EDIT
    • English
    • magyar
  • English 
    • English
    • magyar
  • Login
Search 
  •   DSpace Home
  • Publikációk
  • Search
  •   DSpace Home
  • Publikációk
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine results.

Now showing items 1-7 of 1

  • Ordering:
  • Importance
  • Title ascendent
  • Title descentdant
  • Issue date ascendent
  • Issue date descendant
  • One page results:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Advection of Vector Fields by Chaotic Flows

Title: Advection of Vector Fields by Chaotic Flows 
Author: BALMFORTH, NJ; CVITANOVIC, P; IERLEY, GR; SPIEGEL, EA; VATTAY, G
Date: 1993
Submitted: 2020-08-08
BALMFORTH, NJ; CVITANOVIC, P; IERLEY, GR; SPIEGEL, EA; VATTAY, G (1993)
A Fredholm determinant for semiclassical quantization

Title: A Fredholm determinant for semiclassical quantization 
Author: Cvitanovic, P; Rosenqvist, PE; Vattay, G; Rugh, HH
Date: 1993
Submitted: 2020-08-08
Cvitanovic, P; Rosenqvist, PE; Vattay, G; Rugh, HH (1993)
We investigate a new type of approximation to quantum determinants, the "quantum Fredholm determinant," and test numerically the conjecture that for Axiom A hyperbolic flows such determinants have a larger domain of ...
Beyond the periodic orbit theory

Title: Beyond the periodic orbit theory 
Author: Cvitanovic, P; Hansen, K; Rolf, J; Vattay, G
Date: 1998
Submitted: 2020-08-08
Cvitanovic, P; Hansen, K; Rolf, J; Vattay, G (1998)
The global constraints on chaotic dynamics induced by the analyticity of smooth flows are used to dispense with individual periodic orbits and derive infinite families of exact sum rules for several simple dynamical systems. ...
Trace formulas for stochastic evolution operators: Weak noise perturbation theory

Title: Trace formulas for stochastic evolution operators: Weak noise perturbation theory 
Author: Cvitanovic, P; Dettmann, CP; Mainieri, R; Vattay, G
Date: 1998
Submitted: 2020-08-08
Cvitanovic, P; Dettmann, CP; Mainieri, R; Vattay, G (1998)
Periodic orbit theory is all effective tool for the analysis of classical and quantum chaotic systems. In this paper we extend this approach to stochastic systems, in particular to mappings with additive noise. The theory ...
Trace formulae for stochastic evolution operators: smooth conjugation method

Title: Trace formulae for stochastic evolution operators: smooth conjugation method 
Author: Cvitanovic, P; Dettmann, CP; Mainieri, R; Vattay, G
Date: 1999
Submitted: 2020-08-08
Cvitanovic, P; Dettmann, CP; Mainieri, R; Vattay, G (1999)
The trace formula for the evolution operator associated with nonlinear stochastic flows with weak additive noise is cast in the path integral formalism. We integrate over the neighbourhood of a given saddlepoint exactly ...
Spectrum of stochastic evolution operators: Local matrix representation approach

Title: Spectrum of stochastic evolution operators: Local matrix representation approach 
Author: Cvitanovic, P; Sondergaard, N; Palla, G; Vattay, G; Dettmann, C P
Date: 1999
Submitted: 2020-08-08
Cvitanovic, P; Sondergaard, N; Palla, G; Vattay, G; Dettmann, C P (1999)
ENTIRE FREDHOLM DETERMINANTS FOR EVALUATION OF SEMICLASSICAL AND THERMODYNAMICAL SPECTRA

Title: ENTIRE FREDHOLM DETERMINANTS FOR EVALUATION OF SEMICLASSICAL AND THERMODYNAMICAL SPECTRA 
Author: CVITANOVIC, P; VATTAY, G
Date: 1993
Submitted: 2020-08-08
CVITANOVIC, P; VATTAY, G (1993)
Proofs that Fredholm determinants of transfer operators for hyperbolic flows are entire can be extended to a large new class of multiplicative evolution operators. We construct such operators both for the Gutzwiller ...
  • 1

DSpace software copyright © 2002-2013  Duraspace
Contact Us | Send Feedback | Impressum
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsIssue DateAuthorsTitlesSubjectsSubmit DateThis CommunityIssue DateAuthorsTitlesSubjectsSubmit Date

My Account

LoginRegister

DSpace software copyright © 2002-2013  Duraspace
Contact Us | Send Feedback | Impressum
Theme by 
@mire NV