is the unit vector ed = (0,0, . . . ,0,1), pointing vertically upwards, and that C lies in the
upper half-space.

First, we prove Proposition 7, according to which every covering of Rd with translates
of a set C satisfying the above conditions can be split into two, and hence into infinitely
many, coverings. We prove a slight generalization of this statement, in which C is not
required to be convex.

Proposition 7’. Let C be an open set in the upper half-space of Rd, which has the
property that, for every c ∈ C, the half-line starting at c and pointing vertically upwards
belongs to C. Then every covering of Rd with translates of C splits into two coverings.
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Proof. For any positive integer i, let Bi denote the closed (d − 1)-dimensional ball of
radius i around the origin in the coordinate hyperplane xd = 0. Let C be a covering of
Rd with translates of C. As the members of C cover the whole d-dimensional space, they
also cover the (d − 1)-dimensional ball B1 × {0}, orthogonal to the xd-axis. This set is
compact and the members of C are open. Therefore, there is a finite subfamily C1 ⊂ C
which covers B1 × {0}. Choose a number z1 < 0 such that all members of C1 lie strictly
above the hyperplane xd = z1, and consider the (d− 1)-dimensional ball B2 × {z1}. Select
a finite family C2 ⊂ C that covers this ball and a number z2 < z1 such that all members
of C2 lie strictly above the hyperplane xd = z2. Proceeding like this, we can construct
an infinite sequence of disjoint finite subfamilies C1,C2, . . . ⊂ C and a sequence of reals
z0 ∶= 0 > z1 > z2 > . . . tending to −∞ such that Ci covers the (d − 1)-dimensional ball
Bi × {zi−1}.

Let p be any point of Rd which is at distance r from the dth coordinate axis and whose
dth coordinate is pd. Notice that p lies above some point of every (d−1)-dimensional ball
Bi ×{zi−1} such that i ≥ r and zi−1 ≤ pd. Consequently, p is covered by the corresponding
families Ci. Hence, C1 ∪ C3 ∪ C5 ∪ . . . and C2 ∪ C4 ∪ C6 ∪ . . . are two disjoint subfamilies of
C, each of which covers the whole space.

Next, we establish Theorem 8, which shows that starting from 4-dimensions, Propo-
sition 7 is false if we drop the assumption that C is an open set.

Proof of Theorem 8. We have to prove that there is a convex, bounded (not open) set
C′ ⊂ R3 such that R4 can be covered by translates of C = C′ × [0,∞) so that every point
of R4 is covered infinitely many times, but this covering cannot be decomposed into two.

The set C′ will be the convex hull of ∪∞i=1(Ci × { 1
i2
}), where each Ci is in R2, and

thus Ci × { 1
i2
} lies in the plane determined by the equation z = 1

i2
of R3. Each Ci is

the union of an open disk, defined by the inequality x2 + (y − 1
i
)2 < 1, and a part of its

boundary defined as follows. A point belongs to the boundary of Ci if and only if it can be
represented as (x,

√
1 − x2 + 1

i
), where x ∈ [0,1] and the ith digit of x after the “decimal”

point in binary form is 1. For each i, denote the set of such x’s by C∗
i . Therefore, C

∗
i is

the disjoint union of 2i−1 closed intervals.
Note that C′ is neither closed, nor open. Clearly, C′ is a bounded set, as it is contained

in the box [−1,1]×[−1,2]×[0,1]. Observe that for every i, the point (0, 1
i
, 1
i2
), the center

of the disk Ci × { 1
i2
}, lies the plane x = 0, on the parabola z = y2. Hence, for each i and

for every point p ∈ R3 whose third coordinate is 1
i2

and first coordinate is non-negative,
p belongs to the boundary of C′ if and only if it is of the form (x,

√
1 − x2 + z, z2) with

x ∈ C∗
i and z = 1

i
. To see this, it is enough to notice that no point of this form can be

obtained as a convex combination of other points in C′.
Now we describe an infinite-fold covering C of R4 with translates of C that cannot

be decomposed into two coverings. Let X = {(x,
√
1 − x2,0,−w) ∣ x ∈ [0,1],w ∈ [0,∞)}.

For every point x /∈ X, select an arbitrary translate of C that covers x and does not
intersect X. (It is easy to see that such a translate always exists.) Let C consist of all
these translates, and for every i (i = 1,2, . . .), the translate of C through the vector
(0,− 1

i
,− 1

i2
,−i), denoted by Ĉi.

Notice that the Ĉi covers (x,
√
1 − x2,0,−w) ∈X if and only if x ∈ C∗

i and w ≤ i. This
implies that every point of X is covered by infinitely many members of C, because every
number has a representation with infinitely many digits that are 1.
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It remains to show that C cannot be split into two coverings. This is a direct conse-
quence of the following statement: For any I ⊂ N for which N ∖ I is infinite, there is a
point (x,

√
1 − x2,0,0) ∈X that is not covered by ∪i∈IĈi.

To prove this statement when I is infinite, define the ith digit of x as 1 if and
only if i ∉ I. Since this is only one binary representation of x, we have x ∉ ∪i∈IĈ

∗
i and

(x,
√
1 − x2,0,0) ∉ ∪i∈IĈi. If I is finite, it can be extended to an infinite set such that

N ∖ I remains infinite. Thus, this case can be reduced to the case when I is infinite.

8 Bounded coverings
We prove Theorem 5 in a somewhat more general form. For the proof we need the

following consequence of the Lovász local lemma.

Lemma 8.1 (Erdős-Lovász [10]). Let k,m ≥ 2 be integers. If every edge of a hypergraph
has at least m vertices and every edge intersects at most km−1/4(k−1)m other edges, then
its vertices can be colored with k colors so that every edge contains at least one vertex of
each color.

Let C be a class of subsets of Rd. Given n members C1, . . . ,Cn of C, assign to each
point x ∈ Rd a characteristic vector c(x) = (c1(x), . . . , cn(x)), where ci(x) = 1 if x ∈ Ci

and ci(x) = 0 otherwise. The number of distinct characteristic vectors shows how many
“pieces” C1, . . . ,Cn cut the space into. The dual shatter function of C, denoted by π∗C(n),
is the maximum of this quantity over all n-tuples C1, . . . ,Cn ∈ C. For example, when C is
the family of open balls in Rd, it is well known that

π∗C(n) ≤ (n − 1

d
) +

d

∑
i=0

(n
i
) ≤ nd, (1)

provided that 2 ≤ d ≤ n.

Theorem 8.2. Let C be a class of open sets in Rd with diameter at most D and volume
at least v. Let π(n) = π∗C(n) denote the dual shatter function of C, and let Bd denote
the unit ball in Rd. Then, for every positive integer m, any m-fold covering of Rd with
members of C splits into two coverings, provided that no point of the space is covered
more than v

(2D)dV olBd π
−1(2m−3) times, where V olBd is the volume of Bd.

Proof. Given an m-fold covering of Rd in which no point is covered more than M times,
define a hypergraph H = (V,E), as follows. Let V consist of all members of C that
participate in the covering. To each point x ∈ Rd, assign a (hyper)edge e(x): the set of all
members of the covering that contain x. (Every edge is counted only once.) Since every
point x is covered by at least m members of C, every edge e(x) ∈ E consists of at least
m points.

Consider two edges e(x), e(y) ∈ E with e(x) ∩ e(y) ≠ ∅. Then there is a member of
C that contains both x and y, so that y must lie in the ball B(x,D) of radius D around
x. Hence, all members of the covering that contain y lie in the ball B(x,2D) of radius
2D around x. Since the volume of each of these members is at least v, and no point of
B(x,2D) is covered more thanM times, we obtain that B(x,D) can be intersected by at
most MV olB(x,2D)/v = M(2D)dV olBd/v members of the covering. By the definition
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of the dual shatter functions, those members of the covering that intersect B(x,D) cut
B(x,D) into at most π(M(2D)dV olBd/v) pieces, each of which corresponds to an edge
of H. Therefore, for the maximum number N of edges of H that can intersect the same
edge e(x) ∈ E, we have

N ≤ π(M(2D)dV olBd/v).
According to Lemma 8.1 (for k = 2), in order to show that the covering can be split

into two, i.e., the hypergraph H is 2-colorable, it is sufficient to assume that N ≤ 2m−3.
Comparing this with the previous inequality, the result follows.

In the special case where C is the class of unit balls in Rd, we have v = V olBd, D = 2,
and, in view of (1), π−1(z) ≥ z1/d. Thus, we obtain Theorem 5 with cd = 2−2d−3/d.

If we want to decompose an m-fold covering into k > 2 coverings, then the above
argument shows that it is sufficient to assume that

π(M(2D)dV olBd/v) ≤ km−1/4(k − 1)m.

In case of unit balls, this holds for M ≤ ck,d(1 + 1
k−1)

m/d with ck,d = k−1/d4−d−1/d.
Two sets are homothets of each other if one can be obtained from the other by a

dilation with positive coefficient followed by a translation. It is easy to see [20] that for
d = 2, the dual shatter function of the class C consisting of all homothets of a fixed convex
set C is at most n2 − n + 2 ≤ n2, for every n ≥ 2. In this case, Theorem 8.2 immediately
implies

Corollary 8.3. Every m-fold covering C of the plane with homothets of a fixed convex
set can be decomposed into two coverings, provided that no point of the plane belongs to
more than 2(m−11)/2 members of C.

Naszódi and Taschuk [30] constructed a convex set C in R3 such that the dual shatter
function of the class of all translates of C cannot be bounded from above by any poly-
nomial of n. Therefore, for translates of C, the above approach breaks down. We do not
know how to generalize Theorem 5 from balls to arbitrary convex bodies in Rd, for d ≥ 3.

For some related combinatorial results, see Bollobás et al. [5].

9 Open problems and concluding remarks
Theorem 3 states that, if C is a plane convex body with two antipodal points at which

the curvature is positive, then for every m, there exists an m-fold covering of R2 with
translates of C that does not split into two coverings. We also know that this statement
is false for any convex polygon. But what happens if C “almost satisfies” the condition
concerning the antipodal point pair?

Problem 9.1. Does there exist an integer m such that every m-fold covering of R2 with
translates of an open semidisk splits into two coverings?

Another question, which surprisingly is widely open even in a completely abstract
setting, is the following.

Problem 9.2. Suppose that for a body C, there is an integer m such that every m-fold
covering of Rd with translates of C splits into two coverings. Does it follow that for every
k > 2, there is an integer mk such that every mk-fold covering of Rd with translates of C
splits into k coverings? Is it true that (for the smallest such mk) even mk = OC(k)?
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According to Theorem 6.3, for any m ≥ 3, every m-uniform special shift-chain is 2-
colorable. Keszegh and the Pálvölgyi [25] recently extended this theorem to show that
the vertices of every (2k − 1)-uniform special shift-chain can be colored by k colors so
that every hyperedge contains at least one point of each color.

As was stated in the introduction, for every triangle (in fact, for every convex polygon)
C, there is an integer m(C) such that every m-fold covering of the plane with translates
of C splits into two coverings. Keszegh and the Pálvölgyi [22] extended this theorem to
m-fold coverings with homothets of a triangle. (Two sets are homothets of each other if
one can be obtained from the other by a dilation with positive coefficient followed by
a translation.) Using the idea of the proof of our Theorem 2, Kovács [26] has recently
showed that the analogous statement is false for homothets of any convex polygon with
more than 3 sides. For further results about decomposition of multiple coverings, see [4,
5, 7, 8, 19, 23, 24].
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