Author dc.contributor.author | R, Forster | |
Author dc.contributor.author | A, Fülöp | |
Availability Date dc.date.accessioned | 2020-08-07T13:40:08Z | |
Availability Date dc.date.available | 2020-08-07T13:40:08Z | |
Release dc.date.issued | 2018 | |
uri dc.identifier.uri | http://hdl.handle.net/10831/49087 | |
Abstract dc.description.abstract | Following up on our previous study on applying hierarchical clustering algorithms to high energy particle physics, this paper explores the possibilities to use deep learning to generate models capable of processing the clusterization themselves. The technique chosen for training is reinforcement learning, that allows the system to evolve based on interactions between the model and the underlying graph. The result is a model, that by learning on a modest dataset of 10, 000 nodes during 70 epochs can reach 83, 77% precision for hierarchical and 86, 33% for high energy jet physics datasets in predicting the appropriate clusters. | |
Language dc.language | Angol | |
Title dc.title | Hierarchical clustering with deep Q-learning | |
Type dc.type | folyóiratcikk | |
Date Change dc.date.updated | 2020-06-04T13:16:18Z | |
Scope dc.format.page | 86-109 | |
Doi ID dc.identifier.doi | 10.2478/ausi-2018-0006 | |
Wos ID dc.identifier.wos | 000443328300006 | |
MTMT ID dc.identifier.mtmt | 3405551 | |
Issue Number dc.identifier.issue | 1 | |
abbreviated journal dc.identifier.jabbrev | ACTA UNIV SAP INFORM | |
Journal dc.identifier.jtitle | ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA | |
Volume Number dc.identifier.volume | 10 | |
Release Date dc.description.issuedate | 2018 | |
department of Author dc.contributor.institution | Elméleti Fizikai Főosztály | |
department of Author dc.contributor.institution | Komputeralgebra Tanszék | |
department of Author dc.contributor.institution | Komputer Algebra Tanszék | |
department of Author dc.contributor.institution | NA61/SHINE Collaboration | |
department of Author dc.contributor.institution | Elméleti Fizikai Főosztály | |
Author institution dc.contributor.department | Komputeralgebra Tanszék |
Files in this item
This item appears in the following Collection(s)
-
Tudományos publikációk (TTK) [4672]